Search results for: fixed biomass
853 Estimation of Carbon Released From Dry Dipterocarp Forest Fire in Thailand
Authors: Ubonwan Chaiyo, Yannick Pizzo, Savitri Garivait
Abstract:
This study focused on the estimation of carbon released to the atmosphere from dry dipterocarp forest (DDF) fires in Thailand. Laboratory experiments were conducted using a cone calorimeter to simulate the DDF fires. The leaf litter collected from DDF in western Thailand was used as biomass fuel. Three different masses of leaf litter were employed, 7g, 10g and 13g, to estimate the carbon released from this type of vegetation fire to the atmosphere. The chemical analysis of the leaf litter showed that the carbon content in the experimental biomass fuel was 46.0±0.1%. From the experiments, it was found that more than 95% of the carbon input was converted to carbon released to the atmosphere, while less than 5% were left in the form of residues, and returned to soil. From the study, the carbon released amounted 440.213±2.243 g/kgdry biomass, and the carbon retained in the residues was 19.786±2.243 g/kgdry biomass. The quantity of biomass fuel consumed to produce 1 g of carbon released was 2.27±0.01gkgdry biomass. Using these experimental data of carbon produced by the DDF fires, it was estimated that this type of fires in 2009 contributed to 4.659 tonnes of carbon released to the atmosphere, and 0.229 tonnes of carbon in the residues to be returned to soil in Thailand.
Keywords: Carbon mass balance, carbon released, tropical dry dipterocarp forest, biomass bunring.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2447852 Fermentable Sugars from Palm Empty Fruit Bunch Biomass for Bioethanol Production
Authors: U. A. Asli, H. Hamid, Z.A. Zakaria, A. N. Sadikin, R. Rasit
Abstract:
This study investigated the effect of a dilute acid, lime and ammonia aqueous pretreatment on the fermentable sugars conversion from empty fruit bunch (EFB) biomass. The dilute acid treatment was carried out in an autoclave, at 121ºC with 4% of sulfuric acid. In the lime pretreatment, 3 wt % of calcium hydroxide was used, whereas the third method was done by soaking EFB with 28% ammonia solution. The EFB biomass was then subjected to a two-stage-acid hydrolysis process. Subsequently, the hydrolysate was fermented by using instant baker’s yeast to produce bioethanol. The highest glucose yield was 890 mg/g of biomass, obtained from the sample which underwent lime pretreatment. The highest bioethanol yield of 6.1mg/g of glucose was achieved from acid pretreatment. This showed that the acid pretreatment gave the most fermentable sugars compared to the other two pretreatments.
Keywords: Bioethanol, biomass, empty fruit bunch (EFB), fermentable sugars.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 3747851 Comparison of MODIS-Based Rice Extent Map and Landsat-Based Rice Classification Map in Determining Biomass Energy Potential of Rice Hull in Nueva Ecija, Philippines
Authors: Klathea Sevilla, Marjorie Remolador, Bryan Baltazar, Imee Saladaga, Loureal Camille Inocencio, Ma. Rosario Concepcion Ang
Abstract:
The underutilization of biomass resources in the Philippines, combined with its growing population and the rise in fossil fuel prices confirms demand for alternative energy sources. The goal of this paper is to provide a comparison of MODIS-based and Landsat-based agricultural land cover maps when used in the estimation of rice hull’s available energy potential. Biomass resource assessment was done using mathematical models and remote sensing techniques employed in a GIS platform.Keywords: Biomass, geographic information system, GIS, renewable energy.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2244850 Determinants of Investment in Fixed Assets in Electric Power Industry - An Econometric Analysis
Authors: S. L. Tulasi Devi, R. N. Rao
Abstract:
This paper focuses attention on specific aspects of entrepreneurial decisions relating to investment, both in the total fixed investments and plant & machinery (separately). Demand and financial factors, internal and external, are considered in the investment analysis. Finally the influence of determinants of fixed investment and investment plans are examined in Electric Power industry in India.Keywords: Determinants, Electric Power Industry, Fixed Assets, Econometric Analysis.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1664849 Thermogravimetry Study on Pyrolysis of Various Lignocellulosic Biomass for Potential Hydrogen Production
Authors: S.S. Abdullah, S. Yusup, M.M. Ahmad, A. Ramli, L. Ismail
Abstract:
This paper aims to study decomposition behavior in pyrolytic environment of four lignocellulosic biomass (oil palm shell, oil palm frond, rice husk and paddy straw), and two commercial components of biomass (pure cellulose and lignin), performed in a thermogravimetry analyzer (TGA). The unit which consists of a microbalance and a furnace flowed with 100 cc (STP) min-1 Nitrogen, N2 as inert. Heating rate was set at 20⁰C min-1 and temperature started from 50 to 900⁰C. Hydrogen gas production during the pyrolysis was observed using Agilent Gas Chromatography Analyzer 7890A. Oil palm shell, oil palm frond, paddy straw and rice husk were found to be reactive enough in a pyrolytic environment of up to 900°C since pyrolysis of these biomass starts at temperature as low as 200°C and maximum value of weight loss is achieved at about 500°C. Since there was not much different in the cellulose, hemicelluloses and lignin fractions between oil palm shell, oil palm frond, paddy straw and rice husk, the T-50 and R-50 values obtained are almost similar. H2 productions started rapidly at this temperature as well due to the decompositions of biomass inside the TGA. Biomass with more lignin content such as oil palm shell was found to have longer duration of H2 production compared to materials of high cellulose and hemicelluloses contents.Keywords: biomass, decomposition, hydrogen, lignocellulosic, thermogravimetry
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2268848 Modeling Moisture and Density Behaviors of Wood in Biomass Torrefaction Environments
Authors: Gun Yung Go, Man Young Kim
Abstract:
Worldwide interests for the renewable energy are increasing due to environmental and climate changes from traditional petroleum related energy sources. To account for these social needs, ligneous biomass energy is considered as one of the environmentally friend energy solutions. The wood torrefaction process is a feasible method to improve the properties of the biomass fuel and makes the wood have low moisture, lower smoke emission and increased heating value. In this work, therefore, the moisture evaporation model which largely affects energy efficiency of ligneous biomass through moisture contents and heating value relative to its weight is studied with numerical modeling approach by analyzing the effects of torrefaction furnace temperature. The results show that the temperature and moisture fraction of wood decrease by increasing the furnace temperature. When the torrefaction temperature is lower than 423K, there were little changes of the moisture fraction in the wood. Also, it can be found that charcoal is produced more slowly when the torrefaction temperature is lower than 573K.
Keywords: Modeling, Torrefaction, Biomass, Moisture Fraction, Charcoal.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1560847 Parametric Analysis on Hydrogen Production using Mixtures of Pure Cellulosic and Calcium Oxide
Authors: N.A. Rashidi, S. Yusup, M.M. Ahmad
Abstract:
As the fossil fuels kept on depleting, intense research in developing hydrogen (H2) as the alternative fuel has been done to cater our tremendous demand for fuel. The potential of H2 as the ultimate clean fuel differs with the fossil fuel that releases significant amounts of carbon dioxide (CO2) into the surrounding and leads to the global warming. The experimental work was carried out to study the production of H2 from palm kernel shell steam gasification at different variables such as heating rate, steam to biomass ratio and adsorbent to biomass ratio. Maximum H2 composition which is 61% (volume basis) was obtained at heating rate of 100oCmin-1, steam/biomass of 2:1 ratio, and adsorbent/biomass of 1:1 ratio. The commercial adsorbent had been modified by utilizing the alcoholwater mixture. Characteristics of both adsorbents were investigated and it is concluded that flowability and floodability of modified CaO is significantly improved.
Keywords: Biomass gasification, Calcium oxide, Carbon dioxide capture, Sorbent flowability
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1845846 Effect of Equivalence Ratio on Performance of Fluidized Bed Gasifier Run with Sized Biomass
Authors: J. P. Makwana, A. K. Joshi, Rajesh N. Patel, Darshil Patel
Abstract:
Recently, fluidized bed gasification becomes an attractive technology for power generation due to its higher efficiency. The main objective pursued in this work is to investigate the producer gas production potential from sized biomass (sawdust and pigeon pea) by applying the air gasification technique. The size of the biomass selected for the study was in the range of 0.40-0.84 mm. An experimental study was conducted using a fluidized bed gasifier with 210 mm diameter and 1600 mm height. During the experiments, the fuel properties and the effects of operating parameters such as gasification temperatures 700 to 900 °C, equivalence ratio 0.16 to 0.46 were studied. It was concluded that substantial amounts of producer gas (up to 1110 kcal/m3) could be produced utilizing biomass such as sawdust and pigeon pea by applying this fluidization technique. For both samples, the rise of temperature till 900 °C and equivalence ratio of 0.4 favored further gasification reactions and resulted into producer gas with calorific value 1110 kcal/m3.Keywords: Sized biomass, fluidized bed gasifier, equivalence ratio, temperature profile, gas composition.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1736845 Measurements of Radial Velocity in Fixed Fluidized Bed for Fischer-Tropsch Synthesis Using LDV
Authors: Xiaolai Zhang, Haitao Zhang, Qiwen Sun, Weixin Qian, Weiyong Ying
Abstract:
High temperature Fischer-Tropsch synthesis process use fixed fluidized bed as a reactor. In order to understand the flow behavior in the fluidized bed better, the research of how the radial velocity affects the entire flow field is necessary. Laser Doppler Velocimetry (LDV) was used to study the radial velocity distribution along the diameter direction of the cross-section of the particle in a fixed fluidized bed. The velocity in the cross-section is fluctuating within a small range. The direction of the speed is a random phenomenon. In addition to r/R is 1, the axial velocity are more than 6 times of the radial velocity, the radial velocity has little impact on the axial velocity in a fixed fluidized bed.Keywords: LDV, fixed fluidized bed, velocity, Fischer-Tropsch synthesis.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1628844 Simulation Tools for Fixed Point DSP Algorithms and Architectures
Authors: K. B. Cullen, G. C. M. Silvestre, N. J. Hurley
Abstract:
This paper presents software tools that convert the C/Cµ floating point source code for a DSP algorithm into a fixedpoint simulation model that can be used to evaluate the numericalperformance of the algorithm on several different fixed pointplatforms including microprocessors, DSPs and FPGAs. The tools use a novel system for maintaining binary point informationso that the conversion from floating point to fixed point isautomated and the resulting fixed point algorithm achieves maximum possible precision. A configurable architecture is used during the simulation phase so that the algorithm can produce a bit-exact output for several different target devices.
Keywords: DSP devices, DSP algorithm, simulation model, software
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2552843 Use of Biomass as Co-Fuel in Briquetting of Low-Rank Coal: Strengthen the Energy Supply and Save the Environment
Authors: Mahidin, Yanna Syamsuddin, Samsul Rizal
Abstract:
In order to fulfill world energy demand, several efforts have been done to look for new and renewable energy candidates to substitute oil and gas. Biomass is one of new and renewable energy sources, which is abundant in Indonesia. Palm kernel shell is a kind of biomass discharge from palm oil industries as a waste. On the other hand, Jatropha curcas that is easy to grow in Indonesia is also a typical energy source either for bio-diesel or biomass. In this study, biomass was used as co-fuel in briquetting of low-rank coal to suppress the release of emission (such as CO, NOx and SOx) during coal combustion. Desulfurizer, CaO-base, was also added to ensure the SOx capture is effectively occurred. Ratio of coal to palm kernel shell (w/w) in the bio-briquette were 50:50, 60:40, 70:30, 80:20 and 90:10, while ratio of calcium to sulfur (Ca/S) in mole/mole were 1:1; 1.25:1; 1.5:1; 1.75:1 and 2:1. The bio-briquette then subjected to physical characterization and combustion test. The results show that the maximum weight loss in the durability measurement was ±6%. In addition, the highest stove efficiency for each desulfurizer was observed at the coal/PKS ratio of 90:10 and Ca/S ratio of 1:1 (except for the scallop shell desulfurizer that appeared at two Ca/S ratios; 1.25:1 and 1.5:1, respectively), i.e. 13.8% for the lime; 15.86% for the oyster shell; 14.54% for the scallop shell and 15.84% for the green mussel shell desulfurizers.
Keywords: Biomass, low-rank coal, bio-briquette, new and renewable energy, palm kernel shell.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2679842 Effect of Partial Rootzone Drying on Growth, Yield and Biomass Partitioning of a Soilless Tomato Crop
Authors: N. Affi, A. El Fadl, M. El Otmani, M.C. Benismail, L.M. Idrissi
Abstract:
The object of the present research was to assess the effects of partial rootzone drying (PRD) on tomato growth, productivity, biomass allocation and water use efficiency (WUE). Plants were grown under greenhouse, on a sand substrate. Three treatments were applied: a control that was fully and conventionally irrigated, PRD-70 and PRD-50 in which, respectively, 70% and 50% of water requirements were supplied using PRD. Alternation of irrigation between the two root halves took place each three days. The Control produces the highest total yield (252tons/ha). In terms of fruit number, PRD-50 showed 23% and 16% less fruits than PRD-70 and control, respectively. Fruit size was affected by treatment with PRD-50 treatment producing 66% and 53% more class 3 fruits than, control and PRD-70, respectively. For plant growth, the difference was not significant when comparing control to PRD-70 but was significant when comparing PRD-70 and control to PRD-50. No effect was on total biomass but root biomass was higher for stressed plants compared to control. WUE was 66% and 27% higher for PRD-50 and PRD-70 respectively compared to control.
Keywords: Biomass, growth, partial rootzone drying, water use efficiency yield.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2071841 Thermal Distribution in Axial-Flow Fixed Bed with Flowing Gas
Authors: Kun Lei, Hongfang Ma, Haitao Zhang, Weiyong Ying, Dingye Fang
Abstract:
This paper reported an experimental research of steady-state heat transfer behaviour of a gas flowing through a fixed bed under the different operating conditions. Studies had been carried out in a fixed-bed packed methanol synthesis catalyst percolated by air at appropriate flow rate. Both radial and axial direction temperature distribution had been investigated under the different operating conditions. The effects of operating conditions including the reactor inlet air temperature, the heating pipe temperature and the air flow rate on temperature distribution was investigated and the experimental results showed that a higher inlet air temperature was conducive to uniform temperature distribution in the fixed bed. A large temperature drop existed at the radial direction, and the temperature drop increased with the heating pipe temperature increasing under the experimental conditions; the temperature profile of the vicinity of the heating pipe was strongly affected by the heating pipe temperature. A higher air flow rate can improve the heat transfer in the fixed bed. Based on the thermal distribution, heat transfer models of the fixed bed could be established, and the characteristics of the temperature distribution in the fixed bed could be finely described, that had an important practical significance.Keywords: Thermal distribution, heat transfer, axial-flow, fixed bed.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2481840 Conditions of the Anaerobic Digestion of Biomass
Authors: N. Boontian
Abstract:
Biological conversion of biomass to methane has received increasing attention in recent years. Grasses have been explored for their potential anaerobic digestion to methane. In this review, extensive literature data have been tabulated and classified. The influences of several parameters on the potential of these feedstocks to produce methane are presented. Lignocellulosic biomass represents a mostly unused source for biogas and ethanol production. Many factors, including lignin content, crystallinity of cellulose, and particle size, limit the digestibility of the hemicellulose and cellulose present in the lignocellulosic biomass. Pretreatments have used to improve the digestibility of the lignocellulosic biomass. Each pretreatment has its own effects on cellulose, hemicellulose and lignin, the three main components of lignocellulosic biomass. Solidstate anaerobic digestion (SS-AD) generally occurs at solid concentrations higher than 15%. In contrast, liquid anaerobic digestion (AD) handles feedstocks with solid concentrations between 0.5% and 15%. Animal manure, sewage sludge, and food waste are generally treated by liquid AD, while organic fractions of municipal solid waste (OFMSW) and lignocellulosic biomass such as crop residues and energy crops can be processed through SS-AD. An increase in operating temperature can improve both the biogas yield and the production efficiency, other practices such as using AD digestate or leachate as an inoculant or decreasing the solid content may increase biogas yield but have negative impact on production efficiency. Focus is placed on substrate pretreatment in anaerobic digestion (AD) as a means of increasing biogas yields using today’s diversified substrate sources.
Keywords: Anaerobic digestion, Lignocellulosic biomass, Methane production, Optimization, Pretreatment.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 4246839 CFD Flow and Heat Transfer Simulation for Empty and Packed Fixed Bed Reactor in Catalytic Cracking of Naphtha
Authors: D. Salari, A. Niaei, P. Chitsaz Yazdi, M. Derakhshani, S. R. Nabavi
Abstract:
This work aims to test the application of computational fluid dynamics (CFD) modeling to fixed bed catalytic cracking reactors. Studies of CFD with a fixed bed design commonly use a regular packing with N=2 to define bed geometry. CFD allows us to obtain a more accurate view of the fluid flow and heat transfer mechanisms present in fixed bed equipment. Naphtha was used as feedstock and the reactor length was 80cm. It is divided in three sections that catalyst bed packed in the middle section of the reactor. The reaction scheme was involved one primary reaction and 24 secondary reactions. Because of high CPU times in these simulations, parallel processing have been used. In this study the coke formation process in fixed bed and empty tube reactor was simulated and coke in these reactors are compared. In addition, the effect of steam ratio and feed flow rate on coke formation was investigated.Keywords: Coke Formation, CFD Simulation, Fixed Bed, Catalyitic Cracking.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2508838 Torrefaction of Malaysian Palm Kernel Shell into Value-Added Solid Fuels
Authors: Amin A. Jaafar, Murni M. Ahmad
Abstract:
This project aims to investigate the potential of torrefaction to improve the properties of Malaysian palm kernel shell (PKS) as a solid fuel. A study towards torrefaction of PKS was performed under various temperature and residence time of 240, 260, and 280oC and 30, 60, and 90 minutes respectively. The torrefied PKS was characterized in terms of the mass yield, energy yield, elemental composition analysis, calorific value analysis, moisture and volatile matter contents, and ash and fixed carbon contents. The mass and energy yield changes in the torrefied PKS were observed to prove that the temperature has more effect compare to residence time in the torrefaction process. The C content of PKS increases while H and O contents decrease after torrefaction, which resulted in higher heating value between 5 to 16%. Meanwhile, torrefaction caused the ash and fixed carbon content of PKS to increase, and the moisture and volatile matter to decrease.Keywords: biomass, palm kernel shell, pretreatment, solid fuel, torrefaction
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 3593837 BasWilCalc – Basket Willow (Salix viminalis) Biomass Yield Calculator
Authors: Wiesław Szulczewski, Wojciech Jakubowski, Andrzej Żyromski, Małgorzata Biniak-Pieróg
Abstract:
The aim of the paper was to elaborate a novel calculator BasWilCalc, that allows to estimate the actual amount of biomass on the basket willow plantations. The proposed method is based on the results of field experiment conducted during years 2011-2013 on basket willow plantation in the south-western part of Poland. As input data the results of destructive measurements of the diameter, length and weight of willow stems and non-destructive biometric measurements of diameter in the middle of stems and their length during the growing season performed at weekly intervals were used. Performed analysis enabled to develop the algorithm which, due to the fact that energy plantations are of known and constant planting structure, allows to estimate the actual amount of willow basket biomass on the plantation with a given probability and accuracy specified by the model, based on the number of stems measured and the age of the plantation.
Keywords: Basket willow (Salix viminalis) biomass, biometric measurements, yield, biomass calculator.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1667836 Characterization of Chemically Modified Biomass as a Coating Material for Controlled Released Urea by Contact Angle Measurement
Authors: Nur Zahirah Zulhaimi, KuZilati KuShaari, Zakaria Man
Abstract:
Controlled release urea has become popular in agricultural industry as it helps to solve environmental issues and increase crop yield. Recently biomass was identified to replace the polymer used as a coating material in the conventional coated urea. In this paper spreading and contact angle of biomass droplet (lignin, cellulose and clay) on urea surface are investigated experimentally. There were two tests were conducted, sessile drop for contact angle measurement and pendant drop for contact angle measurement. A different concentration of biomass droplet was released from 30 mm above a substrate. Glass was used as a controlled substrate. Images were recorded as soon as the droplet impacted onto the urea before completely adsorb into the urea. Digitized droplets were then used to identify the droplet-s surface tension and contact angle. There is large difference observed between the low surface tension and high surface tension liquids, where the wetting and spreading diameter is higher for lower surface tension. From the contact angle results, the data showed that the biomass coating films were possible as wetting liquid (θ < 90º). Contact angle of biomass coating material gives good indication for the wettablity of a liquid on urea surface.
Keywords: Fluid, Dynamics, Droplet, Spreading, Contact Angle, Surface Tension.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2488835 Biosorption of Azo Dye Reactive Black B onto Nonviable Biomass of Cladosporium cladosporioides LM1: Thermodynamic, Kinetic and Equilibrium Modeling
Authors: L. A. S. Dionel, B. A. P. Santos, V. C. P. Lopes, L. G. Vasconcelos, M. A. Soares, E. B. Morais
Abstract:
This study investigated the biosorption of the azo dye reactive Black B (RBB) from aqueous solution using the nonviable biomass of Cladosporium cladosporioides LM1. The biosorption systems were carried out in batch mode considering different conditions of initial pH, contact time, temperature, initial dye concentration and biosorbent dosage. Higher removal rate of RBB was obtained at pH 2. Biosorption data were successfully described by pseudo-second-order kinetic model and Langmuir isotherm model with the maximum monolayer biosorption capacity estimated at 71.43 mg/g. The values of thermodynamic parameters such as ∆G°, ∆H° and ∆S° indicated that the biosorption of RBB onto fungal biomass was spontaneous and exothermic in nature. It can be concluded that nonviable biomass of Cladosporium cladosporioides LM1 may be an attractive low-cost biosorbent for the removal of azo dye RBB from aqueous solution.
Keywords: Color removal, isotherms and kinetics models, thermodynamic studies, fungus.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 858834 Heat Transfer at Convective Solid Melting in Fixed Bed
Authors: Stelian Petrescu, Adina Frunzâ, Camelia Petrescu
Abstract:
A method to determine experimentally the melting rate, rm, and the heat transfer coefficients, αv (W/(m3K)), at convective melting in a fixed bed of particles under adiabatic regime is established in this paper. The method lies in the determining of the melting rate by measuring the fixed bed height in time. Experimental values of rm, α and α v were determined using cylindrical particles of ice (d = 6.8 mm, h = 5.5 mm) and, as a melting agent, aqueous NaCl solution with a temperature of 283 K at different values of the liquid flow rate (11.63·10-6, 28.83·10-6, 38.83·10-6 m3/s). Our experimental results were compared with those existing in literature being noticed a good agreement for Re values higher than 50.Keywords: Convective melting, fixed bed, packed bed, heat transfer, ice melting.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1825833 Biomass and Pigment Production by Monascus during Miniaturized Submerged Culture on Adlay
Authors: Supavej Maniyom, Gerard H. Markx
Abstract:
Three reactor types were explored and successfully used for pigment production by Monascus: shake flasks, and shaken and stirred miniaturized reactors. Also, the use of dielectric spectroscopy for the on-line measurement of biomass levels was explored. Shake flasks gave good pigment yields, but scale up is difficult, and they cannot be automated. Shaken bioreactors were less successful with pigment production than stirred reactors. Experiments with different impeller speeds in different volumes of liquid in the reactor confirmed that this is most likely due oxygen availability. The availability of oxygen appeared to affect biomass levels less than pigment production; red pigment production in particular needed very high oxygen levels. Dielectric spectroscopy was effectively used to continuously measure biomass levels during the submerged fungal fermentation in the shaken and stirred miniaturized bioreactors, despite the presence of the solid substrate particles. Also, the capacitance signal gave useful information about the viability of the cells in the culture.Keywords: Chinese pearl barley, miniature submerged culture, Monascus pigment, biomass, capacitance.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2772832 Electric Field Impact on the Biomass Gasification and Combustion Dynamics
Authors: M. Zake, I. Barmina, A. Kolmickovs, R. Valdmanis
Abstract:
Experimental investigations of the DC electric field effect on thermal decomposition of biomass, formation of the axial flow of volatiles (CO, H2, CxHy), mixing of volatiles with swirling airflow at low swirl intensity (S ≈ 0.2-0.35), their ignition and on formation of combustion dynamics are carried out with the aim to understand the mechanism of electric field influence on biomass gasification, combustion of volatiles and heat energy production. The DC electric field effect on combustion dynamics was studied by varying the positive bias voltage of the central electrode from 0.6 kV to 3 kV, whereas the ion current was limited to 2 mA. The results of experimental investigations confirm the field-enhanced biomass gasification with enhanced release of volatiles and the development of endothermic processes at the primary stage of thermochemical conversion of biomass determining the field-enhanced heat energy consumption with the correlating decrease of the flame temperature and heat energy production at this stage of flame formation. Further, the field-enhanced radial expansion of the flame reaction zone correlates with a more complete combustion of volatiles increasing the combustion efficiency by 3% and decreasing the mass fraction of CO, H2 and CxHy in the products, whereas by 10% increases the average volume fraction of CO2 and the heat energy production downstream the combustor increases by 5-10%
Keywords: Biomass, combustion, electrodynamic control, gasification.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1611831 Hydrodynamic Simulation of Fixed Bed GTL Reactor Using CFD
Authors: Sh. Shahhosseini, S. Alinia, M. Irani
Abstract:
In this work, axisymetric CFD simulation of fixed bed GTL reactor has been conducted, using computational fluid dynamics (CFD). In fixed bed CFD modeling, when N (tube-to-particle diameter ratio) has a large value, it is common to consider the packed bed as a porous media. Synthesis gas (a mixture of predominantly carbon monoxide and hydrogen) was fed to the reactor. The reactor length was 20 cm, divided to three sections. The porous zone was in the middle section of the reactor. The model equations were solved employing finite volume method. The effects of particle diameter, bed voidage, fluid velocity and bed length on pressure drop have been investigated. Simulation results showed these parameters could have remarkable impacts on the reactor pressure drop.Keywords: GTL Process, Fixed bed reactor, Pressure drop, CFDsimulation.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2372830 A Reconfigurable Processing Element for Cholesky Decomposition and Matrix Inversion
Authors: Aki Happonen, Adrian Burian, Erwin Hemming
Abstract:
Fixed-point simulation results are used for the performance measure of inverting matrices by Cholesky decomposition. The fixed-point Cholesky decomposition algorithm is implemented using a fixed-point reconfigurable processing element. The reconfigurable processing element provides all mathematical operations required by Cholesky decomposition. The fixed-point word length analysis is based on simulations using different condition numbers and different matrix sizes. Simulation results show that 16 bits word length gives sufficient performance for small matrices with low condition number. Larger matrices and higher condition numbers require more dynamic range for a fixedpoint implementation.Keywords: Cholesky Decomposition, Fixed-point, Matrix inversion, Reconfigurable processing.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1697829 Neural Network in Fixed Time for Collision Detection between Two Convex Polyhedra
Authors: M. Khouil, N. Saber, M. Mestari
Abstract:
In this paper, a different architecture of a collision detection neural network (DCNN) is developed. This network, which has been particularly reviewed, has enabled us to solve with a new approach the problem of collision detection between two convex polyhedra in a fixed time (O (1) time). We used two types of neurons, linear and threshold logic, which simplified the actual implementation of all the networks proposed. The study of the collision detection is divided into two sections, the collision between a point and a polyhedron and then the collision between two convex polyhedra. The aim of this research is to determine through the AMAXNET network a mini maximum point in a fixed time, which allows us to detect the presence of a potential collision.
Keywords: Collision identification, fixed time, convex polyhedra, neural network, AMAXNET.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1816828 Microbial Oil Production by Mixed Culture of Microalgae Chlorella sp. KKU-S2 and Yeast Torulaspora maleeae Y30
Authors: Ratanaporn Leesing, Rattanaporn Baojungharn, Thidarat Papone
Abstract:
Compared to oil production from microorganisms, little work has been performed for mixed culture of microalgae and yeast. In this article it is aimed to show high oil accumulation potential of mixed culture of microalgae Chlorella sp. KKU-S2 and oleaginous yeast Torulaspora maleeae Y30 using sugarcane molasses as substrate. The monoculture of T. maleeae Y30 grew faster than that of microalgae Chlorella sp. KKU-S2. In monoculture of yeast, a biomass of 6.4g/L with specific growth rate (m) of 0.265 (1/d) and lipid yield of 0.466g/L were obtained, while 2.53g/L of biomass with m of 0.133 (1/d) and lipid yield of 0.132g/L were obtained for monoculture of Chlorella sp. KKU-S2. The biomass concentration in the mixed culture of T. maleeae Y30 with Chlorella sp. KKU-S2 increased faster and was higher compared with that in the monoculture and mixed culture of microalgae. In mixed culture of microalgae Chlorella sp. KKU-S2 and C. vulgaris TISTR8580, a biomass of 3.47g/L and lipid yield of 0.123 g/L were obtained. In mixed culture of T. maleeae Y30 with Chlorella sp. KKU-S2, a maximum biomass of 7.33 g/L and lipid yield of 0.808g/L were obtained. Maximum cell yield coefficient (YX/S, 0.229g/L), specific yield of lipid (YP/X, 0.11g lipid/g cells) and volumetric lipid production rate (QP, 0.115 g/L/d) were obtained in mixed culture of yeast and microalgae. Clearly, T. maleeae Y30 and Chlorella sp. KKU-S2 use sugarcane molasses as organic nutrients efficiently in mixed culture under mixotrophic growth. The biomass productivity and lipid yield are notably enhanced in comparison with monoculture.
Keywords: Microbial oil, Chlorella sp. KKU-S2, Chlorella vulgaris, Torulaspora maleeae Y30, mixed culture, biodiesel.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2856827 A Formatting Method for Transforming XML Data into HTML
Authors: Zhe JIN, Motomichi TOYAMA
Abstract:
In this paper, we propose a fixed formatting method of PPX(Pretty Printer for XML). PPX is a query language for XML database which has extensive formatting capability that produces HTML as the result of a query. The fixed formatting method is to completely specify the combination of variables and layout specification operators within the layout expression of the GENERATE clause of PPX. In the experiment, a quick comparison shows that PPX requires far less description compared to XSLT or XQuery programs doing the same tasks.
Keywords: PPX, XML, HTML, XSLT, XQuery, fixed formatting method.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1364826 Comparison of Growth and Biomass of Red Alga Cultured on Rope and Net
Authors: E. Kouhgardi, S. Dashti, H. Fekrandish
Abstract:
This research has been conducted to study the method of culture and comparing growth and biomass of Gracilaria corticata cultured on rope and net for 50 days through two treatments (first treatment: culture of alga on net and the second treatment: culture of alga on rope and each treatment was repeated by four cases). During culture period, the water of aquariums was replaced once every two days for 40-50%. Also, 0.3-0.5 grams of urea fertilizer was added to the culture environment for fertilization. Moreover, some of the environmental factors such as pH, salinity and temperature of the environment were measured on a daily basis. During the culture period, extent of longitudinal growth of the species of both treatments was equal. The said length was reached from 8-10 cm to 10.5-13 cm accordingly. The resulted weight in repetitions of the first treatment was higher than that of the second treatment in such a way as in the first treatment, its weight reached from 10 grams to 21.119 grams and in the second treatment, its weight reached from 10 grams to 17.663 grams. On a whole, it may be stated that that kind of alga being studied has a considerable growth with respect to its volume. The results have revealed that the percentage of daily growth and wet weight at the end of the first treatment was higher than that of the second treatment and it was registered as 0.934, 6.072 and 811.432 in the first treatment and 0.797, 4.990 and 758.071 in the second treatment respectively. This difference is significant (P<0.05). Growth and biomass of G. corticata through culture on net was more emphasizing on numerous branches due to wider bed. Moreover, higher level of the species in this method was exposed to sunlight and this increased biosynthesis and eventually increases of growth and biomass.
Keywords: Red alga, growth, biomass, culture, net, rope.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1873825 Failure Mechanism in Fixed-Ended Reinforced Concrete Deep Beams under Cyclic Load
Authors: A. Aarabzadeh, R. Hizaji
Abstract:
Reinforced Concrete (RC) deep beams are a special type of beams due to their geometry, boundary conditions, and behavior compared to ordinary shallow beams. For example, assumption of a linear strain-stress distribution in the cross section is not valid. Little study has been dedicated to fixed-end RC deep beams. Also, most experimental studies are carried out on simply supported deep beams. Regarding recent tendency for application of deep beams, possibility of using fixed-ended deep beams has been widely increased in structures. Therefore, it seems necessary to investigate the aforementioned structural element in more details. In addition to experimental investigation of a concrete deep beam under cyclic load, different failure mechanisms of fixed-ended deep beams under this type of loading have been evaluated in the present study. The results show that failure mechanisms of deep beams under cyclic loads are quite different from monotonic loads.
Keywords: Deep beam, cyclic load, reinforced concrete, fixed-ended.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1155824 Study on the Effect of Sulphur, Glucose, Nitrogen and Plant Residues on the Immobilization of Sulphate-S in Soil
Authors: S. Shahsavani, A. Gholami
Abstract:
In order to evaluate the relationship between the sulphur (S), glucose (G), nitrogen (N) and plant residues (st), sulphur immobilization and microbial transformation were monitored in five soil samples from 0-30 cm of Bastam farmers fields of Shahrood area following 11 treatments with different levels of Sulphur (S), glucose (G), N and plant residues (wheat straw) in a randomized block design with three replications and incubated over 20, 45 and 60 days, the immobilization of SO4 -2-S presented as a percentage of that added, was inversely related to its addition rate. Additions of glucose and plant residues increased with the C-to-S ratio of the added amendments, irrespective of their origins (glucose and plant residues). In the presence of C sources (glucose or plant residues). N significantly increased the immobilization of SO4 -2-S, whilst the effect of N was insignificant in the absence of a C amendment. In first few days the amounts of added SO4 -2-S immobilized were linearly correlated with the amounts of added S recovered in the soil microbial biomass. With further incubation the proportions of immobilized SO4 -2-S remaining as biomass-S decreased. Decrease in biomass-S was thought to be due to the conversion of biomass-S into soil organic-S. Glucose addition increased the immobilization (microbial utilization and incorporation into the soil organic matter) of native soil SO4 -2-S. However, N addition enhance the mineralization of soil organic-S, increasing the concentration of SO4 - 2-S in soil.
Keywords: Immobilization, microbial biomass, sulphur, nitrogen, glucose.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1482