Biosorption of Azo Dye Reactive Black B onto Nonviable Biomass of Cladosporium cladosporioides LM1: Thermodynamic, Kinetic and Equilibrium Modeling
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 33104
Biosorption of Azo Dye Reactive Black B onto Nonviable Biomass of Cladosporium cladosporioides LM1: Thermodynamic, Kinetic and Equilibrium Modeling

Authors: L. A. S. Dionel, B. A. P. Santos, V. C. P. Lopes, L. G. Vasconcelos, M. A. Soares, E. B. Morais

Abstract:

This study investigated the biosorption of the azo dye reactive Black B (RBB) from aqueous solution using the nonviable biomass of Cladosporium cladosporioides LM1. The biosorption systems were carried out in batch mode considering different conditions of initial pH, contact time, temperature, initial dye concentration and biosorbent dosage. Higher removal rate of RBB was obtained at pH 2. Biosorption data were successfully described by pseudo-second-order kinetic model and Langmuir isotherm model with the maximum monolayer biosorption capacity estimated at 71.43 mg/g. The values of thermodynamic parameters such as ∆G°, ∆H° and ∆S° indicated that the biosorption of RBB onto fungal biomass was spontaneous and exothermic in nature. It can be concluded that nonviable biomass of Cladosporium cladosporioides LM1 may be an attractive low-cost biosorbent for the removal of azo dye RBB from aqueous solution.

Keywords: Color removal, isotherms and kinetics models, thermodynamic studies, fungus.

Digital Object Identifier (DOI): doi.org/10.5281/zenodo.2643850

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 858

References:


[1] C. F. Iscen, I. Kiran, S. Ilhan, Biosorption of Reactive Black 5 dye by Penicillium restrictum: The kinetic study. J. Hazard. Mater. 2012, 143: 335–340.
[2] H. Fan, J. Yang, T. Gao, H. Yuan, Removal of a low-molecular basic dye (Azure Blue) from aqueous solutions by a native biomass of a newly isolated Cladosporium sp.: Kinetics, equilibrium and biosorption simulation. J. Taiwan Inst. Chem. Eng. 2012, 43: 386–392.
[3] W. A. Al-Amrani, P. E. Lim, C. E. Seng, W. S. W. Ngah, Factors affecting bio-decolorization of azo dyes and COD removal in anoxic–aerobic REACT operated sequencing batch reactor. J. Taiwan Inst. Chem. Eng. 2014: 45, 609–616.
[4] R. G. Saratale, G. D. Saratale, J. S. Chang, S. P. Govindwar, Bacterial decolorization and degradation of azo dyes: A review. J. Taiwan Inst. Chem. Eng. 2011: 138–157.
[5] C. S. Liao, C. H. Hung, S. L. Chao, Decolorization of azo dye reactive black B by Bacillus cereus strain HJ-1. Chemosphere. 2013: 90,2109–2114.
[6] X. Meng, G. Liu, J. Q. Zhoua, Q. S. Fu, Effects of redox mediators on azo dye decolorization by Shewanella algae under saline conditions. Bioresour. Technol. 2014: 151, 63–68.
[7] M. H. Dehghani, B. Karimi, M. S. Rajaei, The effect of aeration on advanced coagulation, flotation and advanced oxidation processes for color removal from wastewater. J. Mol. Liq. 2016: 75–80.
[8] S. He, W. Sun, J. Wang, L. Chen, Y. Zhang, J. Yu, Enhancement of biodegradability of real textile and dyeing wastewater by electron beam irradiation, Radiat. Phys. Chem. 2016, 124: 203–207.
[9] K. Kumar, G. K. Singh, M. G. Dastidar, T. R. Sreekrishnan, Effect of mixed liquor volatile suspended solids (MLVSS) and hydraulic retention time (HRT) on the performance of activated sludge process during the biotreatment of real textile wastewater. Water Resour. Ind. 2014, 5: 1–8.
[10] K. Balapure, K. Jain, N. Bhatt, D. Madamwar, Exploring bioremediation strategies to enhance the mineralization of textile industrial wastewater through sequential anaerobic-microaerophilic process. Int. Biodeterior. Biodegrad. 2016: 97–105.
[11] T. Akar, İ. Tosun, Z. Kaynak, E. Kavas, G. Incirkus, S.T. Akar, Assessment of the biosorption characteristics of a macro-fungus for the decolorization of Acid Red 44 (AR44) dye. J. Hazard. Mater. 2009, 171: 865–871.
[12] K. C. Castro, A. S. Cossolin, H. C. O Reis, E. B. Morais, Biosorption of anionic textile dyes from aqueous solution by yeast slurry from brewery. Braz. Arch. Biol. Technol. 2017, 60: 1–13.
[13] R. Subramaniam, S. K. Ponnusamy, Novel adsorbent from agricultural waste (cashew NUT shell) for methylene blue dye removal: Optimization by response surface methodology. Water Resour. Ind. 2015: 11, 64–70.
[14] D. Karadag, M. Turan, E. Akgul, S. Tok, A. Faki, Adsorption equilibrium and kinetics of Reactive Black 5 and Reactive Red 239 in aqueous solution onto surfactant-modified zeolite. J. Chem. Eng. Data. 2007, 52:1615–1620.
[15] Ö. Tunç, H. Tanaci, Z. Aksu, Potential use of cotton plant wastes for the removal of Remazol Black B reactive dye. J. Hazard. Mater. 2009, 163: 187–198.
[16] F. Deniz, S. Karaman, S. Removal of an azo-metal complex textile dye from colored aqueous solutions using an agro-residue. Microchem. J. 2011: 99, 296–302.
[17] A. B. Albadarin, C. Mangwandi, Mechanisms of Alizarin Red S and Methylene blue biosorption onto olive stone by-product: Isotherm study in single and binary systems. J. Environ. Manage. 2015: 164, 86–93.
[18] I. Guerrero-Coronilla, L. Morales-Barrera, E. Cristiani-Urbina, Kinetic, isotherm and thermodynamic studies of amaranth dye biosorption from aqueous solution onto water hyacinth leaves. J. Environ. Manage. 2015: 152, 99–108.
[19] R. Khataee, F. Vafaei, M. Jannatkhah, Biosorption of three textile dyes from contaminated water by filamentous green algal Spirogyra sp.: Kinetic, isotherm and thermodynamic studies. Int. Biodeterior. Biodegrad. 2013, 83: 33–40.
[20] Z. Aksu, G. Karabayir, G. Comparison of biosorption properties of different kinds of fungi for the removal of Gryfalan Black RL metal-complex dye. Bioresour. Technol. 2008: 99, 7730–7741.
[21] S. V. Ramanaiah, S V. Mohan, P. N. Sarma, Adsorptive removal of fluoride from aqueous phase using waste fungus (Pleurotus ostreatus 1804) biosorbent: Kinetics evaluation. Ecol. Eng. 2007: 31, 47–56.
[22] S. T. Akar, A. Gorgulu, Z. Kaynak, B. Anilan, T. Akar, Biosorption of Reactive Blue 49 dye under batch and continuous mode using a mixed biosorbent of macro-fungus Agaricus bisporus and Thuja orientalis cones. Chem. Eng. J. 2009: 148, 26–34.
[23] M. M. Mustafa, P. Jamal, M. F. Alkhatib, S. S. Mahmod, D. N. Jimat, N. NN. Ilyas, Panus tigrinus as a potential biomass source for Reactive Blue decolorization: Isotherm and kinetic study. Electron. J. Viotechnology. 2017: 26, 7–11.
[24] E. Buszman, B. Pilawa, M. Zdybel, S. Wilczyński, A. Gondzik, T. Witoszyńska, T. Wilczok, EPR examination of Zn2+ and Cu2+ binding by pigmented soil fungi Cladosporium cladosporioides. Sci. Total Environ. 2006: 363, 195–205.
[25] A. L. Juhasz, E. Smith, J. Smith, R. Naidu, Development of a two-phase cosolvent washing-fungal biosorption process for the remediation of DDT-contaminated soil. Water. Air. Soil Pollut. 2003: 146, 111–126.
[26] Y. B. Patil, K. M. Paknikar, Removal and recovery of metal cyanides using a combination of biosorption and biodegradation processes. Biotechnol. Lett. 1999: 21, 913–919.
[27] T. J. White, T. Bruna, S. Lee, J. W. Taylor Amplification and direct sequencing of fungal ribosomal RNA genes for phylogenetic. In: Innis MA, Gelfald DH, Sninsky JJ, White TJ, editors. PCR Protocols: a guide to methods and applications. San Diego: Academic Press; 1990. pp. 315–322.
[28] S. Kumar, G. Stecher, K. Tamura, MEGA7: Molecular Evolutionary Genetics Analysis version 7.0 for bigger datasets. Mol. Biol. Evol. 2016: 33, 1870-1874.
[29] M. H. Morris, M. E. Smith, D. M. Rizzo, M. Rejmánek, C. S. Bledsoe, Contrasting ectomycorrhizal fungal communities on the roots of co-occurring oaks (Quercus spp.) in a California woodland. New Phytol. 2008: 78, 167–176.
[30] E. K. Guechi, O. Hamdaoui, Sorption of Malachite green from aqueous solution by potato peel: Kinetics and equilibrium modeling using non-linear analysis method. Arab. J. Chem. 2011, 9: S416–S424.
[31] S. Lagergren S, Zur theorie der sogenannten adsorption gelster stoffe. K Sven Vetenskapsakad Handl. 1898, 24: 1-39.
[32] Y. S. Ho, G. Mckay. Kinetic models for the sorption of dye from aqueous solution by wood. Trans Chem Eng. 1998, 76 (2) : 183-191.
[33] M. J. Weber, J. C. Morris. Kinetic of adsorption on carbon from solution. J Sanit Eng. Div ASCE. 1963, 89: 31-60.
[34] Langmuir. The adsorption of gases on plane surfaces of glass, mica and platinum. J Am Chem Soc. 1918, 40(9): 1361-1403.
[35] H. Freundlich. Over the adsorption in the solution. J Phys Chem. 1906, 57: 385-470.
[36] G. McKay, H. S. Blair, J. K. Gardner, Adsorption of dyes on chitin. 1. Equilibrium studies. J. Appl. Polym. Sci. 1982: 27, 3043-3057.
[37] B. Heibati, S. Rodriguez-Couto, A. Amraned, M. Rafatullah, A. Hawarif, M. A. Al-Ghouti, Uptake of Reactive Black 5 by pumice and walnut activated carbon: Chemistry and adsorption mechanisms. J. Ind. Eng. Chem. 2014: 20, 2939–2947.
[38] Y. Hamzeh, A. Ashori, E. Azadeh, A. Abdulkhani, Removal of Acid Orange 7 and Remazol Black 5 reactive dyes from aqueous solutions using a novel biosorbent. Mater. Sci. Eng. C. 2012: 32, 1394–1400.
[39] G. M. Nabil, N. M. El-Mallah, M. E. Mahmoud, Enhanced decolorization of reactive black 5 dye by active carbon sorbent-immobilized-cationic surfactant (AC-CS). J. Ind. Eng. Chem., 2014: 20, 994–1002.
[40] K. Vijayaraghavan, Y S. Yun Biosorption of C.I. Reactive Black 5 from aqueous solution using acid-treated biomass of brown seaweed Laminaria sp. Dye. Pigment. 2008: 76, 726–732.