Search results for: Propulsion
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 48

Search results for: Propulsion

18 Current Status of 5A Lab6 Hollow Cathode Life Tests in Lanzhou Institute of Physics, China

Authors: Yanhui Jia, Ning Guo, Juan Li, Yunkui Sun, Wei Yang, Tianping Zhang, Lin Ma, Wei Meng, Hai Geng

Abstract:

The current statuses of lifetime test of LaB6 hollow cathode at the Lanzhou Institute of Physics (LIP), China, was described. 5A LaB6 hollow cathode was design for LIPS-200 40mN Xenon ion thruster, and it could be used for LHT-100 80 mN Hall thruster, too. Life test of the discharge and neutralizer modes of LHC-5 hollow cathode were stared in October 2011, and cumulative operation time reached 17,300 and 16,100 hours in April 2015, respectively. The life of cathode was designed more than 11,000 hours. Parameters of discharge and key structure dimensions were monitored in different stage of life test indicated that cathodes were health enough. The test will continue until the cathode cannot work or operation parameter is not in normally. The result of the endurance test of cathode demonstrated that the LaB6 hollow cathode is satisfied for the required of thruster in life and performance.

Keywords: LaB6, hollow cathode, thruster, lifetime test, electric propulsion.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2194
17 A 3Y/3Y Pole-Changing Winding of High-Power Asynchronous Motors

Authors: Gábor Kovács

Abstract:

Requirement for pole-changing motors emerged at the very early times of asynchronous motor design. Different solutions have been elaborated and some of them are generally used. An alternative is the so called 3 Y/3 Y pole-changing winding. This paper deals with high power application of this solution. A complete and comprehensive study is introduced, including features and design guidelines. The method presented in this paper is especially suitable for pole numbers being close to each other. The study also reveals that the method is more advantageous then the existing solutions for high power motors with 1:3 pole ratio. Using this motor, a new and complete drive supply system has been proposed as most appropriate arrangement of high power main naval propulsion drive. Further, the method makes possible to extend the pole ratio to 1:6, 1:9, 1:12, etc. At the end, the proposal is further extended to the here so far missing 1:4, 1:5, 1:7 etc. pole ratios. A complete proposal for the theoretically infinite range has been given in this way.

Keywords: Induction motor, pole changing 3Y/3Y, pole phase modulation, pole changing 1:3, 1:4, 1:5, 1:6.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 955
16 Experimental Study of Open Water Non-Series Marine Propeller Performance

Authors: M. A. Elghorab, A. Abou El-Azm Aly, A. S. Elwetedy, M. A. Kotb

Abstract:

Later marine propeller is the main component of ship propulsion system. For a non-series propeller, it is difficult to indicate the open water marine propeller performance without an experimental study to measure the marine propeller parameters. In the present study, the open water performance of a non-series marine propeller has been carried out experimentally. The geometrical aspects of a commercial non-series marine propeller have been measured for a propeller blade area ratio of 0.3985. The measured propeller performance parameters were the thrust and torque coefficients for different propeller rotational speed and different water channel flow velocity, then the open water performance for the propeller has been plotted. In addition, a direct comparison between the obtained experimental results and a theoretical study of a B-series marine propeller of the same blade area ratio has been carried out. A correction factor has been introduced to apply the operating conditions of the experimental results to that of the theoretical study for the studied marine propeller.

Keywords: Advance speed, marine propeller, open water performance, thrust coefficient, torque coefficient.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 3353
15 Design and Performance Analysis of a Hydro-Power Rim-Driven Superconducting Synchronous Generator

Authors: A. Hassannia, S. Ramezani

Abstract:

The technology of superconductivity has developed in many power system devices such as transmission cable, transformer, current limiter, motor and generator. Superconducting wires can carry high density current without loss, which is the capability that is used to design the compact, lightweight and more efficient electrical machines. Superconducting motors have found applications in marine and air propulsion systems as well as superconducting generators are considered in low power hydraulic and wind generators. This paper presents a rim-driven superconducting synchronous generator for hydraulic power plant. The rim-driven concept improves the performance of hydro turbine. Furthermore, high magnetic field that is produced by superconducting windings allows replacing the rotor core. As a consequent, the volume and weight of the machine is decreased significantly. In this paper, a 1 MW coreless rim-driven superconducting synchronous generator is designed. Main performance characteristics of the proposed machine are then evaluated using finite elements method and compared to an ordinary similar size synchronous generator.

Keywords: Coreless machine, electrical machine design, hydraulic generator, rim-driven machine, superconducting generator.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 970
14 Optimal Control Strategy for High Performance EV Interior Permanent Magnet Synchronous Motor

Authors: Mehdi Karbalaye Zadeh, Ehsan M. Siavashi

Abstract:

The controllable electrical loss which consists of the copper loss and iron loss can be minimized by the optimal control of the armature current vector. The control algorithm of current vector minimizing the electrical loss is proposed and the optimal current vector can be decided according to the operating speed and the load conditions. The proposed control algorithm is applied to the experimental PM motor drive system and this paper presents a modern approach of speed control for permanent magnet synchronous motor (PMSM) applied for Electric Vehicle using a nonlinear control. The regulation algorithms are based on the feedback linearization technique. The direct component of the current is controlled to be zero which insures the maximum torque operation. The near unity power factor operation is also achieved. More over, among EV-s motor electric propulsion features, the energy efficiency is a basic characteristic that is influenced by vehicle dynamics and system architecture. For this reason, the EV dynamics are taken into account.

Keywords: PMSM, Electric Vehicle, Optimal control, Traction.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1767
13 Computational Analysis of the Scaling Effects on the Performance of an Axial Compressor

Authors: Junting Xiang, Jörg Uwe Schlüter, Fei Duan

Abstract:

The miniaturization of gas turbines promises many advantages. Miniature gas turbines can be used for local power generation or the propulsion of small aircraft, such as UAV and MAV. However, experience shows that the miniaturization of conventional gas turbines, which are optimized at their current large size, leads to a substantial loss of efficiency and performance at smaller scales. This may be due to a number of factors, such as the Reynolds-number effect, the increased heat transfer, and manufacturing tolerances. In the present work, we focus on computational investigations of the Reynolds number effect and the wall heat transfer on the performance of axial compressor during its size change. The NASA stage 35 compressor is selected as the configuration in this study and computational fluid dynamics (CFD) is used to carry out the miniaturization process and simulations. We perform parameter studies on the effect of Reynolds number and wall thermal conditions. Our results indicate a decrease of efficiency, if the compressor is miniaturized based on its original geometry due to the increase of viscous effects. The increased heat transfer through wall has only a small effect and will actually benefit compressor performance based on our study.

Keywords: Axial compressor, CFD, heat transfer, miniature gas turbines, Reynolds number.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 3218
12 Passive Flow Control in Twin Air-Intakes

Authors: Akshoy R. Paul, Pritanshu Ranjan, Ravi R. Upadhyay, Anuj Jain

Abstract:

Aircraft propulsion systems often use Y-shaped subsonic diffusing ducts as twin air-intakes to supply the ambient air into the engine compressor for thrust generation. Due to space constraint, the diffusers need to be curved, which causes severe flow non-uniformity at the engine face. The present study attempt to control flow in a mild-curved Y-duct diffuser using trapezoidalshaped vortex generators (VG) attached on either both the sidewalls or top and bottom walls of the diffuser at the inflexion plane. A commercial computational fluid dynamics (CFD) code is modified and is used to simulate the effects of SVG in flow of a Y-duct diffuser. A few experiments are conducted for CFD code validation, while the rest are done computationally. The best combination of Yduct diffuser is found with VG-2 arranged in co-rotating sequence and attached to both the sidewalls, which ensures highest static pressure recovery, lowest total pressure loss, minimum flow distortion and less flow separation in Y-duct diffuser. The decrease in VG height while attached to top and bottom walls further improves axial flow uniformity at the diffuser outlet by a great margin as compared to the bare duct.

Keywords: Twin air-intake, Vortex generator (VG), Turbulence model, Pressure recovery, Distortion coefficient

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2130
11 Rotorcraft Performance and Environmental Impact Evaluation by Multidisciplinary Modelling

Authors: Pierre-Marie Basset, Gabriel Reboul, Binh DangVu, Sébastien Mercier

Abstract:

Rotorcraft provides invaluable services thanks to their Vertical Take-Off and Landing (VTOL), hover and low speed capabilities. Yet their use is still often limited by their cost and environmental impact, especially noise and energy consumption. One of the main brakes to the expansion of the use of rotorcraft for urban missions is the environmental impact. The first main concern for the population is the noise. In order to develop the transversal competency to assess the rotorcraft environmental footprint, a collaboration has been launched between six research departments within ONERA. The progress in terms of models and methods are capitalized into the numerical workshop C.R.E.A.T.I.O.N. “Concepts of Rotorcraft Enhanced Assessment Through Integrated Optimization Network”. A typical mission for which the environmental impact issue is of great relevance has been defined. The first milestone is to perform the pre-sizing of a reference helicopter for this mission. In a second milestone, an alternate rotorcraft concept has been defined: a tandem rotorcraft with optional propulsion. The key design trends are given for the pre-sizing of this rotorcraft aiming at a significant reduction of the global environmental impact while still giving equivalent flight performance and safety with respect to the reference helicopter. The models and methods have been improved for catching sooner and more globally, the relative variations on the environmental impact when changing the rotorcraft architecture, the pre-design variables and the operation parameters.

Keywords: Environmental impact, flight performance, helicopter, rotorcraft pre-sizing.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1497
10 Flight School Perceptions of Electric Planes for Training

Authors: C. Edwards, P. Parker

Abstract:

Flight school members are facing a major disruption in the technologies available for them to fly as electric planes enter the aviation industry. The year 2020 marked a new era in aviation with the first type certification of an electric plane. The Pipistrel Velis Electro is a two-seat electric aircraft (e-plane) designed for flight training. Electric flight training has the potential to deeply reduce emissions, noise, and cost of pilot training. Though these are all attractive features, understanding must be developed on the perceptions of the essential actor of the technology, the pilot. This study asks student pilots, flight instructors, flight center managers, and other members of flight schools about their perceptions of e-planes. The questions were divided into three categories: safety and trust of the technology, expected costs in comparison to conventional planes, and interest in the technology, including their desire to fly electric planes. Participants were recruited from flight schools using a protocol approved by the Office of Research Ethics. None of these flight schools have an e-plane in their fleet so these views are based on perceptions rather than direct experience. The results revealed perceptions that were strongly positive with many qualitative comments indicating great excitement about the potential of the new electric aviation technology. Some concerns were raised regarding battery endurance limits. Overall, the flight school community is clearly in favor of introducing electric propulsion technology and reducing the environmental impacts of their industry.

Keywords: electric planes, flight training, green aircraft, student pilots, sustainable aviation

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1175
9 Non-reacting Numerical Simulation of Axisymmetric Trapped Vortex Combustor

Authors: Heval Serhat Uluk, Sam M. Dakka, Kuldeep Singh, Richard Jefferson-Loveday

Abstract:

This paper will focus on the suitability of a trapped vortex combustor as a candidate for gas turbine combustor objectives to minimize pressure drop across the combustor and investigate aerodynamic performance. Non-reacting simulation of axisymmetric cavity trapped vortex combustors was run to investigate the pressure drop for various cavity aspect ratios of 0.3, 0.6 and 1 and for air mass flow rates of 14 m/s, 28 m/s and 42 m/s. A numerical study of an axisymmetric trapped vortex combustor was carried out by using two-dimensional and three-dimensional computational domains. A comparison study was conducted between Reynolds Averaged Navier Stokes (RANS) k-ε Realizable with enhanced wall treatment and RANS k-ω Shear Stress Transport (SST) models to find the most suitable turbulence model. It was found that the k-ω SST model gives relatively close results to experimental outcomes. The numerical results were validated and showed good agreement with the experimental data. Pressure drop rises with increasing air mass flow rate, and the lowest pressure drop was observed at 0.6 cavity aspect ratio for all air mass flow rates tested, which agrees with the experimental outcome. A mixing enhancement study showed that 30-degree angle air injectors provide improved fuel-air mixing.

Keywords: Aerodynamic, Computational Fluid Dynamics, Propulsion, Trapped Vortex Combustor.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 72
8 Ballistics of Main Seat Ejection Cartridges for Aircraft Application

Authors: B. A. Parate, K. D. Deodhar, V. K. Dixit, V. Venkateswara Rao

Abstract:

This article outlines the ballistics of main seat ejection cartridges for aircraft application. The ballistics of main seat ejection cartridges plays a vital role during the ejection of the pilot in an emergency. The ballistic parameters such as maximum pressure, time to reach the maximum pressure, and time required to reach half the maximum pressure that responsible to the spinal injury of the pilot are assessed. Therefore, the evaluations of these parameters are very critical during various stages of development. Elaborate testing is carried out for main seat ejection cartridges on seat ejection tower (SET) at different operating temperatures considering physiological limits. As these trials are cumbersome in nature, a vented vessel (VV) testing facility is devised to lay down the performance parameters at hot and cold temperature conditions. Single base (SB) propellant having hepta-tubular configuration is selected as the main filling. Gun powder plays the role of a booster based on ballistic requirements. The evaluation methodology of various performance parameters of main seat ejection cartridges is explained in this paper. Physiological parameters such as maximum seat ejection velocity, acceleration, and rate of rising of acceleration are also experimentally determined on SET. All the parameters are observed well within physiological limits. This paper addresses the internal ballistic of main seat ejection cartridges, propellant selection, its calculation, and evaluation of various performance parameters for aircraft application.

Keywords: Ballistics of seat ejection, ejection seat, gas generator, gun propulsion, main seat ejection cartridges, maximum pressure, performance parameters, propellant, progressive burning and vented vessel.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 769
7 Tactical Urbanism and Sustainability: Tactical Experiences in the Promotion of Active Transportation

Authors: Aline Fernandes Barata, Adriana Sansão Fontes

Abstract:

The overvaluation of the use of automobile has detrimentally affected the importance of pedestrians within the city and consequently its public spaces. As a way of treating contemporary urban paradigms, Tactical Urbanism aims to recover and activate spaces through fast and easily-applied actions that demonstrate the possibility of large-scale and long-term changes in cities. Tactical interventions have represented an important practice of redefining public spaces and urban mobility. The concept of Active Transportation coheres with the idea of sustainable urban mobility, characterizing the means of transportation through human propulsion, such as walking and cycling. This paper aims to debate the potential of Tactical Urbanism in promoting Active Transportation by revealing opportunities of transformation in the urban space of contemporary cities through initiatives that promote the protection and valorization of the presence of pedestrians and cyclists in cities, and that subvert the importance of motorized vehicles. In this paper, we present the character of these actions in two different ways: when they are used as tests for permanent interventions and when they have pre-defined start and end periods. Using recent initiatives to illustrate, we aim to discuss the role of small-scale actions in promoting and incentivizing a more active, healthy, sustainable and responsive urban way of life, presenting how some of them have developed through public policies. For that, we will present some examples of tactical actions that illustrate the encouragement of Active Transportation and trials to balance the urban opportunities for pedestrians and cyclists. These include temporary closure of streets, the creation of new alternatives and more comfortable areas for walking and cycling, and the subversion of uses in public spaces where the usage of cars are predominant.

Keywords: Tactical urbanism, active transportation, sustainable mobility, non-motorized means.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1357
6 Energy Efficient Autonomous Lower Limb Exoskeleton for Human Motion Enhancement

Authors: Nazim Mir-Nasiri, Hudyjaya Siswoyo Jo

Abstract:

The paper describes conceptual design, control strategies, and partial simulation for a new fully autonomous lower limb wearable exoskeleton system for human motion enhancement that can support its weight and increase strength and endurance. Various problems still remain to be solved where the most important is the creation of a power and cost efficient system that will allow an exoskeleton to operate for extended period without batteries being frequently recharged. The designed exoskeleton is enabling to decouple the weight/mass carrying function of the system from the forward motion function which reduces the power and size of propulsion motors and thus the overall weight, cost of the system. The decoupling takes place by blocking the motion at knee joint by placing passive air cylinder across the joint. The cylinder is actuated when the knee angle has reached the minimum allowed value to bend. The value of the minimum bending angle depends on usual walk style of the subject. The mechanism of the exoskeleton features a seat to rest the subject’s body weight at the moment of blocking the knee joint motion. The mechanical structure of each leg has six degrees of freedom: four at the hip, one at the knee, and one at the ankle. Exoskeleton legs are attached to subject legs by using flexible cuffs. The operation of all actuators depends on the amount of pressure felt by the feet pressure sensors and knee angle sensor. The sensor readings depend on actual posture of the subject and can be classified in three distinct cases: subject stands on one leg, subject stands still on both legs and subject stands on both legs but transit its weight from one leg to other. This exoskeleton is power efficient because electrical motors are smaller in size and did not participate in supporting the weight like in all other existing exoskeleton designs.

Keywords: Energy efficient system, exoskeleton, motion enhancement, robotics.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1868
5 Radio Regulation Development and Radio Spectrum Analysis of Earth Station in Motion Service

Authors: Fei Peng, Jun Yuan, Chen Fan, Fan Jiang, Qian Sun, Yudi Liu

Abstract:

Although Earth Station in Motion (ESIM) services are widely used and there is a huge market demand around the world, International Telecommunication Union (ITU) does not have unified conclusion for the use of ESIM yet. ESIM are Mobile Satellite Services (MSS) due to its mobile-based attributes, while multiple administrations want to use ESIM in Fixed Satellite Service (FSS). However, Radio Regulations (RR) have strict distinction between MSS and FSS. In this case, ITU has been very controversial because this kind of application will violate the RR Article and the conflict will bring risks to the global deployment. Thus, this paper illustrates the development of rules, regulations, standards concerning ESIM and the radio spectrum usage of ESIM in different regions around the world. Firstly, the basic rules, standard and definition of ITU’s Radiocommunication Sector (ITU-R) is introduced. Secondly, the World Radiocommunication Conference (WRC) agenda item on radio spectrum allocation for ESIM, e.g. in C/Ku/Ka band, is introduced and multi-view on the radio spectrum allocation is elaborated, especially on 19.7-20.2 GHz & 29.5-30.0 GHz. Then, some ITU-R Recommendations and Reports are analyzed on the specific technique to enable these ESIM to communicate with Geostationary Earth Orbit Satellite (GSO) space stations in the FSS without causing interference at levels in excess of that caused by conventional FSS earth stations. Meanwhile, the opposite opinion on not allocating EISM service in FSS frequency band is also elaborated. Finally, based on the ESIM’s future application, the ITU-R standards development trend is forecasted. In conclusion, using radio spectrum resource in an equitable, rational and efficient manner is the basic guideline of ITU. Although it is not a good approach to obstruct the revise of RR when there is a large demand for radio spectrum resource in satellite industry, still the propulsion and global demand of the whole industry may face difficulties on the unclear application in modify rules of RR.

Keywords: Earth Station in motion, ITU standards, radio regulations, radio spectrum, satellite communication.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1168
4 Conceptual Design of the TransAtlantic as a Research Platform for the Development of “Green” Aircraft Technologies

Authors: Victor Maldonado

Abstract:

Recent concerns of the growing impact of aviation on climate change has prompted the emergence of a field referred to as Sustainable or “Green” Aviation dedicated to mitigating the harmful impact of aviation related CO2 emissions and noise pollution on the environment. In the current paper, a unique “green” business jet aircraft called the TransAtlantic was designed (using analytical formulation common in conceptual design) in order to show the feasibility for transatlantic passenger air travel with an aircraft weighing less than 10,000 pounds takeoff weight. Such an advance in fuel efficiency will require development and integration of advanced and emerging aerospace technologies. The TransAtlantic design is intended to serve as a research platform for the development of technologies such as active flow control. Recent advances in the field of active flow control and how this technology can be integrated on a sub-scale flight demonstrator are discussed in this paper. Flow control is a technique to modify the behavior of coherent structures in wall-bounded flows (over aerodynamic surfaces such as wings and turbine nozzles) resulting in improved aerodynamic cruise and flight control efficiency. One of the key challenges to application in manned aircraft is development of a robust high-momentum actuator that can penetrate the boundary layer flowing over aerodynamic surfaces. These deficiencies may be overcome in the current development and testing of a novel electromagnetic synthetic jet actuator which replaces piezoelectric materials as the driving diaphragm. One of the overarching goals of the TranAtlantic research platform include fostering national and international collaboration to demonstrate (in numerical and experimental models) reduced CO2/ noise pollution via development and integration of technologies and methodologies in design optimization, fluid dynamics, structures/ composites, propulsion, and controls.

Keywords: Aircraft Design, Sustainable “Green” Aviation, Active Flow Control, Aerodynamics.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2533
3 Preferences of Electric Buses in Public Transport; Conclusions from Real Life Testing in Eight Swedish Municipalities

Authors: Sven Borén, Lisiana Nurhadi, Henrik Ny

Abstract:

From a theoretical perspective, electric buses can be more sustainable and can be cheaper than fossil fuelled buses in city traffic. The authors have not found other studies based on actual urban public transport in Swedish winter climate. Further on, noise measurements from buses for the European market were found old. The aims of this follow-up study was therefore to test and possibly verify in a real-life environment how energy efficient and silent electric buses are, and then conclude on if electric buses are preferable to use in public transport. The Ebusco 2.0 electric bus, fitted with a 311 kWh battery pack, was used and the tests were carried out during November 2014-April 2015 in eight municipalities in the south of Sweden. Six tests took place in urban traffic and two took place in more of a rural traffic setting. The energy use for propulsion was measured via logging of the internal system in the bus and via an external charging meter. The average energy use turned out to be 8% less (0,96 kWh/km) than assumed in the earlier theoretical study. This rate allows for a 320 km range in public urban traffic. The interior of the bus was kept warm by a diesel heater (biodiesel will probably be used in a future operational traffic situation), which used 0,67 kWh/km in January. This verified that electric buses can be up to 25% cheaper when used in public transport in cities for about eight years. The noise was found to be lower, primarily during acceleration, than for buses with combustion engines in urban bus traffic. According to our surveys, most passengers and drivers appreciated the silent and comfortable ride and preferred electric buses rather than combustion engine buses. Bus operators and passenger transport executives were also positive to start using electric buses for public transport. The operators did however point out that procurement processes need to account for eventual risks regarding this new technology, along with personnel education. The study revealed that it is possible to establish a charging infrastructure for almost all studied bus lines. However, design of a charging infrastructure for each municipality requires further investigations, including electric grid capacity analysis, smart location of charging points, and tailored schedules to allow fast charging. In conclusion, electric buses proved to be a preferable alternative for all stakeholders involved in public bus transport in the studied municipalities. However, in order to electric buses to be a prominent support for sustainable development, they need to be charged either by stand-alone units or via an expansion of the electric grid, and the electricity should be made from new renewable sources.

Keywords: Sustainability, Electric, Bus, Noise, GreenCharge.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2285
2 Energy Harvesting and Storage System for Marine Applications

Authors: Sayem Zafar, Mahmood Rahi

Abstract:

Rigorous international maritime regulations are in place to limit boat and ship hydrocarbon emissions. The global sustainability goals are reducing the fuel consumption and minimizing the emissions from the ships and boats. These maritime sustainability goals have attracted a lot of research interest. Energy harvesting and storage system is designed in this study based on hybrid renewable and conventional energy systems. This energy harvesting and storage system is designed for marine applications, such as, boats and small ships. These systems can be utilized for mobile use or off-grid remote electrification. This study analyzed the use of micro power generation for boats and small ships. The energy harvesting and storage system has two distinct systems i.e. dockside shore-based system and on-board system. The shore-based system consists of a small wind turbine, photovoltaic (PV) panels, small gas turbine, hydrogen generator and high-pressure hydrogen storage tank. This dockside system is to provide easy access to the boats and small ships for supply of hydrogen. The on-board system consists of hydrogen storage tanks and fuel cells. The wind turbine and PV panels generate electricity to operate electrolyzer. A small gas turbine is used as a supplementary power system to contribute in case the hybrid renewable energy system does not provide the required energy. The electrolyzer performs the electrolysis on distilled water to produce hydrogen. The hydrogen is stored in high-pressure tanks. The hydrogen from the high-pressure tank is filled in the low-pressure tanks on-board seagoing vessels to operate the fuel cell. The boats and small ships use the hydrogen fuel cell to provide power to electric propulsion motors and for on-board auxiliary use. For shore-based system, a small wind turbine with the total length of 4.5 m and the disk diameter of 1.8 m is used. The small wind turbine dimensions make it big enough to be used to charge batteries yet small enough to be installed on the rooftops of dockside facility. The small dimensions also make the wind turbine easily transportable. In this paper, PV, sizing and solar flux are studied parametrically. System performance is evaluated under different operating and environmental conditions. The parametric study is conducted to evaluate the energy output and storage capacity of energy storage system. Results are generated for a wide range of conditions to analyze the usability of hybrid energy harvesting and storage system. This energy harvesting method significantly improves the usability and output of the renewable energy sources. It also shows that small hybrid energy systems have promising practical applications.

Keywords: Energy harvesting, fuel cell, hybrid energy system, hydrogen, wind turbine.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1207
1 An Improved Approach for Hybrid Rocket Injection System Design

Authors: M. Invigorito, G. Elia, M. Panelli

Abstract:

Hybrid propulsion combines beneficial properties of both solid and liquid rockets, such as multiple restarts, throttability as well as simplicity and reduced costs. A nitrous oxide (N2O)/paraffin-based hybrid rocket engine demonstrator is currently under development at the Italian Aerospace Research Center (CIRA) within the national research program HYPROB, funded by the Italian Ministry of Research. Nitrous oxide belongs to the class of self-pressurizing propellants that exhibit a high vapor pressure at standard ambient temperature. This peculiar feature makes those fluids very attractive for space rocket applications because it avoids the use of complex pressurization systems, leading to great benefits in terms of weight savings and reliability. To avoid feed-system-coupled instabilities, the phase change is required to occur through the injectors. In this regard, the oxidizer is stored in liquid condition while target chamber pressures are designed to lie below vapor pressure. The consequent cavitation and flash vaporization constitute a remarkably complex phenomenology that arises great modelling challenges. Thus, it is clear that the design of the injection system is fundamental for the full exploitation of hybrid rocket engine throttability. The Analytical Hierarchy Process has been used to select the injection architecture as best compromise among different design criteria such as functionality, technology innovation and cost. The impossibility to use engineering simplified relations for the dimensioning of the injectors led to the needs of applying a numerical approach based on OpenFOAM®. The numerical tool has been validated with selected experimental data from literature. Quantitative, as well as qualitative comparisons are performed in terms of mass flow rate and pressure drop across the injector for several operating conditions. The results show satisfactory agreement with the experimental data. Modeling assumptions, together with their impact on numerical predictions are discussed in the paper. Once assessed the reliability of the numerical tool, the injection plate has been designed and sized to guarantee the required amount of oxidizer in the combustion chamber and therefore to assure high combustion efficiency. To this purpose, the plate has been designed with multiple injectors whose number and diameter have been selected in order to reach the requested mass flow rate for the two operating conditions of maximum and minimum thrust. The overall design has been finally verified through three-dimensional computations in cavitating non-reacting conditions and it has been verified that the proposed design solution is able to guarantee the requested values of mass flow rates.

Keywords: Hybrid rocket, injection system design, OpenFOAM®, cavitation

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2659