Search results for: Bayesian approach Kalman filtering approach
5377 Layout Based Spam Filtering
Authors: Claudiu N.Musat
Abstract:
Due to the constant increase in the volume of information available to applications in fields varying from medical diagnosis to web search engines, accurate support of similarity becomes an important task. This is also the case of spam filtering techniques where the similarities between the known and incoming messages are the fundaments of making the spam/not spam decision. We present a novel approach to filtering based solely on layout, whose goal is not only to correctly identify spam, but also warn about major emerging threats. We propose a mathematical formulation of the email message layout and based on it we elaborate an algorithm to separate different types of emails and find the new, numerically relevant spam types.
Keywords: Clustering, layout, k-means, spam.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 16495376 Improved Lung Nodule Visualization on Chest Radiographs using Digital Filtering and Contrast Enhancement
Authors: Benjamin Y. M. Kwan, Hon Keung Kwan
Abstract:
Early detection of lung cancer through chest radiography is a widely used method due to its relatively affordable cost. In this paper, an approach to improve lung nodule visualization on chest radiographs is presented. The approach makes use of linear phase high-frequency emphasis filter for digital filtering and histogram equalization for contrast enhancement to achieve improvements. Results obtained indicate that a filtered image can reveal sharper edges and provide more details. Also, contrast enhancement offers a way to further enhance the global (or local) visualization by equalizing the histogram of the pixel values within the whole image (or a region of interest). The work aims to improve lung nodule visualization of chest radiographs to aid detection of lung cancer which is currently the leading cause of cancer deaths worldwide.Keywords: Chest radiographs, Contrast enhancement, Digital filtering, Lung nodule detection
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 17295375 Human Body Configuration using Bayesian Model
Authors: Rui. Zhang, Yiming. Pi
Abstract:
In this paper we present a novel approach for human Body configuration based on the Silhouette. We propose to address this problem under the Bayesian framework. We use an effective Model based MCMC (Markov Chain Monte Carlo) method to solve the configuration problem, in which the best configuration could be defined as MAP (maximize a posteriori probability) in Bayesian model. This model based MCMC utilizes the human body model to drive the MCMC sampling from the solution space. It converses the original high dimension space into a restricted sub-space constructed by the human model and uses a hybrid sampling algorithm. We choose an explicit human model and carefully select the likelihood functions to represent the best configuration solution. The experiments show that this method could get an accurate configuration and timesaving for different human from multi-views.Keywords: Bayesian framework, MCMC, model based, human body configuration.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 13185374 Approximation Approach to Linear Filtering Problem with Correlated Noise
Authors: Hong Son Hoang, Remy Baraille
Abstract:
The (sub)-optimal soolution of linear filtering problem with correlated noises is considered. The special recursive form of the class of filters and criteria for selecting the best estimator are the essential elements of the design method. The properties of the proposed filter are studied. In particular, for Markovian observation noise, the approximate filter becomes an optimal Gevers-Kailath filter subject to a special choice of the parameter in the class of given linear recursive filters.Keywords: Linear dynamical system, filtering, minimum meansquare filter, correlated noise
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 13765373 IMM based Kalman Filter for Channel Estimation in MB OFDM Systems
Abstract:
Ultra-wide band (UWB) communication is one of the most promising technologies for high data rate wireless networks for short range applications. This paper proposes a blind channel estimation method namely IMM (Interactive Multiple Model) Based Kalman algorithm for UWB OFDM systems. IMM based Kalman filter is proposed to estimate frequency selective time varying channel. In the proposed method, two Kalman filters are concurrently estimate the channel parameters. The first Kalman filter namely Static Model Filter (SMF) gives accurate result when the user is static while the second Kalman filter namely the Dynamic Model Filter (DMF) gives accurate result when the receiver is in moving state. The static transition matrix in SMF is assumed as an Identity matrix where as in DMF, it is computed using Yule-Walker equations. The resultant filter estimate is computed as a weighted sum of individual filter estimates. The proposed method is compared with other existing channel estimation methods.Keywords: Channel estimation, Kalman filter, UWB, Channel model, AR model
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 20905372 UD Covariance Factorization for Unscented Kalman Filter using Sequential Measurements Update
Authors: H. Ghanbarpour Asl, S. H. Pourtakdoust
Abstract:
Extended Kalman Filter (EKF) is probably the most widely used estimation algorithm for nonlinear systems. However, not only it has difficulties arising from linearization but also many times it becomes numerically unstable because of computer round off errors that occur in the process of its implementation. To overcome linearization limitations, the unscented transformation (UT) was developed as a method to propagate mean and covariance information through nonlinear transformations. Kalman filter that uses UT for calculation of the first two statistical moments is called Unscented Kalman Filter (UKF). Square-root form of UKF (SRUKF) developed by Rudolph van der Merwe and Eric Wan to achieve numerical stability and guarantee positive semi-definiteness of the Kalman filter covariances. This paper develops another implementation of SR-UKF for sequential update measurement equation, and also derives a new UD covariance factorization filter for the implementation of UKF. This filter is equivalent to UKF but is computationally more efficient.Keywords: Unscented Kalman filter, Square-root unscentedKalman filter, UD covariance factorization, Target tracking.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 48485371 Web Personalization to Build Trust in E-Commerce: A Design Science Approach
Authors: Choon Ling Sia, Yani Shi, Jiaqi Yan, Huaping Chen
Abstract:
With the development of the Internet, E-commerce is growing at an exponential rate, and lots of online stores are built up to sell their goods online. A major factor influencing the successful adoption of E-commerce is consumer-s trust. For new or unknown Internet business, consumers- lack of trust has been cited as a major barrier to its proliferation. As web sites provide key interface for consumer use of E-Commerce, we investigate the design of web site to build trust in E-Commerce from a design science approach. A conceptual model is proposed in this paper to describe the ontology of online transaction and human-computer interaction. Based on this conceptual model, we provide a personalized webpage design approach using Bayesian networks learning method. Experimental evaluation are designed to show the effectiveness of web personalization in improving consumer-s trust in new or unknown online store.Keywords: Trust, Web site design, Human-ComputerInteraction, E-Commerce, Design science, Bayesian network.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 20035370 Bayesian Belief Networks for Test Driven Development
Authors: Vijayalakshmy Periaswamy S., Kevin McDaid
Abstract:
Testing accounts for the major percentage of technical contribution in the software development process. Typically, it consumes more than 50 percent of the total cost of developing a piece of software. The selection of software tests is a very important activity within this process to ensure the software reliability requirements are met. Generally tests are run to achieve maximum coverage of the software code and very little attention is given to the achieved reliability of the software. Using an existing methodology, this paper describes how to use Bayesian Belief Networks (BBNs) to select unit tests based on their contribution to the reliability of the module under consideration. In particular the work examines how the approach can enhance test-first development by assessing the quality of test suites resulting from this development methodology and providing insight into additional tests that can significantly reduce the achieved reliability. In this way the method can produce an optimal selection of inputs and the order in which the tests are executed to maximize the software reliability. To illustrate this approach, a belief network is constructed for a modern software system incorporating the expert opinion, expressed through probabilities of the relative quality of the elements of the software, and the potential effectiveness of the software tests. The steps involved in constructing the Bayesian Network are explained as is a method to allow for the test suite resulting from test-driven development.Keywords: Software testing, Test Driven Development, Bayesian Belief Networks.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 18875369 Investigation of Improved Chaotic Signal Tracking by Echo State Neural Networks and Multilayer Perceptron via Training of Extended Kalman Filter Approach
Authors: Farhad Asadi, S. Hossein Sadati
Abstract:
This paper presents a prediction performance of feedforward Multilayer Perceptron (MLP) and Echo State Networks (ESN) trained with extended Kalman filter. Feedforward neural networks and ESN are powerful neural networks which can track and predict nonlinear signals. However, their tracking performance depends on the specific signals or data sets, having the risk of instability accompanied by large error. In this study we explore this process by applying different network size and leaking rate for prediction of nonlinear or chaotic signals in MLP neural networks. Major problems of ESN training such as the problem of initialization of the network and improvement in the prediction performance are tackled. The influence of coefficient of activation function in the hidden layer and other key parameters are investigated by simulation results. Extended Kalman filter is employed in order to improve the sequential and regulation learning rate of the feedforward neural networks. This training approach has vital features in the training of the network when signals have chaotic or non-stationary sequential pattern. Minimization of the variance in each step of the computation and hence smoothing of tracking were obtained by examining the results, indicating satisfactory tracking characteristics for certain conditions. In addition, simulation results confirmed satisfactory performance of both of the two neural networks with modified parameterization in tracking of the nonlinear signals.Keywords: Feedforward neural networks, nonlinear signal prediction, echo state neural networks approach, leaking rates, capacity of neural networks.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 7595368 Nonlinear Acoustic Echo Cancellation Using Volterra Filtering with a Variable Step-Size GS-PAP Algorithm
Authors: J. B. Seo, K. J. Kim, S. W. Nam
Abstract:
In this paper, a nonlinear acoustic echo cancellation (AEC) system is proposed, whereby 3rd order Volterra filtering is utilized along with a variable step-size Gauss-Seidel pseudo affine projection (VSSGS-PAP) algorithm. In particular, the proposed nonlinear AEC system is developed by considering a double-talk situation with near-end signal variation. Simulation results demonstrate that the proposed approach yields better nonlinear AEC performance than conventional approaches.Keywords: Acoustic echo cancellation (AEC), Volterra filtering, variable step-size, GS-PAP.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 18155367 Dempster-Shafer Information Filtering in Multi-Modality Wireless Sensor Networks
Authors: D.M. Weeraddana, K.S. Walgama, E.C. Kulasekere
Abstract:
A framework to estimate the state of dynamically varying environment where data are generated from heterogeneous sources possessing partial knowledge about the environment is presented. This is entirely derived within Dempster-Shafer and Evidence Filtering frameworks. The belief about the current state is expressed as belief and plausibility functions. An addition to Single Input Single Output Evidence Filter, Multiple Input Single Output Evidence Filtering approach is introduced. Variety of applications such as situational estimation of an emergency environment can be developed within the framework successfully. Fire propagation scenario is used to justify the proposed framework, simulation results are presented.
Keywords: Dempster-Shafer Belief theory, Evidence Filtering, Evidence Fusion, Sensor Modalities, Wireless Sensor Networks
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 22365366 Efficient Realization of an ADFE with a New Adaptive Algorithm
Authors: N. Praveen Kumar, Abhijit Mitra, C. Ardil
Abstract:
Decision feedback equalizers are commonly employed to reduce the error caused by intersymbol interference. Here, an adaptive decision feedback equalizer is presented with a new adaptation algorithm. The algorithm follows a block-based approach of normalized least mean square (NLMS) algorithm with set-membership filtering and achieves a significantly less computational complexity over its conventional NLMS counterpart with set-membership filtering. It is shown in the results that the proposed algorithm yields similar type of bit error rate performance over a reasonable signal to noise ratio in comparison with the latter one.Keywords: Decision feedback equalizer, Adaptive algorithm, Block based computation, Set membership filtering.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 16775365 Generic Filtering of Infinite Sets of Stochastic Signals
Authors: Anatoli Torokhti, Phil Howlett
Abstract:
A theory for optimal filtering of infinite sets of random signals is presented. There are several new distinctive features of the proposed approach. First, a single optimal filter for processing any signal from a given infinite signal set is provided. Second, the filter is presented in the special form of a sum with p terms where each term is represented as a combination of three operations. Each operation is a special stage of the filtering aimed at facilitating the associated numerical work. Third, an iterative scheme is implemented into the filter structure to provide an improvement in the filter performance at each step of the scheme. The final step of the scheme concerns signal compression and decompression. This step is based on the solution of a new rank-constrained matrix approximation problem. The solution to the matrix problem is described in this paper. A rigorous error analysis is given for the new filter.Keywords: Optimal filtering, data compression, stochastic signals.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 13225364 Fast Accurate Detection of Frequency Jumps Using Kalman Filter with Non Linear Improvements
Authors: Mahmoud E. Mohamed, Ahmed F. Shalash, Hanan A. Kamal
Abstract:
In communication systems, frequency jump is a serious problem caused by the oscillators used. Kalman filters are used to detect that jump, despite the tradeoff between the noise level and the speed of the detection. In this paper, an improvement is introduced in the Kalman filter, through a nonlinear change in the bandwidth of the filter. Simulation results show a considerable improvement in the filter speed with a very low noise level. Additionally, the effect on the response to false alarms is also presented and false alarm rate show improvement.
Keywords: Kalman Filter, Innovation, False Detection.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 22265363 A New Damage Identification Strategy for SHM Based On FBGs and Bayesian Model Updating Method
Authors: Yanhui Zhang, Wenyu Yang
Abstract:
One of the difficulties of the vibration-based damage identification methods is the nonuniqueness of the results of damage identification. The different damage locations and severity may cause the identical response signal, which is even more severe for detection of the multiple damage. This paper proposes a new strategy for damage detection to avoid this nonuniqueness. This strategy firstly determines the approximates damage area based on the statistical pattern recognition method using the dynamic strain signal measured by the distributed fiber Bragg grating, and then accurately evaluates the damage information based on the Bayesian model updating method using the experimental modal data. The stochastic simulation method is then used to compute the high-dimensional integral in the Bayesian problem. Finally, an experiment of the plate structure, simulating one part of mechanical structure, is used to verify the effectiveness of this approach.
Keywords: Bayesian method, damage detection, fiber Bragg grating, structural health monitoring.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 19075362 Navigation and Self Alignment of Inertial Systems using Nonlinear H∞ Filters
Authors: Saman M. Siddiqui, Fang Jiancheng
Abstract:
Micro electromechanical sensors (MEMS) play a vital role along with global positioning devices in navigation of autonomous vehicles .These sensors are low cost ,easily available but depict colored noises and unpredictable discontinuities .Conventional filters like Kalman filters and Sigma point filters are not able to cope with nonwhite noises. This research has utilized H∞ filter in nonlinear frame work both with Kalman filter and Unscented filter for navigation and self alignment of an airborne vehicle. The system is simulated for colored noises and discontinuities and results are compared with not robust nonlinear filters. The results are found 40%-70% more robust against colored noises and discontinuities.Keywords: filtering, integrated navigation, MEMS, nonlinearfiltering, self alignment
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 17955361 Receding Horizon Filtering for Mobile Robot Systems with Cross-Correlated Sensor Noises
Authors: Il Young Song, Du Yong Kim, Vladimir Shin
Abstract:
This paper reports on a receding horizon filtering for mobile robot systems with cross-correlated sensor noises and uncertainties. Also, the effect of uncertain parameters in the state of the tracking error model performance is considered. A distributed fusion receding horizon filter is proposed. The distributed fusion filtering algorithm represents the optimal linear combination of the local filters under the minimum mean square error criterion. The derivation of the error cross-covariances between the local receding horizon filters is the key of this paper. Simulation results of the tracking mobile robot-s motion demonstrate high accuracy and computational efficiency of the distributed fusion receding horizon filter.Keywords: Distributed fusion, fusion formula, Kalman filter, multisensor, receding horizon, wheeled mobile robot
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 11995360 A Comparative Study into Observer based Fault Detection and Diagnosis in DC Motors: Part-I
Authors: Padmakumar S., Vivek Agarwal, Kallol Roy
Abstract:
A model based fault detection and diagnosis technique for DC motor is proposed in this paper. Fault detection using Kalman filter and its different variants are compared. Only incipient faults are considered for the study. The Kalman Filter iterations and all the related computations required for fault detection and fault confirmation are presented. A second order linear state space model of DC motor is used for this work. A comparative assessment of the estimates computed from four different observers and their relative performance is evaluated.Keywords: DC motor model, Fault detection and diagnosis Kalman Filter, Unscented Kalman Filter
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 24965359 A Reconfigurable Microstrip Patch Antenna with Polyphase Filter for Polarization Diversity and Cross Polarization Filtering Operation
Authors: Lakhdar Zaid, Albane Sangiovanni
Abstract:
A reconfigurable microstrip patch antenna with polyphase filter for polarization diversity and cross polarization filtering operation is presented in this paper. In our approach, a polyphase filter is used to obtain the four 90° phase shift outputs to feed a square microstrip patch antenna. The antenna can be switched between four states of polarization in transmission as well as in receiving mode. Switches are interconnected with the polyphase filter network to produce left-hand circular polarization, right-hand circular polarization, horizontal linear polarization, and vertical linear polarization. Additional advantage of using polyphase filter is its filtering capability for cross polarization filtering in right-hand circular polarization and left-hand circular polarization operation. The theoretical and simulated results demonstrated that polyphase filter is a good candidate to drive microstrip patch antenna to accomplish polarization diversity and cross polarization filtering operation.
Keywords: Microstrip patch antenna, polyphase filter, circular polarization, linear polarization, reconfigurable antenna.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 14425358 Bayesian Meta-Analysis to Account for Heterogeneity in Studies Relating Life Events to Disease
Authors: Elizabeth Stojanovski
Abstract:
Associations between life events and various forms of cancers have been identified. The purpose of a recent random-effects meta-analysis was to identify studies that examined the association between adverse events associated with changes to financial status including decreased income and breast cancer risk. The same association was studied in four separate studies which displayed traits that were not consistent between studies such as the study design, location, and time frame. It was of interest to pool information from various studies to help identify characteristics that differentiated study results. Two random-effects Bayesian meta-analysis models are proposed to combine the reported estimates of the described studies. The proposed models allow major sources of variation to be taken into account, including study level characteristics, between study variance and within study variance, and illustrate the ease with which uncertainty can be incorporated using a hierarchical Bayesian modelling approach.
Keywords: Random-effects, meta-analysis, Bayesian, variation.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 6595357 Bayesian Network Model for Students- Laboratory Work Performance Assessment: An Empirical Investigation of the Optimal Construction Approach
Authors: Ifeyinwa E. Achumba, Djamel Azzi, Rinat Khusainov
Abstract:
There are three approaches to complete Bayesian Network (BN) model construction: total expert-centred, total datacentred, and semi data-centred. These three approaches constitute the basis of the empirical investigation undertaken and reported in this paper. The objective is to determine, amongst these three approaches, which is the optimal approach for the construction of a BN-based model for the performance assessment of students- laboratory work in a virtual electronic laboratory environment. BN models were constructed using all three approaches, with respect to the focus domain, and compared using a set of optimality criteria. In addition, the impact of the size and source of the training, on the performance of total data-centred and semi data-centred models was investigated. The results of the investigation provide additional insight for BN model constructors and contribute to literature providing supportive evidence for the conceptual feasibility and efficiency of structure and parameter learning from data. In addition, the results highlight other interesting themes.Keywords: Bayesian networks, model construction, parameterlearning, structure learning, performance index, model comparison.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 17275356 Cascade Kalman Filter Configuration for Low Cost IMU/GPS Integration in Car Navigation Like Robot
Authors: Othman Maklouf, Abdurazag Ghila, Ahmed Abdulla
Abstract:
This paper introduces a low cost INS/GPS algorithm for land vehicle navigation application. The data fusion process is done with an extended Kalman filter in cascade configuration mode. In order to perform numerical simulations, MATLAB software has been developed. Loosely coupled configuration is considered. The results obtained in this work demonstrate that a low-cost INS/GPS navigation system is partially capable of meeting the performance requirements for land vehicle navigation. The relative effectiveness of the kalman filter implementation in integrated GPS/INS navigation algorithm is highlighted. The paper also provides experimental results; field test using a car is carried out.Keywords: GPS, INS, IMU, Kalman filter.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 38495355 Multigrid Bilateral Filter
Authors: Zongqing Lu
Abstract:
It has proved that nonlinear diffusion and bilateral filtering (BF) have a closed connection. Early effort and contribution are to find a generalized representation to link them by using adaptive filtering. In this paper a new further relationship between nonlinear diffusion and bilateral filtering is explored which pays more attention to numerical calculus. We give a fresh idea that bilateral filtering can be accelerated by multigrid (MG) scheme which likes the nonlinear diffusion, and show that a bilateral filtering process with large kernel size can be approximated by a nonlinear diffusion process based on full multigrid (FMG) scheme.Keywords: Bilateral filter, multigrid
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 18645354 A New Spectral-based Approach to Query-by-Humming for MP3 Songs Database
Authors: Leon Fu, Xiangyang Xue
Abstract:
In this paper, we propose a new approach to query-by-humming, focusing on MP3 songs database. Since MP3 songs are much more difficult in melody representation than symbolic performance data, we adopt to extract feature descriptors from the vocal sounds part of the songs. Our approach is based on signal filtering, sub-band spectral processing, MDCT coefficients analysis and peak energy detection by ignorance of the background music as much as possible. Finally, we apply dual dynamic programming algorithm for feature similarity matching. Experiments will show us its online performance in precision and efficiency. Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 17815353 EMD-Based Signal Noise Reduction
Authors: A.O. Boudraa, J.C. Cexus, Z. Saidi
Abstract:
This paper introduces a new signal denoising based on the Empirical mode decomposition (EMD) framework. The method is a fully data driven approach. Noisy signal is decomposed adaptively into oscillatory components called Intrinsic mode functions (IMFs) by means of a process called sifting. The EMD denoising involves filtering or thresholding each IMF and reconstructs the estimated signal using the processed IMFs. The EMD can be combined with a filtering approach or with nonlinear transformation. In this work the Savitzky-Golay filter and shoftthresholding are investigated. For thresholding, IMF samples are shrinked or scaled below a threshold value. The standard deviation of the noise is estimated for every IMF. The threshold is derived for the Gaussian white noise. The method is tested on simulated and real data and compared with averaging, median and wavelet approaches.
Keywords: Empirical mode decomposition, Signal denoisingnonstationary process.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 40075352 Deterministic Method to Assess Kalman Filter Passive Ranging Solution Reliability
Authors: Ronald M. Yannone
Abstract:
For decades, the defense business has been plagued by not having a reliable, deterministic method to know when the Kalman filter solution for passive ranging application is reliable for use by the fighter pilot. This has made it hard to accurately assess when the ranging solution can be used for situation awareness and weapons use. To date, we have used ad hoc rules-of-thumb to assess when we think the estimate of the Kalman filter standard deviation on range is reliable. A reliable algorithm has been developed at BAE Systems Electronics & Integrated Solutions that monitors the Kalman gain matrix elements – and a patent is pending. The “settling" of the gain matrix elements relates directly to when we can assess the time when the passive ranging solution is within the 10 percent-of-truth value. The focus of the paper is on surface-based passive ranging – but the method is applicable to airborne targets as well.Keywords: Electronic warfare, extended Kalman filter (EKF), fighter aircraft, passive ranging, track convergence.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 20655351 Sensor Fusion Based Discrete Kalman Filter for Outdoor Robot Navigation
Authors: Mbaitiga Zacharie
Abstract:
The objective of the presented work is to implement the Kalman Filter into an application that reduces the influence of the environmental changes over the robot expected to navigate over a terrain of varying friction properties. The Discrete Kalman Filter is used to estimate the robot position, project the estimated current state ahead at time through time update and adjust the projected estimated state by an actual measurement at that time via the measurement update using the data coming from the infrared sensors, ultrasonic sensors and the visual sensor respectively. The navigation test has been performed in a real world environment and has been found to be robust.
Keywords: Kalman filter, sensors fusion, robot navigation.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 21165350 Wavelet Enhanced CCA for Minimization of Ocular and Muscle Artifacts in EEG
Authors: B. S. Raghavendra, D. Narayana Dutt
Abstract:
Electroencephalogram (EEG) recordings are often contaminated with ocular and muscle artifacts. In this paper, the canonical correlation analysis (CCA) is used as blind source separation (BSS) technique (BSS-CCA) to decompose the artifact contaminated EEG into component signals. We combine the BSSCCA technique with wavelet filtering approach for minimizing both ocular and muscle artifacts simultaneously, and refer the proposed method as wavelet enhanced BSS-CCA. In this approach, after careful visual inspection, the muscle artifact components are discarded and ocular artifact components are subjected to wavelet filtering to retain high frequency cerebral information, and then clean EEG is reconstructed. The performance of the proposed wavelet enhanced BSS-CCA method is tested on real EEG recordings contaminated with ocular and muscle artifacts, for which power spectral density is used as a quantitative measure. Our results suggest that the proposed hybrid approach minimizes ocular and muscle artifacts effectively, minimally affecting underlying cerebral activity in EEG recordings.Keywords: Blind source separation, Canonical correlationanalysis, Electroencephalogram, Muscle artifact, Ocular artifact, Power spectrum, Wavelet threshold.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 23355349 Image Restoration in Non-Linear Filtering Domain using MDB approach
Authors: S. K. Satpathy, S. Panda, K. K. Nagwanshi, C. Ardil
Abstract:
This paper proposes a new technique based on nonlinear Minmax Detector Based (MDB) filter for image restoration. The aim of image enhancement is to reconstruct the true image from the corrupted image. The process of image acquisition frequently leads to degradation and the quality of the digitized image becomes inferior to the original image. Image degradation can be due to the addition of different types of noise in the original image. Image noise can be modeled of many types and impulse noise is one of them. Impulse noise generates pixels with gray value not consistent with their local neighborhood. It appears as a sprinkle of both light and dark or only light spots in the image. Filtering is a technique for enhancing the image. Linear filter is the filtering in which the value of an output pixel is a linear combination of neighborhood values, which can produce blur in the image. Thus a variety of smoothing techniques have been developed that are non linear. Median filter is the one of the most popular non-linear filter. When considering a small neighborhood it is highly efficient but for large window and in case of high noise it gives rise to more blurring to image. The Centre Weighted Mean (CWM) filter has got a better average performance over the median filter. However the original pixel corrupted and noise reduction is substantial under high noise condition. Hence this technique has also blurring affect on the image. To illustrate the superiority of the proposed approach, the proposed new scheme has been simulated along with the standard ones and various restored performance measures have been compared.
Keywords: Filtering, Minmax Detector Based (MDB), noise, centre weighted mean filter, PSNR, restoration.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 27395348 Probabilistic Approach of Dealing with Uncertainties in Distributed Constraint Optimization Problems and Situation Awareness for Multi-agent Systems
Authors: Sagir M. Yusuf, Chris Baber
Abstract:
In this paper, we describe how Bayesian inferential reasoning will contributes in obtaining a well-satisfied prediction for Distributed Constraint Optimization Problems (DCOPs) with uncertainties. We also demonstrate how DCOPs could be merged to multi-agent knowledge understand and prediction (i.e. Situation Awareness). The DCOPs functions were merged with Bayesian Belief Network (BBN) in the form of situation, awareness, and utility nodes. We describe how the uncertainties can be represented to the BBN and make an effective prediction using the expectation-maximization algorithm or conjugate gradient descent algorithm. The idea of variable prediction using Bayesian inference may reduce the number of variables in agents’ sampling domain and also allow missing variables estimations. Experiment results proved that the BBN perform compelling predictions with samples containing uncertainties than the perfect samples. That is, Bayesian inference can help in handling uncertainties and dynamism of DCOPs, which is the current issue in the DCOPs community. We show how Bayesian inference could be formalized with Distributed Situation Awareness (DSA) using uncertain and missing agents’ data. The whole framework was tested on multi-UAV mission for forest fire searching. Future work focuses on augmenting existing architecture to deal with dynamic DCOPs algorithms and multi-agent information merging.
Keywords: DCOP, multi-agent reasoning, Bayesian reasoning, swarm intelligence.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1010