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Abstract—The (sub)-optimal soolution of linear filtering problem
with correlated noises is considered. The special recursive form of
the class of filters and criteria for selecting the best estimator are
the essential elements of the design method. The properties of the
proposed filter are studied. In particular, for Markovian observation
noise, the approximate filter becomes an optimal Gevers-Kailath filter
subject to a special choice of the parameter in the class of given linear
recursive filters.
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I. INTRODUCTION
Consider a standard linear filtering problem

Trt1 = Qi + Grwy, 1
Zpp1 = Hpp1zpq1 + g1, 6=0,1,2, . 2

here x; is the n-dimensional system state at & instant,
;. is the (nxn) fundamental matrix, zj is the p-dimensional
observation vector, Hy, is the (pxn) observation matrix, wy, vy
are the model and observation noises. The statistical charac-
teristics of the entering random variables are given as

Elxo] = o, Elzoxg ] = Mo, (3)

Elwg] = 0, Elwew] ] = Qr,  (4)

E[vg] = 0, E[ogv] | = R, Elwpv] = Kuo(k), (5)

El(xo — fO)UJf] = Kyu(k), E[(z0 — xO)Uk} Kyo(k). (6)

Denote by Z; a minimum mean square (MMS) estimator
for the state x;. The Kalman filter (KF) yields the MMS
solution to this filtering problem with white and uncorrelated
process and observation noises [10]. The extension of the
KF to the systems with colored noises that are Markovian is
studied on the basis of innovation process [6]. The filtering
problems with correlated noises are widely encountered in
engineering applications (data assimilation in meteorology and
oceanography [4], GPS position time series [2], halftoning
systems with blue noise [5], speech signal processing [13],
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navigation [14], guidance [3] .... For many practical appli-
cations, the assumption on Markovian noises is nevertheless
not necessary. The filtering problem in the form (1)(2)(3)-
(6) has been considered in [12]. Generally speaking, due to
assumptions (3)-(6) the estimator &1, written in recursive
form, depends on &, and all the observations {z1, ..., zk+1}.
This dependence makes implementation of the optimal filter
extremely difficult for large k.

The present paper aims to overcome the mentioned above
difficulty. The approach follows that reported in [8], with
emphasis on the linear filtering problem considered in [12]
: Given the system dynamics and observations contaminated
by correlated noises, the task is to construct an algorithm
providing an (sub)-optimal filtered estimate of high quality.
Concretely, according to [8], the class of filters {Z(nx)} with
ni < k - some positive integer number, is introduced in a
way such that ;11 (nr+1) depends on &y (ny) and ny; latest
observations. One important requirement to the algorithm will
be that the produced estimate Zj(ng4+1) will be truly MMS
if Zx(nk) = & and ngy1 = k + 1. Such algorithm has
a merit to be studied in more detail, noticing in practice
the time correlation generally becomes weaker as the time
difference increases. More importantly, for a particular case
of the Markovian observation noise with memory m, the
sub-optimal filter becomes truly MMS in the class of filters
being linear functions of the last estimate &, and m + 1
last observations. The case of Markovian noise sequence with
memory m = 1 will be studied in detail in section 6.

The paper is organized as follows. In section 2, for the time-
invariant system state, the main theoretical results on MMS
filter optimal in a given class of linear filters are presented.
These results will be extended to the general time-varying
system state in section 3. The properties of the obtained filter
are studied in section 4. Conditions for equivalence of two
estimators obtained on the basis of the last estimator and two
different numbers of latest observations are given in section 5.
Application of the theoretical results to the design of the MMS
filter subject to the Markovian noise sequence with memory
m = 1 is considered in section 6. The conclusions are given
in section 7.

Il. PRELIMINARIES RESULTS : TIME-INVARIANT SYSTEM
STATE

For simplifying the presentation, first consider the filtering
problem (1),(3)-(5) under assumptions
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P, =1,G =0, i.e.,ka =T = (7)

The system state is then time-invariant. Throughout this
paper, I denotes a unit matrix of the appropriate dimension.
Introduce the notations

2L = (Zva "7Z£)Tvzllg = Zkvk > 1, (8)

Hj, = (HY ... H)" Hf = Hy k > i, ©
Ullc = (UiT7 '“:UlcT)T7vII§ = v, k > 1, (10)

Vi = E(vioph). (11)

Let Z,(ni) be a sequence of estimators for x given by
{#1, ..., zx } such that each next estimator Zy1(nr+1) is a lin-
ear function of Zx(nx) and ny41 last observations. According
to notations in [8], we have

Try1(ne41) = 0k€[Tk(nk)), ZHQ M oy =
[0k,1, 0k 2] [ 1, €1 2] + Yk

- 2
Erp o= Tr(nk), Epo =24, L

For simplicity and without generality, assume that the
sequence {Zy(ng)} is unbiased. Then one can set v, = 0.
In what follows we will use the following notation for the
sequence {Zx(ng)}

k42— nk+1
k+1

where Ay, By, are matrices of appropriate dimensions. De-
note by Xyi1(ngs+1) the class of all unbiased estimators
having the structure (12), where Z(ny) is unbiased estimator
too.

Definition 1. We shall call 511 := Zx+1(nk+1) an optimal
MMS estimator in the class X1 (ngy1) if it satisfies

:Tck+1(nk+1) = Akik(nk) + Biz (12)

(i) ElZri] = E(z);
(ii) Zg41 = arg minw,eX;f“J(x’),
J(@') = tr[E(z' — z)(2’ — z)7]

where X | = {2’ € Xir1(ngy1) : E(2') = E(z)}, tr ()
denotes the trace operator.

In the present paper, for simplicity, we assume the existence
of all figured inverse matrices.

Lemma 1. Let & (nx) = &, Py be its error covariance matrix
(ECM). Then Z1 is defined by

Trr1 (i) = T+ Ky [zpq (1) — Hep2),  (13)
2 (1) = 2kg1 — S Sptey 2T (14)
Hi = Hyy1 — Soy S Hp T2 (15)
K1 = (PoHE, | — Nes1)E5y, (16)
Yop = [z — L1277 Do) 7, (17)
Yoy = Ryp1 + Hep1 PeHE
—Hp41Nip1 — (Hip1 Nigpa)” (18)
Sy = VR _ 2 ght2one (19)
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Yoy =21, (20)
Sy = K27 RN (21)
N1 = E[(& — 2)vf44], (22)

Bt = Bl(a — oo =
PoH T (23)
R = Bl el (24)
P, = E|(iy — 2)(&r — 2)7], (25)

Pep1(niy1) = Bl(@ry1 — 2)(@rg1 — )] =
Py — Kgy1(PeHjy — Niepn)™. (26)

Proof: The proof is similar to that presented in [8]: From
the requirement (i) on unbiasedness of z;;; we have A; =
I — ByHF7™1. Substituting Ay, into (12) and taking the
gradient of J(.) Wlth respect to By, leads to the equation for
finding By. Thus,

Ay =1 ByHy 7™ By =

I I (27)

where X1, X3 are defined in (29). We have the ECM Py,

Piy1(npy1) = BeX1 B + By + S3BF + 34, (28)

Y, = H’C+2 nk+1p (Hk+27nk+1)T +

k+1
k+2— Nk41
A + A%,
k+2—np41 k+2 Nt1
ch+1 E -

k+2—njp41 k‘+2 ng+1\T
(Hyqq By )

AY, =

)

Sy = —H'Pp 4 (B

k+2 nk+1)T
k+1

k+1

33 =33,% = P, (29)

E,fﬁ’"k“ is defined by (23). Using A;, from (27) the

estimator Z;1 can be rewritten as

k4+2—np41 Hk+27nk+1i,k]

Thy1 = Tk + Bk[zk+1 —Hy (30)

Compute the matrix By. Since zi = Hlz + v}, the
MMS estimate 7, = Tkzk,Tk = PkHle P =
(HWVET HYT) ™ Vi = E(vlvy ™) is an unbiased estimate,
T.H}! = I. Hence

2(vply ™)) =

k+2—npiq
By M= E{[Ty(Hix + v}) — Vg1

:TkE{Uk(UZﬁ Ty (31)

Let

Vi =l 1)7 Vi (R Vk() Elvi(v})™],
Vet = V1), Vi(R)].

Then we have Vk(‘)f/k() = 16;; where §;; is the
Kronecker symbol. But E[vy > "**'v ] =V (k + 2 —
Nkt1)s - VL (k)T hence
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E:+2—nk+1 _ TkE[U]i(Ungz_nk#l )~T] _
(VE (k42 = ngg1)y o0, VIR [Vi(D), ..., Vie(K))
H;P)" =1(0,1) {

1
Hz+§_7Lk+l Pk]T
Hk +2—ng41 ¢

k4+2—np41,T
poH" .

(32)

Taking into account (29)(31)(32) one can write

B = -3 =
k+2—npi1 k+2—npp1,Tyv—1 _
[Ek+1 - PkH}g+1 }21 =

_[(Ellz+2—nk+1’Nk+1) i (PkH}l:+2—nk+1,T’ PkHIZ"Jrl)]E;l _
(0, PeHT ) — Niy1) 27

or

By = (PeHi 1 — Nip1)Sao (=S 57, 1), (33)
here Ny is defined as in (22) and for

-~ 0 S S
21—{ },21 —{im 222}, (34)

the Lemma on Inversion of block matrix [10] yields
Yoo = [Zo2 — 22121_11212]_1

which shows (17). Substituting (33) into (30) yields (13)
with K1 defined in (16). The formula (26) is obtained by
using (27),(28) and (33).

To show (18)-(20), noticing from (29) that 3, can be written
as the ECM of the following random vector

Si = BET), €= M (0 —0) + oy

211
o1

Y12
Yoo

Represent ¢ = (&5, ¢1)T, from (34) one sees that

k+2— k+2— k+2—np
211 _ Vk+ NE41 +H + nk_HP]g(H + nk+1)T7

k+2—ny k+2—ny k+2—ny k+2—mny,
Hk+ ka+1Ek+ Nk4+1 (Hk+ nk,+1Ek+ ka+1)T

Y92 = Riy1 + Hy1 PH)L, | — Hip1 Nip1 — (Hig41 Niyr)™
Sip =30 = Ky gt meip gl
Hy11Ngy1 — (Heg1 Ngs1) 7T,

f(,’j”_"k“ is defined by (24). These formulas imply (18)-
(20) noticing from (32) that 311, 312 can be simplified. &

Comment 1. As shown by [8], when X, in (27) is singular,
the matrix By, is defined by By, = —232; The solution 11
then exists and is unique (almost surely). The uniqueness of
Zx1 for non-singular 3, follows automatically.

Comment 2. The estimate Zx,; can be obtained in the
following way [9]: Interpreting z* := & as the "observation”
available before arriving zj1,

F=x+ €k, E(ek) = O,E(Ekez) = P, ¥ =y (35)

i i z T T T T
and introducing z = (z* 7Zk—¢_—2—nk+17"'7zk+1) , one has
the following system of observations

Z=Hzx+0, (36)
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s _ (%T T T \T
Z=(z P42 g g o Zigp1) s
T T T \T
H= (I’Hk+2—nk+17 "'7H5;+1) '

U= (ef,vg+27nk+l, ...,U£+1)T, V = E(t97).
Then with probability 1 the estimator zj,; in Lemma 1 is
equal to

Thy1 = (f{T‘N/_lg)_lﬁlTv_lf. (37)

Really, the estimator (37) is a linear function of %, and
2y 727"+ From Theorem 6.1.11 of [1] it is the BLUE
(unbiased and of minimum variance). Thus (37) must be also
a MMS estimator by Definition 1.

Theorem 1. Let {Zx(nx)} be a sequence of unbiased es-
timators for the unknown vector = such that each estimator
is obtained on the basis of the previous one and the ny
latest observations. Let these estimators be MMS according
to Definition 1 subject to ngy1 < ng + 1. Then

Try1(ne41) = T (k) + K [25 — Hi o @r ()]

where 27, H} |, Ki1 = By are determined by the
formulas similar to (14),(15),(27),(29), only now we have
i'k(nk), Pk(nk) instead of T, Py,

Pi(ni) = E{[Zr(ni) — ][k (i) — z] 7}

The proof of Theorem 1 is analogous to the proof of Lemma
1, noticing from Comment 2,

Zr(ng) = Tie(ng)ze(nk),
Ti(nie) = Pro(nie) H (i) Vi (),
Pyo(ni) := [H] () Vi ' (ni) Hie (ni)] 71,
zi(ni) = Hi(ng)x + v (ng), Vi(ni) = E{vk(ni)vf (nk)},

ZTp—1(nk—1) I
Zk(nk) = [ 2k+1_n;C L Hk(nk) = [ Hk+1—nk ]a
k B k
€k—1
vk(nk) = [ 17]]:+17nk ]a
k+2—np41

and from ny 1 < ng+1 the matrix £, is simplified
to the form (32). Thus the condition ngr1 < ng + 1 is
introduced only for having the compact formulas (14)-(26).

As will be seen later, the case ny,1 = 2 is of special interest
and it is formulated in the form of the following Corollary

Corollary 1. Let in Theorem 1, ngy; = 2. Then the
following relations hold for the estimator Z.1(2) satisfying
Definition 1,

Tr1(2) = T (ne) + Kr1(2)[2541 — HipaTe(ne)], (38)
Zhyl = Zhgl — EglEl_llzk, (39)

Hiyy = Hip1 — S S0 Hy, (40)

Kk+1(2) = [Pk(nk)HkTH - Nk+1]2227 (41)

Yos = [Tz — LI S0 7Y, (42)

Y11 = Ry — HyPi(np)HL ;212 = R g1 — He N1, (43)

where N1, Yoo are defined in Theorem 1.

Mention that the structure of the filter (38)-(43) is similar
to that of the Gevers-Kailath filter [6].

Corollary 2. Let & (ng) = &x. For ng41 = k+ 1, Theorem
1 yields #;41 = #r4+1 and the following equality holds

1SN1:0000000091950263



Open Science Index, Electronics and Communication Engineering Vol:5, No:11, 2011 publications.waset.org/6280.pdf

World Academy of Science, Engineering and Technology
International Journal of Electronics and Communication Engineering
Vol:5, No:11, 2011

AZQQ = —2{221_11212 = L1 — L2,

Ly =KV H{PHY VT K Ly = KLV T K
- B B (44)
Here K;, = K} and K] is defined by (24).

The equality (44) will be used in the further.

I1l. TIME-VARYING SYSTEM STATE

Consider the filtering problem in its general formulation
(1)(3)-(5). A natural way to generalize (12) in this case is to
introduce the class of recursive filters

~ k+2—ng41q
= AkTppr/e(Mit1) + Brz 7

Tpg1 k(1) = PpZp(n)

g1 (Npt1)
(45)

where {Z(nx)} is a sequence of filtered estimates for the
system state xx, k = 1,2, .... The results to be presented below
can be established by the same technique as done in section
2.1

Introduce the notations: Let ®(z, j) be the transition matrix
for the system (1). Then [10]

i—1
z; = ®(j,i)z Zq) g, L+ Dw, i > 4, (46)
I=j
I:[ILLI = (HT(17 k + 1)7HT(27 k + 1)7 ey
HY(k+ 1,k + 1), H(j,i) = H;®(j,1), (47)

wliyk+1) = v — S0 Hi® (6, L+ D)Tw, Y1, =0,
Wiy =W (Lk+1),w’ (k+1,k+1)]" =
(e "ooi)”, (49)
E(wk+1) - 07
E[wkﬂwllgfﬂ Wk1+1 (49)
E(n}) =0, Enin, "] = Ay (50)
Using the notations above we have
zj=H(j,k+Depp +w(,k+1),7=1,2,...,k+1, (51)

k+2—ngpi1 _ prkt2—ni ~k4+2—np4q
“k+1 =Hp Try1 + Wiy » (52)

Zli-kl = Hk+1$k+1 + wllc-i-la (53)

qo=[ET, B )T HY = HE @k, k+1), (54)

0 =y — Hi{Tpwy. (55)

In the further, according to [11] we will refer to the model

(53) as of high initial uncertainty if the information on zj.1

is contained only in the observation vector z; , , (equivalently

to assuming My = oo - there is no a priori information on

xk+1). For the case (3)-(5)(7) are given, from (1) zx11 =
O(k+ 1,020 + Yo ®(k + 1,1+ 1)Tyuw; and

Try170 = ©(k 4+ 1,0)Z0, Prt1jo = El(ers1/0)(€nv10)" ],
€k+1/0 = Th41/0 — Tht1-
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This information can be represented by the additional "ob-
servation” 2* := 741,90 (Comment 2) and instead of (53) we
have the following model

1
aiy = B wan + 0, (56)
Tp11/0 I
1) _ () _
Zpl1 = e s Hy /= e ,
Zh+1 Hi
Ly | o
1= e

W41

As the model (56) includes the information (3)-(5) in the
form of z*, it can be considered as that of high initial
uncertainty. Later on, for simplicity we shall derive the filtering
algorithms for the vector . in the model (53) remembering
that the similar results can be deduced for xx1 in the model
(56).

Application of Theorem 1 to the model (53) leads to the
following

Theorem 2. Consider the class of recursive filters (45) and let
{Zk+1(nk+1)} be a sequence of unbiased estimators for 1
such that each estimator 41 = Zx+1(nk+1) is a function of
the previous &y (ny) and ny41 last observations. Assume that
these estimators are optimal in the sense of Definition 1. Then
we have

Thpr(nesr) = Prn(nr) + K[z — Hi @l (nx)],
k+2— k+2—
21 = Zpa1 nHlvH/:H = Hk+1 e

and K11 can be determined as done in the proof of Lemma
1.
Corollary 3. Let Zj,41/; = Tpt1/k = Prlr. Then

Tt (Miy1) = Bpgayn + Kiga [z — Hk+11'k+1/k]
L1/ = [ Hy TAl _1Hk] 1H1 TAI 2 k' Ak = WWIZT]’
2212 112’]]:+2 nk+1,
2212111Hk+2 Ngt1

Zhp1 = Zht1 —
Hl:-s-l =Hpy1—

ktl . o
Kiy1 = (M1 HiE | — Nig1)322,
Yor = [o2 — SLE S0 7Y,
Yoo =
Riq1 + Hypt My HE | — Hipt Nyt — (Hig1 Niyr)

Y = A’]z+2_nk+1 _ H:+2—7L;,,.,+1E]lz+2_nk+l
212 _ Kllz+27nk+1 i H:+27nk+lNk+17
it = Blevnpienl,

B = Elegsr/nm, I,

Cr+1/k ‘= l'k+1/k = Th+1,
k+2—npy1 k+2—np41 T
Ky, = E[n, I

Vg1l
Pri1(npy1) = Mita *~Kk+1(MkJ:1Hk+1 Ni+1)T,
. Myyy = [Hy T Ay HE Y,
n,=f .onh)T = (" (i,k+1),..., 0" (k+1,k+1))T.

Corollary 4 (Case ni+1 = 2). Under the conditions of
Corollary 3, for nyy; =2

Tp11(2) = Tppryn + Kiralzi — Hi i Pegayels
2hy1 = 2kl — o121 2k,
Hjiyy = Hin — S50 He s
Kiy1 = (Mpp1 HE | — Niy1) Y22,
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o = [E 21221_11212]7 ;
Yy =AF - H}chl kM HE s
Y19 = KF — Hy1,5Ni41-

Other variables in Corollary 4 are defined as in Corollary
3.

Corollary 5. Under the conditions of Corollary 3, for
Ngy1 =k + 2,

Tp1(k +2) = Tpy1,
AYgy i= =S X !'S10 = L1 — Ly

Ll = K}?A}C HkMk+lH1 TAI Kk7

Ly = KIA 'Ky, Ky = K (57)

Comment 3. It is important to stress that Eq. (46) is valid
under hypothesis of existence of the inverse of the fundamental
matrix of the system dynamics. That is usually the case when
the discretized system is obtained from a differential equation.
Even then for many practical filtering problems, the difficulties
arise when the matrix &, exists only in a numerical form or
when it is of very high dimension as a result of discretization
from the set of partial differential equations [4]. In such
situations, instead of Eq. (46) it would be better to express
zj,j =k+1—npy1,...,k+1 as afunction of x4 1y, ;.
By this way we need only to integrate the direct model to
generate the predictor for the system state xj1.

IV. PROPERTIES OF THE FILTER
Property 1. For all ng11,1 < ngaq1 < nga1,

tr Pry1(ng1) < tr Pr(ng),

i.e. the estimator Zj1 is better than Z; in MMS sense.

The proof of this fact follows immediately from (26) since
the matrix Kkﬂ(nkH)[Pk.(nk)HkT+1 — Ng41] is non-negative
definitive.

In the further the symbol A > 0 (or A < 0) signifies that
the matrix A is non-negative (or non-positive) definitive.

Property 2. For all my 1, ngr1,1 < mpp1 < ngyp < k+2
the following inequality holds

(58)
(59)

Piy1(ngt1) < Peyr(mpey1), 01
tr Py 1 (Naog1) < trPegr (Mpyr)

In order to prove (59) we need some auxiliary results.
Lemma 2. Let .S be a square matrix

g { S11 S12 }
SL, So [

where S11, S22 are symmetric matrices of dimensions (n x
n) and (m x m) respectively. Then S > 0 if and only if
(lﬁ) 511 >0, SuSﬁslg = 512,522 — SESl]SlQ > 0. Here
the symbol ”+” denotes the operation of pseudo-inversion of
matrix.

Lemma 2 is the statement (a) in Theorem (9.1.6) of [1].

In what follows for simplicity we use the notation ¥ = Yo,
Y = = X5, Yoy is defined by (17). The notation C(my1)
signifies that this matrix corresponds to the matrix C' defined
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in the recursive filter with the estimates depending on m.1
latest observations. Let
S(met1) = X7 (mpp1).

Lemma 3. For all ng4+1 > mg41,

E(nk+1) — Z(Wlk_H) S 0. (60)
Proof:
It is not hard to see that one can represent

D1 (me41)S11 (Meg1) a2 (mpr) =

So1 (na41) S0 (Mg 1) S12 (Mg, (61)
ng 0 0

Doian = _ . 62
11 (mk+1) { 0 2111(mk+1) } ( )

The obtained expressions (61)(62) allow us to present the
difference X(mg41) — X(ng+1) in the form

AXpi1(nym) = E(myg1) — B(npg1) =
ST (g 1) AZ 12 (Rget 1), (63)
A = 21_11 (nk+1) - Z?{H—l (mk+1)~ (64)

Denote by iu(nkﬂ) the inverse matrix for 11 (ng+1),

) = 20 22
1 k+1 23 24 .
The formulas (65)(62) imply
A= { R 5 }
27 B4 =35 (i)

The Lemma will be proven if we can show that A > 0.
According to Lemma 2, we need to establish

S (nks1) = (65)

@ il >0,
(0) £,515, = 5,
(C) [24 — E (mk+1)] — ZgETEQ > 0.

First mention that from the existence of X, (ns1) we have
31 (nk41) > 0. The structure (34) implies then 311 (ng+1) > 0
hence 11 (nx41) > 0. This fact and (65) prove %; > 0 and
we have (a), (b). It remains to show (c). In fact the left-hand
side of (c) is equal to 0. First mention that by construction,

[Slj]z,] 1

where S;; are block matrices of appropriate dimension,
with Soy = le(mk+1). Now, as Efll(nk.,_l) = 211(7’%4.1),
according to Lemma on ~inversjon of block matrix [10] we have
522 = le(mk+1> = (24— 22 Z 122) Lor le (mk+1)
Y- STSS, or [24—2111(7nk+1)] »T5 718, = 0. Thus
all three condltlons (a)-(c) hold. [ |

The property 2 follows immediately from the formulas
similar to (26)(16)(17) and Lemma 3.

Analogously one can establish the properties 1-2 for the
filter in section 3.

Y11 (npg1) =

1SN1:0000000091950263
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V. ON EQUIVALENCE OF TWO ESTIMATORS BASED ON
DIFFERENT NUMBERS OF LAST OBSERVATIONS

Consider two estimators Zj4+1(ng+1) and Zxr1(myy1) de-
rived according to Theorem 1 on the basis of ny; and my41
last observations respectively, with ng41 > my41.

Definition 2. Two estimators Zxy1(nk+1) and Tgy1 (me+1)
are called equivalent if the following equality holds

Py 1 (Npy1) = trPry1 (Mpy1). (66)

The Definition 2 is correct since the solution of the problem
in Theorem 1 (Definition 1) is unique (see Comment 1).

In what follows a new definition, equivalent to Definition
2, will be introduced. This new definition allows us to easier
examine the equivalence of two estimators. First we need some
preliminary results.

Lemma 4. Let the matrix C' = A — B > 0 be symmetric.
Then

tr C=0iff A= B.

Proof: It is well known if S is an orthonormal matrix then
tr (STCS) =tr (C). Let S be orthonormal matrix diagonal-
izing C. Then tr (C) =tr (STCS) =tr (A) = Y7, Mi(O)
where A, (C) are the eigenvalues of C, A\;(C) > 0, n is the
dimension of C. Suppose tr (C) = 0. Then 37", \;(C) =0
or \;(C)=0,Vi=1,...,n. The last means that C' = 0 since
the number of non-zero eigenvalues of C is equal to the rank
of C. Hence A—B=0or A=B.

The inverse implication is trivial. ]
According to Property 2, for ny1 > my41 we have

tr [Prt1 (naet1)] <t [Pega (mgs1)] or
Pri1(mi+1) — Prt1(ng+1) > 0.

Taking into account Lemma 4 and the properties of
Py+1(nk+1), Definition 2 can be replaced by the following

Definition 3. Two estimators .41 (nk+1) and Tgy1(mer1)
are called equivalent if the following equality holds

Pry1(nig1) = Prya(me1). (67)

Lemma 5. Let A — B > 0 be symmetric matrix. Then
CT(A-B)C=0iff(A-B)C=0.

Proof: According to the definition of a symmetric non-
negative definitive matrix [1] there exists a matrix D such that
A—B = DTD. But then CT DT DC = 0 and this takes place
iff DC = 0. We have then D" DC = 0 or (A — B)C = 0.
The inverse implication is trivial since from DTDC = 0 it
follows CTDTDC = 0. |

Proposition 1. Two estimators Zj41(nk+1) and
Zg+1(mpr+1), obtained from Corollary 2, are equivalent
iff

A1 (s m) S (1) [Py(ni) Hygyy — Nia]™ = 0 (68)

where AX . 1(n;m) is defined by (63)(64).
Proof: Inserting Pyy1(ng+1), Pet1(me+1) into (67),
from (26) it follows

AET (1) — B (my)]AT =0,
A= Pk(nk})Hg—‘_i_l — N}g+1
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According to Lemma 3, X(ng41) < X(mg41) hence
Y (ngy1) — B (mgo1) > 0. Using Lemma 5 one can see
that

[E7 (1) = 7 (mp)]AT = 0. (69)

As
S (npg1) — B (mpga)
= =X (1) A8k 1 (n;m) S (mgegr),

the condition (68) follows from substituting of the last
equality into (69). [ |

Proposition 2. Two estimators  Zjy1(nk4+1) and
Zr4+1(mr+1), obtained from Corollary 3, are equivalent
iff

AY i1 (nym)E ™ (M) [Mep1 HE | — Niwa]T =0 (70)

where AXjii(n;m) are defined as in Proposition 1,
Mip.41, N1 are computed from Proposition 1 too.

VI. APPLICATIONS
A. Optimal in MMS filtering with the Markovian observation
noise
Consider the filtering problem (1)(2) with the following
conditions

Q’L] = Q151]7 KT’IU(Z) = Oa KT?)(/L) = 07 Kmu(i) - OaVi7j7 (71)
vit1 = Vv + &, (72)

where vy is uncorrelated with {w;}, {xi;}, xo is a random
vector, {&;} is a white random sequence with

E(vo) = 0, E(vovl) = Ro (73)

E(&) =0,E(&&]) = Eibi; (74)

The filtering problem (1)(2)(71)-(74) is studied in [6]. On

the basis of the results in section 3 we will derive here the
solution to the filtering problem (1)(2)(71)-(74).

1) The filter for time-invariant system state: Denote by
U (4, j) the transition matrix for the system (72). We have then

i—1
vi = V(i j)v;+ Y Wi, l+1)&,i>j+1.  (75)
I=j
Lemma 6. The following relations hold
Rij = E(viv] ) = V(i,j)R;,i > j +1, (76)
Rjs1 = B(vj1v)y,) = VR U + Ej. (77)

The Lemma 6 is proven by direct calculation of R;;, Rj11
using the formulas (71)-(74), (75).

We proceed now to demonstrate that the condition (68)
holds for &(ny) = 2k, nk+1 = k + 2,mp+1 = 2. Let us
first compute X(k + 2), X(2).

Make use of (44) for computing X(k + 2). From Lemma 6
and Eq. (24) one has
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KT = [U(k+1,0)Ro, ..., U(k + 1, k)R] = U, [KT |, Ry

For Vj := V! = (V{1,, Vi,)™, V! is defined in (11), Vj.»
has p rows, it is not hard to see that

KP =9 Vo. (78)
Let V. "= (VT V5,). Then
ViaVie1 =0, Vi oVio = T (79)
hence
KIv, = (0,9). (80)
Substituting (80) into (44) yields
Y(k+1) = Yoy + U Hy P (U Hy )T — U R UT. (81)

Consider X(2) defined by (42)-(43). By Lemma 6 and (22)
it follows

N1 = P Hy Y,
¥12(2) = (R, — HyP,HF)WT.

(82)
(83)

Now the equality X(k + 1) = 3(2) holds by inserting
(83)(43) into (42), taking into account (81). Thus AXj 41 (k+
1; 2) = 0 the relationship (68) is valid in this case. It means, in
virtue of Proposition 1, that Zx41(2) = Zr41(k + 1) = Tgy1,
i.e. this Corollary yields in this case the optimal in MMS filter
for n; = 2, Vi. We have hence

Theorem 3. The optimal in MMS filter for the filtering
problem (1)(2)(7)(71)-(74) is given in the form

g1 = @+ Ky (250 — Hi %),
Ki1 = P H By = PoHE! [Hy PoHEY + E4] 77,
Pi = [P0+ Hy Bl ]
Hp, | = Hpy1 — Vi Hy,
ZZ+1 = Zk+1 — \I/kzk.

2) The filter for time-varying system state: With the no-
tations (46)(46)(48)-(50) and the assumption (71)-(74), from
Corollary 3 we have (for simplicity, Wj, := W}, Ay == A})

Ap =Wy + AWy, AW, =

HE®(k, k+ )TpQu(HL®(k, k + 1)T;) T, (84)
Wi = Vi + AW, (85)

| AW AW
AWy = { AL AT } , (86)

_where AWz, AW», are zero matrices, AWas is of (p x p);
H} is defined by (54) and K, remains as before and is defined
by (78). From Matrix inversion lemma [7],

A =W — T+ AW W, DT AW, =

W' By = W I — BB AW WY, (87)
By =1 —(I+ AW W, H ' AW, W, !, (88)
By = (I + AW, W, H)™!  (89)
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and the matrix W, is equal to

Wil =V - AT+ VAV TV (90)

As (79)(86) imply K'V,"'AV;, = 0, taking into account
(90)(80) we have

KgWEI = (07 \Ijk)a
KIAY = (0,%4)B.

Let A := H}. From (88)(84) it implies

(91)
(92)

BiH = H — ByAW, W, 'H = H — BoB, = H — Bs, (93)
By = AW, W, H = HTQTT (@ P®T) ™1, (94)
where
_ Bs:=ByBy = HIQIT(®P®”T)™! — BsBy =
H[I — oPT MTQTT (P27 QI (2 PPT) ! =
 H[I+TQIT(ePe”)1-1rQr’(@Pe?)~! =
H[I — (I+TQrT(@PdT)~ 17! = H[I — oP®T M ~1].
Thus

Bs = H[I — PdT M 1). (95)

In derivation of (95), for simplicity, the sub-index & is
omitted for the matrices ®, P,T"... and the following formulas
have been used

M = My = dPdT 4+ TQTT,

By:=I1—Bs=1—HoPOTMTQITTHTW !,
oPOTM = [I -TQTT(oPOT)~ 1)L,
with My, defined in Corollary 3. The proof of (96) will

be given later. Taking into account (95), the formula (93) is
equivalent to

(96)

B H =HOP® M. (97

Return to (57). Taking into account (95)(97) one can trans-
form Ly in (57) into

Ly =(0,9)BiHMHT BT (0,1)T =
(0, 9)HOP®TM-*MM-*®P®THT (0, V)T or

L1 =VH,PY"PM~oPHI VT, (98)
Let us calculate Bo AW}, using (94)(95),

ByAW), = ByHTQITHT =
BoHTQIT (®P3T) " 'oPHT =
Bs®PHT = H[I — ®P®T M~ |®PHT or

BoAW,, = H[P — P®TM~*oP]HT. (99)
The formula (99) can be used for simplifying Lo as follows

Ly = KA Ky = KFW Wy — BoAWR W, LKy =
= (0, V)W), — H'(P — P®TM~'oPH"T](0,¥)T =
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= UR,UT — VH,(P — POTMOP)HF ®F

therefore AZQQ(]C+1) =L1—Ly = \I/k(HkPHk—Rk)\I/g
Compute AX95(2) := —%7,(2)27}1(2)212(2) from Corol-
lary 4. We have

Blw(k,k+ DwT(k+1,k+1)] =
E{(vi — HiTwi)vl, 1} = R ¥7,
Nip1 = MHTA'K = PHIUT since
KTA'H = (0,9)BH = (0, 9)HOPOT M~ =
UH,POTM~!

hence

$12(2) = Elw(k, k+)w” (k + 1,k +1)] = HyNiy1 =
(R, — H,PHI)T,
Y11(2) =
Ry + Hd 'rQUrTe-4THI — 0o Mo LVTHE =
= Ry, + Hy®1(TQIT — M)~V TH] = Ry — H,PH] .

Itis seen that AY99(2) = AXgo(k+1) therefore X(k+1) =
(2) or A¥y11(k + 1;2) = 0 and Proposition 2 yields the
optimal in MMS filter in this case. It remains to show that (96)
is valid. Really, let B := ®P®”. Then according to (84)-(86)
and Matrix inversion lemma,

M~'=HTA'H = HTW, ' (I + AW W, 1)1 H =
H™W NI - HI+TQUTHTW, ' H)™!
rQTTHTW, 1 H =
Bl - Bl (I+1QrTB—H=IrQr'e=—! = (B+1Qr1)-t

which proves (96). In deducing the last relations we have
used the relationship (@P®7)~! = T~ 'HTW, 'H® ',
Analogously one can prove 2/, = ®rir. We have thus
proven

Theorem 4. (Optimal in MMS filter for Markovian observa-
tional noise) Optimal in MMS filter for the filtering problem
(2)(2)(71)-(74) is of the form

Tpy1 = Tppr/e + K1 (2500 — Hip1Zrviye),
Tpr1/k = Prlr,

Kit1 = [My HP + Th QDT HT (k, &+ 1D)UT]S71(2),
¥(2) = H1:+1Mk+1HZJFT1 + 2k — H;+1FRQRFEHZ#T1 +
Hy1 TeQuTLHE
Zpp1 = 2k+1 — Yi2k,

Hiyy = Hy o — W H (kK + 1),

M1 = @ P ®T + Qi I'F,

Prt1 =
M1 — Kk+1[Mk+1H;QFT1 + TeQiITHT (ko k + 1) 0T,

For definition of H(k,k + 1), see (47). We have then
H(k,k+1) = Hy®, ' and for example,
HZyaye = (Hepr — Y H (R k4 1)) 84y =
Hip1@pi1yn — VeHe®y @i = Hpp1dp1/ — ViHidr

It is not hard to show that for the observation Markovian
noise sequence of memory m the filter in Theorem 2 becomes
MMS if we take the structure for the estimator at k£ + 1 as a
linear function of %, and m + 1 latest observations.

VIlI. CONCLUSIONS

An approximation approach to the solution of a linear
filtering problems with correlated noises was presented. A new
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type of class of linear recursive filters is proposed together with
definition of an optimal MMS estimator among the members
of this class of filters. It was clear that the approximate
filters have interesting and different properties to their truly
optimal MMS filter. Thank to simplified recursive structure,
a substantial reduction in computational burden and storage
requirements is achieved compared to truly optimal MMS
filter. This is important when there are non-Markovian noise
processes. For the Markovian m memory noise sequence, the
proposed sub-optimal filter will yield the truly optimal MMS
estimates if the filter is chosen as a function of the last estimate
23 and m + 1 last observations.

There are, no doubt, a wide variety of engineering problems
to which the approximate filters are applicable and that could
be worthy of further scrutiny. This is a subject we plan to set
up, with emphasis on performing the approximate filter along
with the truly optimal one, in order to show the main benefits
of the proposed approximate approach.
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