
 

 

 

Abstract—In this paper, we describe how Bayesian inferential 
reasoning will contributes in obtaining a well-satisfied prediction for 
Distributed Constraint Optimization Problems (DCOPs) with 
uncertainties. We also demonstrate how DCOPs could be merged to 
multi-agent knowledge understand and prediction (i.e. Situation 
Awareness). The DCOPs functions were merged with Bayesian 
Belief Network (BBN) in the form of situation, awareness, and utility 
nodes. We describe how the uncertainties can be represented to the 
BBN and make an effective prediction using the expectation-
maximization algorithm or conjugate gradient descent algorithm. The 
idea of variable prediction using Bayesian inference may reduce the 
number of variables in agents’ sampling domain and also allow 
missing variables estimations. Experiment results proved that the 
BBN perform compelling predictions with samples containing 
uncertainties than the perfect samples. That is, Bayesian inference 
can help in handling uncertainties and dynamism of DCOPs, which is 
the current issue in the DCOPs community. We show how Bayesian 
inference could be formalized with Distributed Situation Awareness 
(DSA) using uncertain and missing agents’ data. The whole 
framework was tested on multi-UAV mission for forest fire 
searching. Future work focuses on augmenting existing architecture 
to deal with dynamic DCOPs algorithms and multi-agent information 
merging. 
 

Keywords—DCOP, multi-agent reasoning, Bayesian reasoning, 
swarm intelligence.  

I. INTRODUCTION 

 COPs involve tasking agents to effectively assign 
variables to themselves under constraints in order to 

minimize/maximize costs [1]-[4]. DCOP was applied in 
solving many real-world problems such as the allocation of 
patients to doctors [5], [6], management of sensors to utilize 
their energy [7], multi-agent searching [8], mobile phone 
control [9], etc. Works in the literature focus attention on 
homogeneous agents operating in a static environment [1], 
[10]-[12]. In this paper, we are trying to understand the issues 
concerning formatting DCOP with uncertainties in a highly 
changing environment.  

Uncertainty in data means the lack of assurance in the data 
values which could be solved through prediction and 
estimation of the variables [13], [14]. Agents need to utilize 
the data at hand to make decisions that support collaborative 
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behaviours and productivity maximization [15]-[17]. The 
prediction made has to be good enough to support the 
optimization of the global cost functions and agents' 
collaborative behaviours. We draw an analogy between the 
need to predict future states (based on a history of previous 
states) and the concept of Situation Awareness from human 
factors. This views situation awareness as a process of 
attention management in which the environment is sampled to 
create a ‘model’ of what is happening and why. A variation of 
this concept is DSA of [18], [19] which assumes that the 
model is spread across agents, and can best be thought of as a 
system-level, emergent property of a collection of agents. A 
potential benefit of this approach that DSA can arise with 
minimal communication of agents (which multi-agent system 
could have an energy cost in supporting commons). A 
potential problem could arise from the partial form of views 
held by each agent. To date, the concept of DSA has not been 
formally described. So we use the BBN to characterise DSA 
and relate this to DCOP, its dynamism, and uncertainties.  

Probabilistic inferential reasoning provides a statistical way 
of predicting variables from observed data [20]. The question 
here is: in the multi-agent system, how sure are we that the 
predictions made are right and within target? It makes the 
problem to be questioning the probability of occurrence of the 
predicted probabilities. Bayesian reasoning uses conditional 
probabilities given by (1) [21]: 

 

P(Xi(t)|Y(t)) = 
∗ |

∑ ∗ |
    (1)  

 
where X1(t), X2(t), X3(t), ..., Xn(t) is the set of mutually 
exclusive events at a given time. Therefore from the 
probability of an event occurrence, one can predict other event 
occurrence probabilities (1). The agents’ knowledge can be 
represented using the BBN. BBN is a popular tool for 
modelling variables and their causal relationship [16]. It 
consists of a Directed Acyclic Graph and a conditional 
probability table expressing the causal relationship. The 
directed arrow from the parent node to a child means the 
parent node causes the child node. Fig. 1 describes how 
Bayesian inferential reasoning can be applied to DCOP. 

Fig. 1 describes the merging of DCOP to Bayesian 
inferential reasoning in multi-agent systems. Cost functions of 
DCOP can be mapped to utility nodes of the BBN. The 
situation of the agents can be model as the BBN traditional 
node (nature node), and the awareness can be BBN's decision 
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nodes. Luckily enough, the uncertainties in DCOP (missing 
data or data with doubts) are accepted by BBN and Bayesian 

learning algorithms (expectation-maximization and gradient 
descent algorithm) with promising output. 

 

 

Fig. 1 DCOP and Bayesian Inference Coupling 
 

In this paper, we modelled DCOP in a dynamic and 
uncertain situation using Bayesian inferential reasoning. 
Uncertainties and dynamism in the DCOP are handled by 
Bayesian learning algorithms to make perfect predictions for 
agents' situation-awareness. Therefore we use Bayesian 
inference to formalise multi-agents Situation Awareness in 
DSA and pose that as DCOP. 

II. BACKGROUND 

A. DCOP 

DCOP involves the efficient assignment of variables to 
agents in order to optimize global cost functions. It can be 
described as the tuple S [1], [10]: 

 
S = {A, V, D, C, α}         (2) 

 
where A is the set of agents; V is the set of variables for 
agents; D is the variable domain; C is the set of cost functions 
to be optimized; α is the function for the assignment of 
variables to agents. Based on environmental behaviours, 
DCOP can exist in different forms such as dynamic, multi-
objective, probabilistic DCOPs, etc. [1], [10], [22]. Multi-
objective DCOP optimizes a set of varying cost functions 
while probabilistic DCOP uses probability distributions to 
model environmental changes [1]-[3]. DCOPs have various 
real-world applications such as sensor scheduling [7], UAV 
planning [8], patient scheduling [6], disaster management [1], 
[23], [24], supervision allocation, and so on. While there are 
many algorithms for solving DCOP, ongoing challenges relate 
to solving DCOP in dynamic and uncertain environments [8], 
[10]-[13], [25], [26]. Our work is to understand how the 
introduction of that uncertainty affects the fitting of Bayesian 
inference with DCOP. 

B. Bayesian Inference 

Bayesian inference provides the statistical way of making 
an inference from the available data (prior values) to predict 
future values of related variables. A clear introduction and 

example on Bayesian inference were discussed in Section I 
(Fig. 1). BBN provides a graphical way of modelling nodes 
and their causal relationships [16], [17]. BBN is an acyclic 
graph G(V, E). V={v1,v2,v3,..vn} E = {e1,e2,..,en} V is the 
set of nodes and E are the directed edges in the graph [20], 
[27]. It was applied in modelling uncertainties in many areas 
such as forensic science as mean of making logical decisions 
using the little records at hand [16], human inference grading 
[28], [29], data mining [30], [31], logical reasoning [17], 
multi-agent sensor conflict resolution [32], and DCOP [3]. 
This paper aimed at formatting the Bayesian inferential 
reasoning to handle DCOP’s dynamism and uncertainties in 
multi-agent coordination.  

C. Fitting Bayesian Inference with DCOP 

To extend the application of Bayesian inference to DCOP 
algorithms and DSA, our BBN will consist of three types of 
nodes, i.e., nature (situation), utility, and decision (awareness) 
nodes. Situation nodes (traditional BBN nature nodes) 
represent ordinary variables or agents. Utility nodes describe 
how happy the system is with the predicted value (i.e., costs 
optimization). Decision (awareness) nodes represent the 
choice of our inference (Fig. 1). Let us give a clear example of 
merging DCOP and Bayesian inferential reasoning. Assume a 
team (aerial and ground robots) with different sensor profiles 
and capacity tasked to conduct wildfire search. The agents 
need to monitor their belief in the presence of fire and other 
exogenous variables (wind speed, wind direction, etc.), which 
can be the situation of agents modelled as ordinary nodes. The 
agents' awareness is the decision on such variables, for 
example, to regenerate waypoint for search, to go and 
recharge, etc., which is the decision nodes for the modelled 
BBN. The agents are needed to optimize the mission cost 
(e.g., energy, time, communication link, etc.), which can be 
modelled as the BBN's utility node (how happy the agents are 
with their decision. Fig. 2 describes a sample BBN for the 
agents.  
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Fig. 2 BBN with Utility and Decisions 
 

From Fig. 2, the BBN node labelled “Waypoint generation" 
is an awareness node (decision node), which is to decide that 
the agent needs to regenerate another waypoint after visiting 
the current waypoint. The node labelled "Check for 
Redundancy" is a situation node (nature node) to check the 
current condition of the agents' network, whether there are too 
close (redundant) waypoints or not. If the redundancy exists 
for sure, the agents' team will not be happy with the 
optimization (modelled as the utility node labelled “Utility 
Optimization”) as repeated searching consumes energy, time, 
communications links etc. Each node has a conditional 
probability table (CPT) to be by the agents or experts for 
making future prediction purposes. 

As discussed earlier, DCOP agents have global cost 
functions to be optimized over time. From (2), the cost 
function C can be assigned as the utility node and their 
assignment decision function α is the decision (awareness) 
nodes. Therefore the BBN for DCOP is in the form of the 
acyclic graph. 

 
G(Vs,u,a,E).          For s≠u≠a         (3) 

 
The variables s,u, a correspond to situation, utility, and 

awareness nodes, respectively. In the case of dynamic, multi-
objective, and probabilistic DCOPs, it could be modelled as 
the tuple St. 

 

St =(Rt,Vt,ѱt,𝐶t,ϒt,∆t,ẟt,Pt).                     (4) 
 

where R is the set of agents. Vt = {vt
1,v

t
2, v

t
3, …, vt

n} are the 

set variables for allocation. ѱt is the domain for Vt,. 𝐶t = 
[ct

1,c
t
2,c

t
3,…,ct

n]
T set of conflicting cost functions to minimize 

or maximized at a given time base on the current task (they 
correspond to utility nodes in the BBN). ϒt: Vt\∆t →Rt

i 
function for the variables assignments by considering 
uncertainties (they correspond to the decision nodes). ∆t is a 
set of uncertainties formulated in the BBN. Pt is the 
probability distribution for the uncertainties in the variable 
(i.e., uncertainties in ∆t). Therefore the BBN task is to find the 
solution Фt+1 over time by applying (1) for each agent mission 
data 

 
Фt+1:=argmin/maxФ ,Ф ,Ф ,…,Ф  φ ∑ ∑ τ 𝐶 Ф \∆        (5) 
 
Uncertainties in the agents’ beliefs (data) can be as a result 

of missing data or soft findings [33]. Soft findings are data 
that contain some degree of uncertainties due to unreliability 

of the source or sensor fault. We can present the uncertainty 
degree base on the level of assurance in one of the following 
ways [33]: 
(a) Restricted or unrestricted range: in this approach, we can 

give ranges of DCOP values to the BBN. For example, 
temperature = [250-300], i.e., the value of the temperature 
is between 250-300 or temperature > 300. 

(b) Possibility or impossibility list: Setting a list for the 
possible values or negating the list to show impossibilities 
in these values. For example temperature = {200, 250, 
300}. 

(c) Likelihood: the set of probabilities can be attached to the 
possible variables in restricted or unrestricted form. For 
instance, temperature = {200 .8, 250 .1+-1, 300 .1} 

(d) Complete or incomplete certainty: It happens when the 
BBN has full uncertainty by setting the variable as 
unknown, or it has no doubt on the variable by providing 
its value to the BBN. Figure 3 describes a perfect DCOP 
and Bayesian inference mapping composites mapping.  

As described in Fig. 1, by providing the data to the BBN, 
the network can solve (3) using the conjugate gradient 
algorithm or expectation maximization algorithms [33]. The 
expectation-maximization algorithm provides an optimal 
solution in two steps (i) using (1) to compute the expected 
value of soft findings and missing data (ii) using the feed data 
to maximize the utilities [34], [35]. Conjugate gradient descent 
set an objective function by negating the log-likelihood of the 
network’s prediction and changing its parameters to know the 
way the steepness of the objective function (negated 
likelihood) is changing [21]. The choice of the algorithm 
depends on the resources and type of data at hand. Therefore 
having our dynamic, uncertain, multi-objective, or 
probabilistic DCOP, we can solve it through the use of this 
algorithm. Fig. 3 can be used in fitting any DCOP with 
Bayesian inference. 

Fig. 3 describes the procedure of merging DCOP elements 
to BBN in a multi-agent environment pose as DSA. Agents 
can use the learned BBN in making decisions and utility 
optimization (because the agents can predict the future and 
avoid non-utilities optimization tasks). It can also be used as 
an input to other DCOP algorithms in [1], [2], [4], [10]-[12], 
[24]-[26], [36] as it handles uncertainties, missing data, and 
dynamism.  

III. RELATED WORK 

DCOP is one of the areas that are dragging the attention of 
multi-agent researchers due to its variety of applications. 
Constraint Satisfaction Problem (CSP) is the early multi-agent 
optimization problem. In CSP, agents are limited within 
constraint and task for assigning their variables [1], [37]-[41]. 
Distributed Constraint Satisfaction Problem (DisCSP) allows 
the agents to be independent and act within local capacities 
[39], [42], [43]. CSP and DisCSP aimed at the variable 
assignments under constraint while DCOP is to find the best 
assignment [44]. Different algorithms were developed to solve 
DCOP in dynamic, multi-objective, probabilistic, and classical 
DCOP. The ongoing challenge is formulating DCOP in 
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dynamic and uncertain forms [1], [2], [10]-[12]. 
 

 

Fig. 3 Flowchart for mapping DCOP with Bayesian Reasoning 
 
Reference [44] describes an algorithm for solving DCOP 

based on Distributed Pseudotree Optimization Procedure 
(DPOP). The algorithm arranges the agents in a tree structure; 
children of every node send their utilities for optimization to 
their respective parent. The parents are responsible for optimal 
computing values for their offspring. Reference [3] augmented 
the DPOP algorithm by introducing Bayesian DPOP (B-
DPOP). In B-DPOP, after agents arranged themselves in 
pseudo-tree form, the agents use Bayesian optimization on 
their cost functions before forwarding their updated values to 
their agents. Reference [1] introduces a multi-thread variable 
optimization on DCOP using DPOP. Agents optimize multiple 
variables by applying parallel execution. The algorithms 
improve DCOP performance by allowing agents to handle 
more than one variable at a time 

In the Distributed Breakout Algorithm [45], agents 
exchange costs with neighbouring agents and change their 

values randomly if these fail to meet criteria. Maximum Gain 
Message and Stochastic Coordination Algorithms [25], [26], 
agents start with assigning random variables to themselves and 
informing their neighbours about the costs. Agents with 
efficient cost (i.e., below the fixed threshold) are tasked with 
the optimization of the other agents’ values. In the extension 
algorithms, agents are divided into leaders and followers 
according to the optimality of their values. Reference [16] 
describes a probability adjusting way of making a conclusion 
from the available crime evidence and prioritizing them. The 
priority came from the belief in the data saliency.  

In the above-mentioned kinds of literature, Bayesian 
inferential reasoning provides a suitable way of concluding 
from the little data at hand under severe constraints and 
uncertainty. This paper wants to show how dynamic and 
uncertainties of DCOP will fit inferential reasoning. That is, 
how to extend DCOPs algorithm to handle uncertainties, 
improve agents' situation awareness, and describe a formal 
relationship between DCOP and Bayesian inference.  

IV. EXPERIMENTAL RESULTS 

Considering our BBN in Fig. 2, we generated training data 
using Netica simulation API [33]. We monitor the perfection 
of the prediction of the learning algorithms (expectation-
maximization and gradient descent) with and without 
uncertainties, and also by dividing the number of samples into 
two portions. We then feed these values to conjugate gradient 
descent and the expectation-maximization algorithms. The 
performance of both algorithms seems to be the same. We 
keep multiplying the number of samples. In each sample 
generated, we test 0%, 25%, and 50% (i.e., of the nodes 
contain uncertain data) uncertain samples and monitor the 
prediction error. Figs. 4 and 5 describe the effect of the 
number of data with uncertainties in the sample. 

 

 

Fig. 4 Normal Data Error Rate versus 25% Data Uncertainty 
 

From Figs. 4 and 5, we generated the number of the sample 
from 102, 103, 104, 105, and 106. We made the system to be 
predicting the node “Redundant search occurrence” (from Fig. 
2). The error rate is the perfection of the prediction from 0 to 
1, with 0 is the best [33]. Surprisingly, if the sample contains 
25% uncertain data, the algorithms (both expectation-
maximization and conjugate gradient descent) make good 
predictions than providing with the normal data (i.e., data with 
no uncertain samples) without uncertainty as described in 
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Figs. 4 and 5. However, if the whole entry of a state contains a 
full uncertain sample, the prediction generates a high 
prediction error. Therefore the algorithms work perfectly by 
mixing the uncertainties in the DCOP data; that is, it has to be 
spread across the nodes' entries. The outcome of the training 
algorithms is a learned network (of Fig. 2) that can be used by 
the agents for prediction of event occurrence and utility 
optimization. Therefore in a multi-agent mission modelled as 
DCOP, the agents will be using the learned network to be 
predicting the outcome of their future action’s outcomes on 
their utility optimization. When the environment is changing 
so frequently, the learning process needs to prioritise recent 
cases over old cases. 

 

 

Fig. 5 Normal Data Error Rate versus 50% Data Uncertainty 

V. CONCLUSION 

We describe how Bayesian inferential reasoning could be 
applied in the DCOP problem with uncertainties. The BBN 
merges the respective DCOP entries to its decision 
(awareness), utility, and situation (traditional BBN nature) 
nodes and applies gradient descent or expectation-
maximization algorithm in making optimal predictions by 
considering the uncertainties of the data. We set a simulation 
experiment on Netica and generate random test cases in order 
to test the prediction perfection. Amazingly, experiment 
results show that optimal predictions were possible in the 
presence of uncertainty in data than without uncertainties in 
both algorithms (gradient descent and expectation-
maximization). Results show that, for optimal results, the 
uncertainties have to spread across both BBN nodes options. 
Therefore, we argue that Bayesian inferential reasoning can be 
extended to DCOP and multi-agent situation-awareness with 
uncertainties. We also claim that Bayesian inferential 
reasoning performs better predictions with the uncertain data 
because it gives the learning algorithms a wider range for 
prediction, than with perfect samples (i.e. samples with certain 
data). Thus, Bayesian inferential reasoning can solve the 
uncertainties in DCOP and formalise DSA The output of the 
learned network can also be used for multi-agents’ future 
situation-awareness predictions and utility optimizations. This 
is a continuation of our work in [13] by introducing priority 
based Bayesian learning and more formal coupling between 
Situation Awareness, DCOP, and Bayesian reasoning and 
learning. 
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