**Commenced**in January 2007

**Frequency:**Monthly

**Edition:**International

**Paper Count:**31584

##### Approximation Approach to Linear Filtering Problem with Correlated Noise

**Authors:**
Hong Son Hoang,
Remy Baraille

**Abstract:**

**Keywords:**
Linear dynamical system,
filtering,
minimum meansquare filter,
correlated noise

**Digital Object Identifier (DOI):**
doi.org/10.5281/zenodo.1062610

**References:**

[1] Albert A. (1972) Regression and Moore-Penrose Pseudoinverse. Academic Press, NY- London.

[2] Santamaria - G'omez A., Bouin M., Collilieux X. and Woppelmann G. (2011) Correlated errors in GPS position time series: Implications for velocity estimates. J. Geophys. Research, V. 116, B01405, doi:10.1029/2010JB007701.

[3] Bucy R.S. and Joseph D.P. (1968) Filtering for Stochastic Processes, with Applications to Guidance. Wiley, New York.

[4] Daley R. (1992) The effect of serially correlated observation and model error on atmospheric data assimilation. Monthly Weather Review, 120, pp. 165-177

[5] Damera-Venkata N. and Evans B.L. (2001) Design and Analysis of Vector Color Error Diffusion Halftoning Systems. IEEE Trans. Image Proc., V. 10, October , pp. 1552-1565.

[6] Gevers M. and Kailath T. (1973) An Innovations Approach to Least- Squares Estimation, Pt. VI: Discrete-Time Innovations Representations and Recursive Estimation, IEEE Trans. Automatic Control, 18(6), pp. 588-600, December.

[7] Golub G.H. and Van Loan C.F. (1996) Matrix Computations, Johns Hopkins Univ. Press, 1996.

[8] Hoang H.S., Nguyen T.L., Baraille R. and Talagrand O. (1997) Approximation approach for nonlinear filtering problem with time dependent noises: Part I: Conditionally optimal filter in the minimum mean square sense. J. "Kybernetika", Vol. 33, No 4, pp. 409-425.

[9] Hoang H.S., Baraille R., Talagrand O. and De Mey P. (2001) Approximate Bayesian Approach to Non-Gaussian Estimation in a Linear Model with Dependent State and Noise vectors. Applied Math. and Optim., 43, pp. 203-220.

[10] Maybeck P.S. (1979) Stochastic Models, Estimation, and Control. Vol. 1, Publisher: Academic Press.

[11] Morf M. and Kailath T. (1977) Recent results in least-squares estimation theory. In Annals of Economic and Social Measurement, V. 6, N. 3, pp. 19-32.

[12] Nguyen T.L. and Hoang H.S. (1982) On optimal filtering with correlated noises and singular correlation matrices. Automat. Remote Contr., 43(5), pp. 660-669.

[13] Popescu D.C.and Zeljkovic I. (1998). Kalman Filtering of Colored Noise for Speech Enhancement, Proc. IEEE ICASSP-98, V.2, pp. 997-1000, Seattle, USA, May.

[14] Wendel J. and Trommer G. F. (2004). An Efficient Method for Considering Time Correlated Noise in GPS/INS Integration. Proc. of the 2004 National Technical Meeting of The Institute of Navigation, San Diego, CA, January, pp. 903-911.