Search results for: unit task.
1017 Determining the Minimum Threshold for the Functional Relatedness of Inner-Outer Class
Authors: Sim Hui Tee, Rodziah Atan, Abdul Azim Abd Ghani
Abstract:
Inner class is a specialized class that defined within a regular outer class. It is used in some programming languages such as Java to carry out the task which is related to its outer class. The functional relatedness between inner class and outer class is always the main concern of defining an inner class. However, excessive use of inner class could sabotage the class cohesiveness. In addition, excessive inner class leads to the difficulty of software maintenance and comprehension. Our research aims at determining the minimum threshold for the functional relatedness of inner-outer class. Such minimum threshold is a guideline for removing or relocating the excessive inner class. Our research provides a feasible way for software developers to define inner classes which are functionally related to the outer class.Keywords: Cohesion, functional relatedness of inner-outer class, inner class.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 15871016 On-Road Text Detection Platform for Driver Assistance Systems
Authors: Guezouli Larbi, Belkacem Soundes
Abstract:
The automation of the text detection process can help the human in his driving task. Its application can be very useful to help drivers to have more information about their environment by facilitating the reading of road signs such as directional signs, events, stores, etc. In this paper, a system consisting of two stages has been proposed. In the first one, we used pseudo-Zernike moments to pinpoint areas of the image that may contain text. The architecture of this part is based on three main steps, region of interest (ROI) detection, text localization, and non-text region filtering. Then, in the second step, we present a convolutional neural network architecture (On-Road Text Detection Network - ORTDN) which is considered as a classification phase. The results show that the proposed framework achieved ≈ 35 fps and an mAP of ≈ 90%, thus a low computational time with competitive accuracy.
Keywords: Text detection, CNN, PZM, deep learning.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1631015 Proposition of a Knowledge Management Approach Based on the Cloud Computing
Authors: Imane Chikhi, Hafida Abed
Abstract:
The significant growth in the use of technologies in all life domains created numerous hurdles that derailed many knowledge management projects. Cloud computing choices are commencement to untangle these obstacles. Linking Cloud computing with knowledge management (KM) is a challenging task. Small amount of researches have been done regarding cloud computing and KM. In this paper, we consider Cloud-based KM as a new KM approach, and study the contribution of Cloud Computing to organizational KM. In fact, KM and cloud computing have many things in common, this similarity allows deriving very interesting features. Our approach is based on these features and focuses on the advantages of Cloud computing in the context of organizational KM. Finally, we highlight some challenges that have to be addressed when adopting a Cloud Computing approach to KM.
Keywords: Knowledge management, cloud computing, knowledge management approaches, cloud-based knowledge management.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 14251014 Using Services Oriented Architecture to Improve Efficient Web-Services for Postgraduate Students
Authors: Ehab N. Alkhanak, Salimah Mokhtar
Abstract:
The main aim of this paper is to present the research findings on the solution of centralized Web-Services for students by adopting a framework and a prototype for Service Oriented Architecture (SOA) Web-Services. The current situation of students- Web-based application services has been identified and proposed an effective SOA to increase the operational efficiency of Web-Services for them it was necessary to identify the challenges in delivering a SOA technology to increase operational efficiency of Web-Services. Moreover, the SOA is an emerging concept, used for delivering efficient student SOA Web-Services. Therefore, service reusability from SOA Web-Services is provided and logically divided services into smaller services to increase reusability and modularity. In this case each service is a modular unit by itself and interoperability services.Keywords: Services Oriented Architecture (SOA), Web-based Application services, and Web-Services.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 12731013 A Bi-Objective Model to Address Simultaneous Formulation of Project Scheduling and Material Ordering
Authors: Babak H. Tabrizi, Seyed Farid Ghaderi
Abstract:
Concurrent planning of project scheduling and material ordering has been increasingly addressed within last decades as an approach to improve the project execution costs. Therefore, we have taken the problem into consideration in this paper, aiming to maximize schedules quality robustness, in addition to minimize the relevant costs. In this regard, a bi-objective mathematical model is developed to formulate the problem. Moreover, it is possible to utilize the all-unit discount for materials purchasing. The problem is then solved by the E-constraint method, and the Pareto front is obtained for a variety of robustness values. The applicability and efficiency of the proposed model is tested by different numerical instances, finally.Keywords: E-constraint method, material ordering, project management, project scheduling.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 20151012 Design and Fabrication of a Low Cost Heart Monitor using Reflectance Photoplethysmogram
Authors: Nur Ilyani Ramli, Mansour Youseffi, Peter Widdop
Abstract:
This paper presents a low cost design of heart beat monitoring device using reflectance mode PhotoPlethysmography (PPG). PPG is known for its simple construction, ease of use and cost effectiveness and can provide information about the changes in cardiac activity as well as aid in earlier non-invasive diagnostics. The proposed device is divided into three phases. First is the detection of pulses through the fingertip. The signal is then passed to the signal processing unit for the purpose of amplification, filtering and digitizing. Finally the heart rate is calculated and displayed on the computer using parallel port interface. The paper is concluded with prototyping of the device followed by verification procedure of the heartbeat signal obtained in laboratory setting.
Keywords: Reflectance mode PPG, Heart beat detection, Circuitdesign, PCB design
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 45621011 Steady State Simulation and Experimental Study of an Ethane Recovery Unit in an Iranian Natural Gas Refinery
Authors: Arash Esmaeili, Omid Ghabouli
Abstract:
The production and consumption of natural gas is on the rise throughout the world as a result of its wide availability, ease of transportation, use and clean-burning characteristics. The chief use of ethane is in the chemical industry in the production of Ethene (ethylene) by steam cracking. In this simulation, obtained ethane recovery percent based on Gas sub-cooled process (GSP) is 99.9 by mole that is included 32.1% by using de-methanizer column and 67.8% by de-ethanizer tower. The outstanding feature of this process is the novel split-vapor concept that employs to generate reflux for de-methanizer column. Remain amount of ethane in export gas cause rise in gross heating value up to 36.66 MJ/Nm3 in order to use in industrial and household consumptions.Keywords: Ethane recovery, Hydrocarbon dew point, Simulation, Water dew point
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 30531010 The Surface Adsorption of Nano-pore Template
Authors: M. J. Kao, S.F. Chang, C.C. Chen, C.G. Kuo
Abstract:
This paper aims to fabricated high quality anodic aluminum oxide (AAO) film by anodization method. AAO pore size, pore density, and film thickness can be controlled in 10~500 nm, 108~1011 pore.cm-2, and 1~100 μm. AAO volume and surface area can be computed based on structural parameters such as thickness, pore size, pore density, and sample size. Base on the thetorical calculation, AAO has 100 μm thickness with 15 nm, 60 nm, and 500 nm pore diameters AAO surface areas are 1225.2 cm2, 3204.4 cm2, and 549.7 cm2, respectively. The large unit surface area which is useful for adsorption application. When AAO adsorbed pH indictor of bromphenol blue presented a sensitive pH detection of solution change. This testing method can further be used for the precise measurement of biotechnology, convenience measurement of industrial engineering.Keywords: AAO, Pore, Surface area, Adsorption, Indicator
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 21341009 Control-flow Complexity Measurement of Processes and Weyuker's Properties
Authors: Jorge Cardoso
Abstract:
Process measurement is the task of empirically and objectively assigning numbers to the properties of business processes in such a way as to describe them. Desirable attributes to study and measure include complexity, cost, maintainability, and reliability. In our work we will focus on investigating process complexity. We define process complexity as the degree to which a business process is difficult to analyze, understand or explain. One way to analyze a process- complexity is to use a process control-flow complexity measure. In this paper, an attempt has been made to evaluate the control-flow complexity measure in terms of Weyuker-s properties. Weyuker-s properties must be satisfied by any complexity measure to qualify as a good and comprehensive one.
Keywords: Business process measurement, workflow, complexity.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 26961008 Crude Oil Price Prediction Using LSTM Networks
Authors: Varun Gupta, Ankit Pandey
Abstract:
Crude oil market is an immensely complex and dynamic environment and thus the task of predicting changes in such an environment becomes challenging with regards to its accuracy. A number of approaches have been adopted to take on that challenge and machine learning has been at the core in many of them. There are plenty of examples of algorithms based on machine learning yielding satisfactory results for such type of prediction. In this paper, we have tried to predict crude oil prices using Long Short-Term Memory (LSTM) based recurrent neural networks. We have tried to experiment with different types of models using different epochs, lookbacks and other tuning methods. The results obtained are promising and presented a reasonably accurate prediction for the price of crude oil in near future.
Keywords: Crude oil price prediction, deep learning, LSTM, recurrent neural networks.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 37121007 Bio-Electrochemical Process Coupled with MnO2 Nanowires for Wastewater Treatment
Authors: A. Giwa, S. M. Jung, W. Fang, J. Kong, S. W. Hasan
Abstract:
MnO2 nanowires were developed as filtration media for wastewater treatment that uniquely combines several advantages. The resulting material demonstrated strong capability to remove the pollution of heavy metal ions and organic contents in water. In addition, the manufacture process of such material is practical and economical. In this work, MnO2 nanowires were integrated with the state-of-art bio-electrochemical system for wastewater treatment, to overcome problems currently encountered with organic, inorganic, heavy metal, and microbe removal, and to minimize the unit footprint (land/space occupation) at low cost. Results showed that coupling the bio-electrochemical with MnO2 resulted in very encouraging results with higher removal efficiencies of such pollutants.
Keywords: Bio-electrochemical, nanowires, wastewater, treatment.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 12721006 Efficiency of Different GLR Test-statistics for Spatial Signal Detection
Authors: Olesya Bolkhovskaya, Alexander Maltsev
Abstract:
In this work the characteristics of spatial signal detec¬tion from an antenna array in various sample cases are investigated. Cases for a various number of available prior information about the received signal and the background noise are considered. The spatial difference between a signal and noise is only used. The performance characteristics and detecting curves are presented. All test-statistics are obtained on the basis of the generalized likelihood ratio (GLR). The received results are correct for a short and long sample.
Keywords: GLR test-statistic, detection task, generalized likelihood ratio, antenna array, detection curves, performance characteristics.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 15181005 Double Clustering as an Unsupervised Approach for Order Picking of Distributed Warehouses
Authors: Hsin-Yi Huang, Ming-Sheng Liu, Jiun-Yan Shiau
Abstract:
Planning the order picking lists for warehouses to achieve some operational performances is a significant challenge when the costs associated with logistics are relatively high, and it is especially important in e-commerce era. Nowadays, many order planning techniques employ supervised machine learning algorithms. However, to define features for supervised machine learning algorithms is not a simple task. Against this background, we consider whether unsupervised algorithms can enhance the planning of order-picking lists. A double zone picking approach, which is based on using clustering algorithms twice, is developed. A simplified example is given to demonstrate the merit of our approach.
Keywords: order picking, warehouse, clustering, unsupervised learning
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 5201004 A Self Configuring System for Object Recognition in Color Images
Authors: Michela Lecca
Abstract:
System MEMORI automatically detects and recognizes rotated and/or rescaled versions of the objects of a database within digital color images with cluttered background. This task is accomplished by means of a region grouping algorithm guided by heuristic rules, whose parameters concern some geometrical properties and the recognition score of the database objects. This paper focuses on the strategies implemented in MEMORI for the estimation of the heuristic rule parameters. This estimation, being automatic, makes the system a highly user-friendly tool.
Keywords: Automatic object recognition, clustering, content based image retrieval system, image segmentation, region adjacency graph, region grouping.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 14081003 Improving the Quality of Transport Management Services with Fuzzy Signatures
Authors: Csaba I. Hencz, István Á. Harmati
Abstract:
Nowadays the significance of road transport is gradually increasing. All transport companies are working in the same external environment where the speed of transport is defined by traffic rules. The main objective is to accelerate the speed of service and it is only dependent on the individual abilities of the managing members. These operational control units make decisions quickly (in a typically experiential and/or intuitive way). For this reason, support for these decisions is an important task. Our goal is to create a decision support model based on fuzzy signatures that can assist the work of operational management automatically. If the model sets parameters properly, the management of transport could be more economical and efficient.
Keywords: Freight transport, decision support, information handling, fuzzy methods.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 8161002 Acquiring Contour Following Behaviour in Robotics through Q-Learning and Image-based States
Authors: Carlos V. Regueiro, Jose E. Domenech, Roberto Iglesias, Jose L. Correa
Abstract:
In this work a visual and reactive contour following behaviour is learned by reinforcement. With artificial vision the environment is perceived in 3D, and it is possible to avoid obstacles that are invisible to other sensors that are more common in mobile robotics. Reinforcement learning reduces the need for intervention in behaviour design, and simplifies its adjustment to the environment, the robot and the task. In order to facilitate its generalisation to other behaviours and to reduce the role of the designer, we propose a regular image-based codification of states. Even though this is much more difficult, our implementation converges and is robust. Results are presented with a Pioneer 2 AT on a Gazebo 3D simulator.Keywords: Image-based State Codification, Mobile Robotics, ReinforcementLearning, Visual Behaviour.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 16051001 Automatic Recognition of an Unknown and Time-Varying Number of Simultaneous Environmental Sound Sources
Authors: S. Ntalampiras, I. Potamitis, N. Fakotakis, S. Kouzoupis
Abstract:
The present work faces the problem of automatic enumeration and recognition of an unknown and time-varying number of environmental sound sources while using a single microphone. The assumption that is made is that the sound recorded is a realization of sound sources belonging to a group of audio classes which is known a-priori. We describe two variations of the same principle which is to calculate the distance between the current unknown audio frame and all possible combinations of the classes that are assumed to span the soundscene. We concentrate on categorizing environmental sound sources, such as birds, insects etc. in the task of monitoring the biodiversity of a specific habitat.
Keywords: automatic recognition of multiple sound sources, enumeration of sound sources, computational ecology.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 15581000 On Decomposition of Maximal Prefix Codes
Authors: Nikolai Krainiukov, Boris Melnikov
Abstract:
We study the properties of maximal prefix codes. The codes have many applications in computer science, theory of formal languages, data processing and data classification. Our approaches to study use finite state automata (so-called flower automata) for the representation of prefix codes. An important task is the decomposition of prefix codes into prime prefix codes (factors). We discuss properties of such prefix code decompositions. A linear time algorithm is designed to find the prime decomposition. We used the GAP computer algebra system, which allows us to perform algebraic operations for free semigroups, monoids and automata.
Keywords: Maximal prefix code, regular languages, flower automata, prefix code decomposing.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 70999 Performance Comparison of Real Time EDAC Systems for Applications On-Board Small Satellites
Authors: Y. Bentoutou
Abstract:
On-board Error Detection and Correction (EDAC) devices aim to secure data transmitted between the central processing unit (CPU) of a satellite onboard computer and its local memory. This paper presents a comparison of the performance of four low complexity EDAC techniques for application in Random Access Memories (RAMs) on-board small satellites. The performance of a newly proposed EDAC architecture is measured and compared with three different EDAC strategies, using the same FPGA technology. A statistical analysis of single-event upset (SEU) and multiple-bit upset (MBU) activity in commercial memories onboard Alsat-1 is given for a period of 8 yearsKeywords: Error Detection and Correction; On-board computer; small satellite missions
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2262998 ECG Analysis using Nature Inspired Algorithm
Authors: A.Sankara Subramanian, G.Gurusamy, G.Selvakumar, P.Gnanasekar, A.Nagappan
Abstract:
This paper presents an algorithm based on the wavelet decomposition, for feature extraction from the ECG signal and recognition of three types of Ventricular Arrhythmias using neural networks. A set of Discrete Wavelet Transform (DWT) coefficients, which contain the maximum information about the arrhythmias, is selected from the wavelet decomposition. After that a novel clustering algorithm based on nature inspired algorithm (Ant Colony Optimization) is developed for classifying arrhythmia types. The algorithm is applied on the ECG registrations from the MIT-BIH arrhythmia and malignant ventricular arrhythmia databases. We applied Daubechies 4 wavelet in our algorithm. The wavelet decomposition enabled us to perform the task efficiently and produced reliable results.Keywords: Daubechies 4 Wavelet, ECG, Nature inspired algorithm, Ventricular Arrhythmias, Wavelet Decomposition.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2309997 Genetic-Fuzzy Inverse Controller for a Robot Arm Suitable for On Line Applications
Authors: Abduladheem A. Ali, Easa A. Abd
Abstract:
The robot is a repeated task plant. The control of such a plant under parameter variations and load disturbances is one of the important problems. The aim of this work is to design Geno-Fuzzy controller suitable for online applications to control single link rigid robot arm plant. The genetic-fuzzy online controller (indirect controller) has two genetic-fuzzy blocks, the first as controller, the second as identifier. The identification method is based on inverse identification technique. The proposed controller it tested in normal and load disturbance conditions.Keywords: Fuzzy network, genetic algorithm, robot control, online genetic control, parameter identification.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1459996 Performance Evaluation of Content Based Image Retrieval Using Indexed Views
Authors: Tahir Iqbal, Mumtaz Ali, Syed Wajahat Kareem, Muhammad Harris
Abstract:
Digital information is expanding in exponential order in our life. Information that is residing online and offline are stored in huge repositories relating to every aspect of our lives. Getting the required information is a task of retrieval systems. Content based image retrieval (CBIR) is a retrieval system that retrieves the required information from repositories on the basis of the contents of the image. Time is a critical factor in retrieval system and using indexed views with CBIR system improves the time efficiency of retrieved results.
Keywords: Content based image retrieval (CBIR), Indexed view, Color, Image retrieval, Cross correlation.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1856995 Low-Cost and Highly Accurate Motion Models for Three-Dimensional Local Landmark-based Autonomous Navigation
Authors: Gheorghe Galben, Daniel N. Aloi
Abstract:
Recently, the Spherical Motion Models (SMM-s) have been introduced [1]. These new models have been developed for 3D local landmark-base Autonomous Navigation (AN). This paper is revealing new arguments and experimental results to support the SMM-s characteristics. The accuracy and the robustness in performing a specific task are the main concerns of the new investigations. To analyze their performances of the SMM-s, the most powerful tools of estimation theory, the extended Kalman filter (EKF) and unscented Kalman filter (UKF), which give the best estimations in noisy environments, have been employed. The Monte Carlo validation implementations used to test the stability and robustness of the models have been employed as well.
Keywords: Autonomous navigation, extended kalman filter, unscented kalman filter, localization algorithms.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1311994 Process Modeling of Electric Discharge Machining of Inconel 825 Using Artificial Neural Network
Authors: Himanshu Payal, Sachin Maheshwari, Pushpendra S. Bharti
Abstract:
Electrical discharge machining (EDM), a non-conventional machining process, finds wide applications for shaping difficult-to-cut alloys. Process modeling of EDM is required to exploit the process to the fullest. Process modeling of EDM is a challenging task owing to involvement of so many electrical and non-electrical parameters. This work is an attempt to model the EDM process using artificial neural network (ANN). Experiments were carried out on die-sinking EDM taking Inconel 825 as work material. ANN modeling has been performed using experimental data. The prediction ability of trained network has been verified experimentally. Results indicate that ANN can predict the values of performance measures of EDM satisfactorily.Keywords: Artificial neural network, EDM, metal removal rate, modeling, surface roughness.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1169993 Innovation in Business
Authors: Noemy Witt Ferreira, Flávio de São Paulo Filho
Abstract:
Innovation, technology and knowledge are the trilogy of impact to support the challenges arising from uncertainty. Evidence showed an opportunity to ask how to manage in this environment under constant innovation. In an attempt to get a response from the field of Management Sciences, based in the Contingency Theory, a research was conducted, with phenomenological and descriptive approaches, using the Case Study Method and the usual procedures for this task involving a focus group composed of managers and employees working in the pharmaceutical field. The problem situation was raised; the state of the art was interpreted and dissected the facts. In this tasks were involved four establishments. The result indicates that these focused ventures have been managed by its founder empirically and is experimenting agility described in this work. The expectation of this study is to improve concepts for stakeholders on creativity in business.Keywords: Administration. Innovation. Knowledge, Management Technology
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2032992 Parallel 2-Opt Local Search on GPU
Authors: Wen-Bao Qiao, Jean-Charles Créput
Abstract:
To accelerate the solution for large scale traveling salesman problems (TSP), a parallel 2-opt local search algorithm with simple implementation based on Graphics Processing Unit (GPU) is presented and tested in this paper. The parallel scheme is based on technique of data decomposition by dynamically assigning multiple K processors on the integral tour to treat K edges’ 2-opt local optimization simultaneously on independent sub-tours, where K can be user-defined or have a function relationship with input size N. We implement this algorithm with doubly linked list on GPU. The implementation only requires O(N) memory. We compare this parallel 2-opt local optimization against sequential exhaustive 2-opt search along integral tour on TSP instances from TSPLIB with more than 10000 cities.Keywords: Doubly linked list, parallel 2-opt, tour division, GPU.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1223991 Aerodynamic Analysis of a Frontal Deflector for Vehicles
Authors: C. Malça, N. Alves, A. Mateus
Abstract:
This work was one of the tasks of the Manufacturing2Client project, whose objective was to develop a frontal deflector to be commercialized in the automotive industry, using new project and manufacturing methods. In this task, in particular, it was proposed to develop the ability to predict computationally the aerodynamic influence of flow in vehicles, in an effort to reduce fuel consumption in vehicles from class 3 to 8. With this aim, two deflector models were developed and their aerodynamic performance analyzed. The aerodynamic study was done using the Computational Fluid Dynamics (CFD) software Ansys CFX and allowed the calculation of the drag coefficient caused by the vehicle motion for the different configurations considered. Moreover, the reduction of diesel consumption and carbon dioxide (CO2) emissions associated with the optimized deflector geometry could be assessed.
Keywords: Aerodynamic analysis, CFD, CO2 emissions, Drag coefficient, Frontal deflector, Fuel consumption.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2669990 Efficient Power-Delay Product Modulo 2n+1 Adder Design
Authors: Yavar Safaei Mehrabani, Mehdi Hosseinzadeh
Abstract:
As embedded and portable systems were emerged power consumption of circuits had been major challenge. On the other hand latency as determines frequency of circuits is also vital task. Therefore, trade off between both of them will be desirable. Modulo 2n+1 adders are important part of the residue number system (RNS) based arithmetic units with the interesting moduli set (2n-1,2n, 2n+1). In this manuscript we have introduced novel binary representation to the design of modulo 2n+1 adder. VLSI realization of proposed architecture under 180 nm full static CMOS technology reveals its superiority in terms of area, power consumption and power-delay product (PDP) against several peer existing structures.
Keywords: Computer arithmetic, modulo 2n+1 adders, Residue Number System (RNS), VLSI.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1801989 Experimental Verification of the Relationship between Physiological Indexes and the Presence or Absence of an Operation during E-learning
Authors: Masaki Omata, Shumma Hosokawa
Abstract:
An experiment to verify the relationships between physiological indexes of an e-learner and the presence or absence of an operation during e-learning is described. Electroencephalogram (EEG), hemoencephalography (HEG), skin conductance (SC), and blood volume pulse (BVP) values were measured while participants performed experimental learning tasks. The results show that there are significant differences between the SC values when reading with clicking on learning materials and the SC values when reading without clicking, and between the HEG ratio when reading (with and without clicking) and the HEG ratio when resting for four of five participants. We conclude that the SC signals can be used to estimate whether or not a learner is performing an active task and that the HEG ratios can be used to estimate whether a learner is learning.
Keywords: E-learning, physiological index, physiological signal, state of learning.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1514988 Adaptive Notch Filter for Harmonic Current Mitigation
Authors: T. Messikh, S. Mekhilef, N. A. Rahim
Abstract:
This paper presents an effective technique for harmonic current mitigation using an adaptive notch filter (ANF) to estimate current harmonics. The proposed filter consists of multiple units of ANF connected in parallel structure; each unit is governed by two ordinary differential equations. The frequency estimation is carried out based on the output of these units. The simulation and experimental results show the ability of the proposed tracking scheme to accurately estimate harmonics. The proposed filter was implemented digitally in TMS320F2808 and used in the control of hybrid active power filter (HAPF). The theoretical expectations are verified and demonstrated experimentally.
Keywords: Adaptive notch filter, Active power filter, harmonic filtering, Time varying frequency.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 3053