
 

 

 
Abstract—In the present world, predicting rainfall is considered 

to be an essential and also a challenging task. Normally, the climate 
and rainfall are presumed to have non-linear as well as intricate 
phenomena. For predicting accurate rainfall, we necessitate advanced 
computer modeling and simulation. When there is an enhanced 
understanding of the spatial and temporal distribution of precipitation 
then it becomes enrichment to applications such as hydrologic, 
climatic and ecological. Conversely, there may be some kind of 
challenges occur in the community due to some application which 
results in the absence of consistent precipitation observation in 
remote and also emerging region. This survey paper provides a 
multifarious collection of methodologies which are epitomized by 
various researchers for predicting the rainfall. It also gives 
information about some technique to forecast rainfall, which is 
appropriate to all methods like numerical, traditional and statistical. 
 

Keywords—Satellite Image, Segmentation, Feature Extraction, 
Classification, Clustering, Precipitation Estimation. 

I. INTRODUCTION 

AINFALL carries the supreme vital role in the matter of 
human life in entire manners of weather conditions. For 

human cultivation the influence of rainfall is very massive. 
Rainfall is considered to be one of the most natural climatic 
wonders whose prediction is arduous and challenging. The 
exact information about to bring rainfall plays a main role in 
the development and management of water assets and 
similarly important for prevention from reservoir maneuver 
and floods. In the metropolitan areas, rainfall has a durable 
impact on traffic, sewer systems and also some more human 
undertakings. On the other hand, the hydrology cycle of 
rainfall is one of the most composite and problematic elements 
to recognize and to model. This is due to the complexity of the 
atmospheric processes which create rainfall and the significant 
range of variation over a wide range of scales mutually in time 
and space. In recent epochs, predicting the accurate rainfall 
seems to be extreme challenges in operational hydrology. 
Rainfall predicting is closely associated with the agricultural 
region, whereas in their term rainfall means crops and crops 
means life. Agriculture plays an important role to enhance the 
economy of the nation. By using diverse methods; the huge 
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scale of efforts has been undertaken by various researchers 
and scientist for predicting the rainfall accurately and 
effectively over the universe. However the accurate rainfall 
prediction estimated by several techniques was not fully 
satisfied still now because the rainfall has nonlinear nature [1]. 
For the past era, there are many satellite sensor technology has 
simplified for the growth of innovative methods to global 
precipitation observations. In recent times various satellite-
based precipitation algorithms have been established which 
produce precipitation products involving of higher spatial and 
temporal resolution that is useful for hydrologic researches 
and water resources applications [2]. 

II. DIFFERENT SATELLITE PREDICTION TECHNIQUES 

A. Precipitation Estimation from Remotely Sensed 
Information Using Neural Networks (PERSIANN) 

An automated system for Precipitation Estimation from 
Remotely Sensed Information using Artificial Neural 
Networks, the PERSIANN [3] has been established. This is 
mainly constructed for estimating the rainfall from 
geosynchronous satellite longwave infrared imagery. The 
Tropical Rainfall Measurement Mission (TRMM) data are 
responsible for large-scale estimates of tropical rainfall over 
the long term. The estimation of surface rainfall can be 
reported by several algorithms which use geostationary 
longwave infrared channel images (e.g., [4], [5]). The realistic 
high spatial and temporal resolution (~4 4 Km  every 30 
min) can be undertaken by the measurements with wide 
coverage of the land turned over by the geosynchronous 
satellites which is taken to be the strong point of this overture. 
On behalf of monitoring the spatial and temporal development 
of clouds these measurements can be utilized, the 
measurements of cloud-top brightness temperatures are 
offered by the longwave infrared (IR) channels that they do 
not supply enough information to meet the real volume of rain 
occurring at the soil surface. Depend upon the multispectral 
microwave measurements made by polar-orbiting satellites 
several algorithms have been made to calculate approximately 
rainfall. The multispectral microwave sensors have the ability 
to penetrate into the clouds and therefore within the 
hydrometeor column the measured brightness temperature 
depends on the emission, absorption process. The building of 
the hydrometeor column can be obtained by using radiative 
transfer models of the emission-absorption process and rapid 
rain rates can be estimated by physically based algorithms. 
Shortly from both geosynchronous and polar-orbiting 
satellites, the study has been undertaken for the development 
of methods which abuse the assets of a variety of sensors. 
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Here one of the standard TRMM products such as adjusted 
geosynchronous precipitation index (GPI) method (AGPI) [6] 
are used for calculating a ratio of the coincident rapid 
microwave and geosynchronous infrared rainfall that can be 
estimated for a one-month period [7]. Depend on this ratio the 
adjustments for the estimation of monthly geosynchronous 
infrared rainfall is made. Though the infrared temperature 
threshold is used to define the cold clouds remain fixed at 
235K, the rain rate is adjusted for the “cold” clouds in AGPI 
process. 

The fundamental algorithm of the PERSIANN system 
depends upon the neural network and when it becomes 
available it can be certainly modified to integrate the 
appropriate information. When autonomous estimates of 
rainfall are available, an adaptive training feature allows for 
hasty updating of the network parameters. Depend upon the 
geostationary infrared imagery the original system [8] was 
constructed and later they consist of both infrared and daytime 
visible imagery [9]. In various hydrologic and meteorological 
applications the artificial neural network models are beneficial 
and effective. The system functions in two modes such as 
simulation and update. In the simulation mode, from the 
geostationary satellites infrared images using the previously 
calibrated neural network mapping function, the surface rain 
rate at the 0.25°  0.25°resolution is predicted for every 30 
minutes. In the update mode, TMI immediate rainfall estimate 
is available at the simulation error at any pixel which is useful 
for adjusting the parameters of the associated mapping 
function. Subsequently, the regular rainfall rate output is 
generated by the simulation node and the quality of the 
product is enhanced by the update mode. Obviously, the 
correctness of the ultimate product depend on the efficiency of 
the input feature detection and classification scheme, the 
correctness of the individual input-output mapping functions, 
then finally the correctness and the frequency of the TMI 
rainfall estimate used for updating. 

B. Precipitation Estimation from Remotely Sensed 
Information Using Neural Networks Cloud Classification 
Systems (PERSIANN CSS) 

The PERSIANN cloud classification is an algorithm used 
for satellite-based rainfall estimation [10]. This algorithm is 
mainly used for extracting local and regional cloud features 
from infrared geostationary satellite imagery for estimating 
fine scale rainfall distribution. The fundamental process of this 
algorithm is to get the satellite cloud images can be separated 
into cloud patches. From those cloud patches from those cloud 
patches the feature extraction can be performed. Then cloud 
patches can be clustered into well-organized subgroups. 
Finally the temperature and rainfall relationship can be 
determined. For evaluating the PERSIANN CSS rainfall 
estimation at a range of temporal and spatial scales, the radar 
and gauge rainfall measurements were used. 

1) Segmentation of Satellite Infrared Cloud Images 

Newly proposed approach known as the incremental 
temperature threshold (ITT) and it succeeds segmentation by 

steadily increasing the temperatures of the threshold. 
Therefore the algorithm is used to place the first set of seeds 
and also locates the local minimum temperature . Until the 
border of other seeded regions or cloud-free regions are 
reached the threshold temperature is increased and from the 
seeded points it extends to the neighboring areas. 

2) Extraction of Cloud-Patch Features 

Entirely established convective clouds have different tight 
temperature gradients, higher local pixel temperature 
variations and overshooting tops. Stratiform clouds 
demonstrate more steady temperature gradients and lower 
temperature variations. Among several cloud categories such 
as coldness, geometry, and texture, the three kinds are used to 
differentiate. Between the selected cloud-patch features and 
the amounts of patch rainfall, there must be a possible 
interrelationship. 

3) Classification of Cloud Patches 

To categorize the cloud patch features into a number of 
groups [11] a clustering algorithm called self-organizing 
feature map (SOFM) was introduced. In previous work, this 
method has been already defined by [12] and now a brief 
description is provided. The SOFM project is used to outline 
from high-dimensional space into lower-dimensional space. In 
a two-dimensional coordinate, the number of clusters can be 
arranged from many variables of input patterns through 
classification which is all permitted by projection. There have 
been two stages involved, such as i) among patch features the 
distance can be calculated and also the SOFM cluster center ii) 
from the minimum distance between the input feature vector 
and the SOFM connection weights the best matching SOFM 
cluster center c can be identified. 

4) Estimation of Patch and Pixel Rainfall 

In different stages of its life cycle, the relationship of pixel 
temperature Tb and surface rainfall R of a cloud patch is likely 
to be fluctuating. Based on the classification resulting from the 
previous clustering stage, we allocate different Tb–R 
relationships to many cloud patches. By using the probability 
matching method [13], the Tb–R pixel pairs are initially 
redistributed in each classified cloud-patch group. This 
method can match the histograms of Tb and R observations 
where the proportion of the R distribution above a given rain 
rate is equal to the proportion of the Tb distribution below the 
associated Tb threshold value. 

C. Climate Prediction Center Morphing Method 
(CMORPH) 

A novel method is offered for half-hourly global 
precipitation estimates which are imitative from passive 
microwave, satellite scans that are propagated by motion 
vectors derived from geostationary satellite infrared data. For 
propagating the comparatively high quality precipitation 
estimates derived from passive microwave data, the Climate 
Prediction Center morphing method (CMORPH) uses motion 
vectors derived from half-hourly interval geostationary 
satellite IR imagery [14]. During the time between microwave 
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sensor scans the shape and intensity of the precipitation 
features can be reformed additionally by the performance of a 
time-weighted linear interpolation. Therefore, this method 
produces spatially and temporal complete microwave-derived 
precipitation analyses which is self-determining of the infrared 
temperature field. While passive microwave information is 
inaccessible, CMORPH demonstrated considerable 
enhancements over both simple averaging of the microwave 
estimates and also in excess of techniques that blend 
microwave and infrared information however that derive 
estimates of precipitation from infrared data. In terms of daily 
spatial correlation with an authorizing rain gauge analysis 
CMORPH overtakes these blended methods in a specific 
manner. 

The data attractive can be done with the availability of IR 
data globally every single half hour, which is used for 
propagating PMW-derived precipitation features, generating a 
complete global precipitation analysis both spatially and 
temporally [14]. To determine and identify the cloud systems 
and their movements IR data can be used, meanwhile it offers 
good measurements of cloud-top properties. The process here 
defined, in which cloud system advection vectors (CSAVs) are 
derived. Over the worldwide, for propagating PMW-derived 
rainfall, it tends for every half hour of the day by using the 
CSAVs project. Therefore, it involves total automation and 
prevents the usage of visible imagery. For determining the 
cloud motion there was a method used which was parallel to 
the WINDCO method that uses the correlations among the 
collocated IR imagery by two diverse time intervals. The 
performance of cloud targeting is not done in order to decrease 
their complexity. The lower precipitating layer of the system 
doesn’t have the capability to correlate efficiently with the 
direction and speed of cloud tops which was detected by 
satellite IR. Additionally, the direction of the wind goes up 
and downs and their speed also increase in magnitude with 
elevation from the earth’s surface. 

D. NRL Blended Technique 

The simple view of the NRL blended-satellite precipitation 
technique is to initiate upon a real-time, from all operational 
geostationary VIS/IR imagers and LEO PMW imagers for 
underlying collection of time and space-matching pixels [15]. 
Since five operational geostationary satellites and the PMW 
data sets, it works in an autonomous, operational mode with a 
steadily arriving stream of near real-time data. 

One of the beginning steps that demand to be considered 
before any satellite data sets are blended is to account for the 
characteristics of the PMW-estimated precipitation as 
retrieved by the individual PMW sensors within the satellite 
constellation. Due to diverse sensor frequencies, polarization 
states and scanning modes, diverse precipitation-retrieval 
algorithms can be applied to diverse sensors [16]-[19]. Among 
sensors this produces different precipitation retrieval 
characteristics and possible biases. One style to reconcile is by 
choosing one PMW sensor as a reference, and to frequency-
match the satellite-derived rainfall histograms of the other 
satellite sensors to the reference histogram [20]. To the overall 

merged rainfall product this method assures that with 
sufficient observations over a necessarily long period of time 
and every sensor will contribute equivalent rainfall statistics. 
TRMM makes a good reference satellite in the meantime its 
tropical orbit is not sun-synchronous, permitting it to sample 
adjacent all local times during the course of any month, and its 
orbit often meets with the other sun-synchronous satellites. 
The over-ocean and over-land pixels are coordinated 
separately and binned into 3-h local observation times due to 
different PMW algorithms. The TRMM-PR is used as the 
reference estimate and the SSMI at latitudes above 40 N 
(below 40 S) where TRMM does not orbit in the NRL blended 
technique. 

E. Tropical Rainfall Measuring Mission Multisatellite 
Precipitation Analysis (TMPA)  

A calibration-based sequential scheme called as the 
Tropical Rainfall Measuring Mission (TRMM) Multisatellite 
Precipitation Analysis (TMPA) is used for combining 
precipitation estimates derived from the multiple satellites and 
gauge analyses where possible, at accurate scales (0.25° × 
0.25° and 3 hourly). TMPA is accessible over real time on the 
basis of calibration by the TRMM Combined Instrument and 
in real time on the basis of calibration by the TRMM 
Microwave Imager precipitation products [21]. The estimates 
of TMPA are generated in four stages: 1) calibration and 
combination of the microwave precipitation estimates, 2) 
creation of infrared precipitation estimates by calibrated 
microwave precipitation, 3) combination of the microwave 
and IR estimates, and 4) incorporation of rain gauge data. 

1) Combined Microwave Estimates 

First the conversion of existing passive microwave data to 
precipitation estimates on separate FOVs is done and then 
followed by averaging each dataset to the 0.25° spatial grid on 
the time range of 90 min from the minimal 3-hourly 
observation times (0000, 0300, . . . , 2100 UTC). The method 
gridding is “forward”— individual FOV is averaged into the 
grid box which comprises its center. The exception here is the 
AMSU-B gridding which is “backward”—each FOV is 
roughly apportioned to the grid box(es) which it normally 
occupies. The estimates are then adjusted to a “best” estimate 
using the probability matching of the precipitation rate 
histograms which are assembled from coincident data, 
comparable to the probability- matched method proposed by 
[22] and deployed, for example, by [23]. 

2) Microwave-Calibrated IR Estimates 

For generating creating the complete record of 3-hourly 
0.25° gridded , the research product makes use of two 
diverse IR datasets. Though the imagery amount distributed to 
CPC differs by satellite operator, the international agreements 
command that the complete coverage has to be provided at the 
3-hourly synoptic times (0000, 0300 . . . 2100 UTC). The IR 
are converted into precipitation rates with the help of create 
spatially varying calibration coefficients. These coefficients 
are created by the monthly accumulation of histograms on a 1° 
× 1° grid, aggregated to overlapping 3° × 3° windows. The 
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histograms accumulated here are the time–space matched 
combined microwave [or high quality (HQ)] precipitation 
rates and IR Tb's, each symbolized by the same 3-hourly 0.25° 
× 0.25° grid. 

3) Merged Microwave and IR Estimates 

The crucial aim of this project is to deliver the “best” 
estimate of precipitation in every grid box at every single 
observation time. It is normally pretty challenging task to 
associate diverse estimates of an irregular field like 
precipitation. The method of combining passive microwave 
estimates is moderately well performed because of the similar 
sensors and GPROF which is used for maximum retrievals. 

4) Rescaling to Monthly Data 

The usage of rain gauge data is the last step in the research 
product. The inclusion of rain gauge data from different 
combination datasets ([24], among others) is highly beneficial. 
Nevertheless, experience implies the gauge data shorter than a 
month are not reported with sufficient density or constant 
observational intervals in order to provide warranty for the 
direct inclusion in a global algorithm. This issue was solved 
by the authors using the GPCP One-Degree Daily combination 
dataset which scales the short-period estimates and adds them 
into a monthly estimate that contains monthly gauge data [25]. 

5) RT Algorithm Adjustments 

The RT and research, product systems are developed in 
such a way that the consistency between the resulting datasets 
is endured properly. The main difference is that we make use 
of the TMI estimates from TRMM in the absence of TCI since 
this calibrator is not offered in real time. 

F. Cloud Detection from Satellite Imagery 

Through remote sensing automatic cloud detection and 
tracking is an essential step in measuring global climate 
variation. Cloud masks, which specify whether distinct pixels 
depict clouds, are involved in several of the data products 
which are based on data developed on-board earth satellites. 
Numerous cloud-mask algorithms have the method for 
decision trees, which works as sequential tests that scientists 
planned depending on experimental astrophysics studies and 
simulations. Boundaries of current cloud masks confine our 
capability to exactly track changes in cloud patterns in excess 
of the period. In this paper, they discovered the potential 
advantages of automatically-learned decision trees by using 
the Advanced Very High Resolution Radiometer (AVHRR) 
for detecting clouds from images. They created three decision 
trees learning procedure provided which are used for 
comparing the accuracy of the decision trees to the accuracy 
of the cloud mask [26].Generally Cloud detection and its 
characterization is a demanding task. Cloud-detection 
algorithms must disambiguate clouds and further entities that 
have related appearance as clouds. From one region to another 
region the entities whose occurrence in satellite imagery may 
be related to that of clouds may vary. In the polar region, 
clouds and snow/ice are tough to distinguish since all three 
entities are reflective in the visible wavelengths and establish 

slight contrast in the thermal infrared. Because of spatially 
unresolved water bodies, or current rainfall the Sun glitter may 
affect with cloud detection in the tropics. In excess of volcanic 
areas, clouds and volcanic ash may seem to be related in the 
visible wavelengths. The clouds and dust may appear to be 
similar over the desert region. In forests areas, the clouds and 
fires appears to be similar. In the tropics the terrain shadows 
might also interfere with cloud detection. Researchers used a 
diversity of machine-learning methodologies to precede 
remote sensing data, for instance, Bayesian classification [27], 
support vector machines [28], decision trees [29], neural 
networks [30] and genetic algorithms [31]. The outcomes of 
these methods range from promising initial outcomes to 
validated algorithms that are positioned in high-level remote 
sensing data products [32]. 

The objective of this work was to discover the benefits of 
automatic-learned decision trees for cloud detection, and to 
define whether decision trees that are depend upon functional 
relationships among sensed data which were determined 
theoretically executed better than decision trees that were 
based on the sensor data only. For the results of three 
automatic-learned decision trees dependupon several degrees 
of physical modeling them compare cloud detection outcomes 
of the CLAVR expert produced decision tree [33], which is 
presently organized in the NOAA-14 AVHRR daily 8km 
global data products. The consecutive decision process in 
CLAVR is planned to distinguish among the clouds initially 
by their gross characteristics, and then by their delicate 
features. Here the algorithm guarantees that pixels that are 
unsuccessful of all the tests have a very small probability of 
having radiatively important clouds. This algorithm contains 
tests that are designed specially to decide before encountered 
ambiguities, for instance, ambiguities due to reflectance is 
superior than 44% in channel 1 or channel 2 for sun glint snow 
or ice. The CLAVR consist of four decision trees, 
respectively, for one of daytime land scene, daytime ocean 
scene, nighttime land scene, and the nighttime ocean scene. 
There are several limitations in CLAVR cloud mask. Initially, 
the mask undertakes that there is an illustrative sample of clear 
pixels in every image, though, this supposition does not hold 
when clouds are insistent at a particular pixel coordinate. Then 
Secondly, the CLAVR algorithm may create diverse outcomes 
for a given pixel based upon the neighborhood to which the 
pixel fits. Since the class that the algorithm allocates to a 
given pixel based on the consistency of neighboring pixels, the 
class of a pixel may vary if the pixel is assembled with pixels 
on the left, right, below or above. The capability of CLAVR to 
distinguish between clouds and other entities that seems as 
clouds in AVHRR images is limited. For comparing the cloud 
mask the estimation of cloud masks is challenging since there 
is no gold standard. A researcher evaluates the quality of cloud 
masks by relating their agreement with masks created by 
human analysis or by additional algorithms. The comparison 
was done among the results of CLAVR to classification results 
of a human-expert analyst [33]. Generally, for slight cloud 
amounts, CLAVR overvalued fractional quantities of 0.1 
related to the analysis, interpretation, and for huge cloud 
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amounts, CLAVR undervalued the cloud quantity by about 
0.1. Estimation showed huge errors for definite geographical 
seasons and locations. In [34] the cloud quantities that resulted 
from new enhancements in CLAVR were in contract with 
cloud amounts from established satellite-derived cloud 
climatology’s. The CLAVR algorithm is parallel to 
automatically well-educated decision trees in that it works a 
structure of sequential threshold-tests. Though, the test 
sequence and thresholds in CLAVR were resulting by 
scientists through theoretical and experimental analysis of 
definite AVHRR data (radiances from individual channels, or 
acquisition parameters), and not through analysis of the data 
space as a full. 

G. EPSAT-SG: A Satellite Method for Precipitation 
Estimation 

The EPSAT-SG is a frame for method design of new 
rainfall estimation which has two intermediate products such 
as rainfall probability and rainfall potential intensity. By a 
feed forward neural network the first product is computed and 
its evaluation results show better properties than any other 
direct precipitation intensity by geostationary satellite infra-
red sensors. The Second product can be taken as a conditional 
rainfall intensity several implementation options are issued for 
rainfall estimation which illustrates the importance of properly 
managing the temporal discontinuity. This method could be 
easily adjusted to another geographical area and operational 
environment [35]. 

The concept of EPSAT-SG depend on the fact that where 
geostationary satellite infrared sensors are an appreciated tool 
for cloud classification. The statistical relation between 
rainfall intensity and top cloud temperature is weak and 
unbalanced as there is no straight relation between rain rates 
and IR satellites brightness temperatures. Though, there is a 
nearby relationship between IR information and occurrence of 
rainfall, particularly in excess of tropical area [36] where the 
furthermost part of the rainfall comes from convective clusters 
with cold tops. Extra straight measurements depend on 
microwave sensors or rain-gauge networks offer much 
improved estimations. Then the geostationary data sampling is 
remote longer both in space and in time and real-time 
acquisition of these data is informal to accomplish. The goal 
of a blended rainfall estimation technique is to consume this 
well scale information into a rougher scale and/or intermittent 
precipitation estimation. In certain extents this issue is much 
related to empirical downscaling of global circulation models 
on regional zones [37]. The foremost alteration lies in the 
nature of fine grid input limits. Supposing an adequate 
database size, an experimental relation can be calculated 
between infrared brightness temperatures and rainfall 
intensities. By a ground radar network, [38] fit an exponential 
exemplary through a logarithmic conversion. This used to 
raise the subject of the variance and also approximation error 
which is measured to be significant for high precipitation 
rates. The method to mitigate this result is to convey out the 
valuation on rainfall probability and not on rainfall intensity. 
In this paper the experimental relation among rain intensity 

and rainfall probability versus 10.8 μm temperature is 
demonstrated with a logarithmic scale. Simply the interval 200 
K–273K has been considered in the calculations that have 
been carried out on the 2006 whole African area and, for 
sampling and significance deliberations. In this interlude, the 
shapes of these two curves appear as much related and are 
reliable with an exponential model for a temperature lesser 
than 260 K. The equivalent coefficient of variation, ratio of 
the standard deviation by the mean plots is defined in this 
paper. The non-dimensional coefficient permits to compare 
the signal to noise ratio in statistical relation. In the complete 
range of temperature the coefficient of variation related to the 
rainfall intensity is always superior to the probability 
coefficient and the least value of these two coefficient ratios is 
near to two. This feature proposes that, in their database, the 
approximation of rainfall probability from cloud temperatures 
is not as much of noisy as for precipitation intensity. 
Consequently the estimation is divided into three stages: the 
production of a rainfall probability depends upon IR channels, 
the approximation of rainfall potential intensities by a scale 
back process and the production of the assembled rainfall. The 
rainfall potential intensity is a mean precipitation intensity 
conditioned by rain probability. Should the implementation 
use individual reference data set for rainfall intensity, whereas 
the last stage is forthright? Else the many potential intensity 
fields have to be combined. In an algorithm very related to 
GPCP, the merging then in needs has on estimation variance. 

H. Infrared Satellite Precipitation Estimate Using Wavelet-
Based Cloud Classification and Radar Calibration 

In this paper they have established a methodology to 
improve an infrared–based high resolution rainfall retrieval 
algorithm by intelligently standardizing the rainfall 
estimations by space based annotations. Their methodology 
includes the succeeding four phases: i) Infrared cloud images 
can be segmented into patches; ii) feature extraction by a 
wavelet-based method; iii) clustering and classification of 
cloud patches; and iv) dynamic application of brightness 
temperature (Tb) and rain rate relationships, derived by means 
of satellite observations [39]. 

On behalf of cloud classification and rain fall estimation the 
Cloud-top brightness temperature measurements from 
geostationary satellite (GOES-12), in combining with cloud-
to-ground lightning data from the National Lightning 
Detection Networks (NLDN), are used. Furthermore, the 
2A12-TMI algorithm, a precipitation product derived as of 
The Tropical Rainfall Measuring Mission’s (TRMM) 
Microwave Imager (TMI), is used for standardization 
[40].These outcomes are also estimated with hourly 
precipitation from Nexrad Stage IV radar data [41]. For 
satellite based rainfall estimation is related to the PERSIANN 
methodology [42].Though, the algorithms are enhanced with 
lightning data and added superior with a wavelet-based feature 
extraction approach related to their earlier work then again 
with diverse reference and standardization [43]. For extracting 
information from features of cloud texture the Wavelet 
transforms is implemented in this method. Furthermore, 
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certain studies demonstrate that lightning is in common 
correlated to rainfall quantities and cloud top temperatures 
[44]. Thus, they have used the number of lightning flashes 
which may happen in the corresponding cloud patch areas 
during -15 min to +15 min window of experimental infrared 
data from geostationary stages. For estimating rain rates at 
0.04o x 0.04o spatial resolutions each 30 minutes this 
algorithm has been used to extract cloud features from GEOS-
12 (Channel 4). For segmenting clouds from its background 
(the threshold is 253 K) the single thresholding method has 
been used. Additionally, morphological image processing 
methods are used to eliminate very small clouds in addition to 
label the clouds associated together as patches. In phase 2, 
also the feature used by PERSIANN algorithm, they have 
implemented one-scale decomposition 2D wavelet transform 
on the cloud patches and estimated the mean and the variance 
of the detail constants. Depend upon Daubechies filters and a 
sliding window (length-5) the Wavelet decomposition and 
reconstruction are executed. In phase 3, by Self Organizing 
Map (SOM) neural network classifier [45], they categorize the 
patches into 100 clusters (10x10-size). On behalf of the 
training they have used 400 cloud patches from 2007. In phase 
4, an appropriate Temperature-Rain rate (T-R) curve is 
allocated to every cluster. Depend upon the coincidental 
images of top temperature, cloud patches (from GOES12) and 
its equivalent TMI rain rate; they can able to attain two vectors 
of brightness temperature and equivalent rain rate (TMI) 
examples. Subsequently, a nonlinear fitting exponential 
function is done in these examples in order to get (T-R) curve 
for every cluster. In testing method, as soon as a patch is 

segmented and feature extracted, the SOM specifies the most 
related cluster to the patch. Consequently, the rain rate for 
every pixel of the patch is allocated depends upon the 
corresponding (T-R) curve of the cluster. When the TMI radar 
permits the area of interest the parameters of (T-R) function 
are standardized and optimized. 

III. SUMMARIZATION OF SATELLITE PREDICTION TECHNIQUES 

Table I illustrates the relative aspects of the different 
Satellite Prediction techniques is to estimate the optimum 
technique where they are used to differentiate the 
methodology depend on their features. The main objective of 
this comparison is not to disparage which is the best 
technique, but to prove its usage and to create alertness in their 
fields. 

IV. CONCLUSION 

From this survey a detailed report can be obtained for 
predicting rainfall by using quite a lot of techniques over 
fifteen years. This paper provides an idea that maximum 
researchers and scientists use the above techniques for 
predicting rainfall and also they attain substantial results. 
Hence the upshot of this paper is to show the available 
techniques and therefore comparison table exposes the 
features and future scope of an individual methods used for 
predicting rainfall. This analysis creates an enhanced 
understanding of the readers. Moreover, in future this paper 
will lead a moral support for the researches to predict rainfall 
accurately and efficiently. 

 
TABLE I 

COMPARISON OF SATELLITE PREDICTION TECHNIQUES 

Techniques Satellite data Features Future Scope 

PERSIANN 

TRMM TMI 
GOES-8 

GOES-9/10 
GMS-5 

1. Improve the spatial and temporal resolution and accuracy of 
global scale precipitation estimation 

1. Extend to cover almost the entire globe between 50 ̊s 
and 50̊w using the global gridded infrared imagery. 

PERSIANN CSS GOES 
1. Improved spatial resolution. 
2. Estimates rainfall based on cloud-patch scale. 
3. Acts as an explanatory tool to analyze the cloud-rainfall system. 

1. Evaluate PERSIANN CSS’s performance over the 
ocean. 

CMORPH 

GOES-8 
GOES-10 
Metosat-7 
Metosat-5 

GMS-5 

1. Perform better than PMW precipitation and radar. 
1. Incorporate Advanced Microwave Scanning 
Radiometer for the Earth observing system. 

NRL blended 
technique 

GOES-9/10/12 
Meteosat-5/7 
Terra, Aqua 

PMW dataset 

1. It is designed to operate during both daytime and nighttime 
conditions. 
2. Improving the screening of falsely identified light rain over 
areas of thin cirrus clouds. 
3. Extends the characterization of cirrus over a range of optical 
thickness during day and night 

1. Optimize the use of other multispectral techniques 
and multiplatform observing systems for improving 
satellite precipitation estimation. 
2. Use of other types of blended satellite technique. 

TMPA 
LEO 

DMSP 
NOAA 

1. Increased rich constellation of satellite borne precipitation-
related sensors in both post-real and real time. 

1. Improve intercalibration of the microwave-based 
estimates. 
2. Characterize the performance. 
3. Explore climatological adjustments to the RT 
products to minimize its biases. 

CLAVR NOAA-14 
1.The accuracy of automatically learned decision trees was greater 
than the accuracy of the cloud masks 

NA 

EPSAT-SG 
GEO satellite 

data 
1.Easily adapted to other geographical area &operational 
environment 

1. This method can be easily extended to area covered 
by other GEO satellite than MSG 
2.It can also be tuned to integrate other rainfall reference 
data sources than GPCP 

2A12-TMI GOES-12 
1. It is enriched with lightning data and also Enhanced with a 
wavelet-based feature extraction methodology 

NA 
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