
 

 

 
Abstract—This work deals with case processing problems in 

business. The task of strategic credit requirements management of 
cases portfolio is discussed. The information model of credit 
requirements in a binary tree diagram is considered. The algorithms to 
solve issues of prioritizing clusters of cases in business have been 
investigated. An implementation of priority queues to support case 
management operations has been presented. The corresponding pseudo 
codes for the programming application have been constructed. The 
tools applied in this development are based on binary tree ordering 
algorithms, optimization theory, and business management methods. 
 

Keywords—Credit network, case portfolio, binary tree, priority 
queue, stack.  

I. INTRODUCTION 

ECENT technological advances show that process 
management in various fields of science, including 

business and industrial development, is based on the integration 
of fundamental and applied research areas, from modelling and 
creating algorithms to the development and implementation of 
software platforms. In the modern world, the issues of 
modelling case management problems and the development of 
strategic algorithms for their solution are becoming relevant, 
ensuring effective software implementation by minimizing 
temporal and spatial difficulties. 

Case management is a fairly complex and time-consuming 
process that comes with quite a lot of complexities, but effective 
time scheduling algorithms can reduce problems that show 
when cases will be selected and performed in available [1]. 

Goals and objectives of the Case Management: improving 
the forms and methods of working with documents, organizing 
effective document management and office work in accordance 
with the requirements of the current legislation and regulations, 
the formation and preservation of the documentary fund, 
acquisition, accounting, storage and use of archival documents, 
development of regulatory documents business organization. A 
case is a set of activities that are interrelated in some way but 
the logic of the activity flow is not necessarily an orchestration 
and combination of steps and rules [2]. So, case management is 
really more about collaboration than a process-driven workflow 
and these give a flexibility for people to add and remove steps, 
together accomplish work that is not ideal for a traditional 
process automation or workflow. It is not necessary to define a 
path of claim management. An effective business case is one of 

 
M. C. is with the Department of Computer Technology, Akaki Tsereteli 

State University, Georgia (corresponding author, phone: 995-593-90169; e-
mail: manana.chumburidze@atsu.edu.ge).  

N. S. is Deputy director, Georgian Lawyers High School, Georgia (e-mail: 

the biggest keys to digital transformation success. Business 
cases are one of those things that’s very important. The first step 
to an effective business to create a case management algorithm 
of workflows that place a “case” at the center of the workflow, 
with rules governing what can happen next with that particular 
“case.” This contrasts with a more sequential workflow. Case 
management is the process of storing original documents of 
various forms, which directly record the main information of 
the process. The use of computer technology has greatly 
improved effective digital case management. However, the 
issue of managing personal cases is still relevant for managers 
of the organization [3]. Time is a precious resource. Yet 
somehow — even when managers are frantically searching for 
tracking and organizing important cases, chances to spending 
more time wading through piles of paper than it should be 
overlook how much time is wasted as a result of 
disorganization. For example, the archiving process in 
microfinance organizations requires a lot of effort and labor. 
The cases of several branches with large portfolios are sent to 
the archive for processing at the same time, which causes the 
case to be delayed and cases cannot be sent to partner 
organizations in time. All this may harm the image of the 
company and bring financial losses. But effective management 
can reduce problems and increase efficiency. 

This work deals to create an efficient algorithm to manage of 
personal e-portfolio with facilities own exploring strategies and 
priorities of cases in the several type of credit organization to 
explore the credit history of clients. In particular, case 
circulation itself includes archive activity, which is divided into 
credit and non-credit direction. In particular, the process of 
archiving credit agreements of clients has been discussed. 
Strategy management of personal credit agreement is based to 
build priority queue of credit documents for consideration to 
perform personal work timely and safely, without errors, 
respond to clients quickly and effectively [4]. 

II. NOTATIONS AND DEFINITIVE CONCEPTS  

Time management helps a person or company to plan time 
and save resources. For example, if you are overwhelmed with 
work, and you do not know what to take on first, you should 
prioritize which tasks are urgent and important, and which are 
just distractions [5]. 

In this section case portfolio management problem is 
considered. Case selection algorithms to solve of optimization 

n.salia@bk.ru). 
T. N. is with the Department of Computer Technology, Akaki Tsereteli State 

University, Georgia (e-mail: tsatsa.namchevadze@atsu.edu.ge). 

About the Case Portfolio Management Algorithms 
and Their Applications  

M. Chumburidze, N. Salia, T. Namchevadze  

R 

World Academy of Science, Engineering and Technology
International Journal of Social and Business Sciences

 Vol:18, No:7, 2024 

351International Scholarly and Scientific Research & Innovation 18(7) 2024 ISNI:0000000091950263

O
pe

n 
Sc

ie
nc

e 
In

de
x,

 S
oc

ia
l a

nd
 B

us
in

es
s 

Sc
ie

nc
es

 V
ol

:1
8,

 N
o:

7,
 2

02
4 

pu
bl

ic
at

io
ns

.w
as

et
.o

rg
/1

00
13

72
0.

pd
f



 

 

problem of time and case complexity have been considered. 
Binary-tree model for design and applications to case 
movement is constructed. The Algorithms for a risk 
management approach for the design of building portfolios are 
considered. 

In this work we are considering the algorithms of 
prioritization, planning and structuring of case management 
[10]: 
1. Prioritization: To complete a task, you need to determine 

how urgent, complex and important it is, and only then 
proceed with its implementation. 

2. Planning: To complete a task, you need to understand 
when it should be done and how long it will take. 

3. Structuring: To complete a task, you need to understand 
how to track its progress and results. 

Let us consider the management of credit processes in a bank 
or any credit organization. The credit risk management begins 
with a loan file well documented. It is expected that all credit 
processes go to the credit committee with requires of credit 
agreement. A credit case folder is a record that contains the set 
of data used to conduct a credit review of a customer or 
customer account. 

Statement problem. It is required to optimize case portfolio 
management to maximize the portfolio income with the criteria 
to minimize the credit risk. 

Solution of this problem is conducted to determine the 
process of implementing management in minimizing risk of 
cases. The research method is based on the descriptive 
algorithms with a qualitative approach. In particular, case 
requirements selection algorithm to optimize of portfolio 
incomes is built.  

The cases that will be issued a credit requirement are listed 
in the following content of algorithms [6]: 
• To build credit network between departments of banks  
• To create data-structure to organize all case requirements 

in one place 
• To consider case requirements of linear ordering 

algorithms in alternative approaches 
• To create priority-queue of cases with respect to key field 

of credit requirements 
• To sort records of credit requirements and store in personal 

cases portfolio 
• To build the clusters of cases and they prioritize. 

Our goal is to maximize long-term of case portfolio to 
construct algorithm with risk awareness to protect the company 
under the worst-case scenarios. 

For consideration, a binary tree data structure to build on 
network of credit requirements is used. A binary tree is a 
recursive structure where each vertex has no more than two 
children [6]. The root of this tree present of credit 
administration in bank. The nodes are using to describe of 
collaboration of neighbor departments in credit process. It is a 
record of the department and the data provided by it, and also 
contains information about the departments in relational 
connections. The binary tree determines how positions are 
departments in hierarchical structure. 

In the next stage the order algorithms use to create a track of 

documents flow to complete a task. 

III. THE EFFECTIVE ALGORITHMS AND THEIR APPLICATIONS 

In this section the cases stacking algorithms which are based 
on priority queues analysis are proposed. 

There are binary tree ordering algorithms with Depth-First 
Search (DFS) and Breadth-First Search (BFS) strategies [7].     
 Pre-order Traversal algorithms 
 Post-order Traversal algorithms 
 In-order Traversal algorithms 
 Level Order Traversal algorithms 

 For the software application, nodes are described in the 
following pseudocodes: 

 
struct node 
{ int data; 
char department; 
node* left; 
node* right; 

node(int data,char department) 
{this‐>data=data; 
this‐> department = department; 
this‐>left=NULL; 
this‐>right=NULL; 
} }; 

 
Allow us to consider simple example of hierarchically 

organize credit process in bank (see Fig. 1). 
 

 

Fig. 1 Topology of credit network 
 

In this work the preorder algorithm [7] to store the credit-
requirements documents in one place of cases-portfolio has 
been constructed. On the basis of these algorithms, it becomes 
possible to obtain a different sequence of data movement 
between departments. 

The Recursive function applications for Pre-order, post-order 
and In-order algorithms have the forms correspondingly: 

 
  void preorder( node* root) 
  { 
  if (root==NULL) return; 
  
     cout << root‐>data << " "; 
preorder(  root‐>left); 
  preorder( root‐>right); 
  
  }; 
 
  void postorder( node* root) 

World Academy of Science, Engineering and Technology
International Journal of Social and Business Sciences

 Vol:18, No:7, 2024 

352International Scholarly and Scientific Research & Innovation 18(7) 2024 ISNI:0000000091950263

O
pe

n 
Sc

ie
nc

e 
In

de
x,

 S
oc

ia
l a

nd
 B

us
in

es
s 

Sc
ie

nc
es

 V
ol

:1
8,

 N
o:

7,
 2

02
4 

pu
bl

ic
at

io
ns

.w
as

et
.o

rg
/1

00
13

72
0.

pd
f



 

 

  { 
  if (root==NULL) return; 
  
  postorder(  root‐>left); 
    
  postorder( root‐>right); 
 cout << root‐>data << " "; 
 
  }; 
 
  void inorder( node* root) 
  { 
  if (root==NULL) return; 
  
  inorder (  root‐>left); 
   cout << root‐>data << " "; 
  inorder ( root‐>right); 
  
  }; 
 

For software implementation, the priority queues and stacks 
data structures to improve the time-complexity of recursive 
algorithms in the binary trees are used. 

In-order traversal is the most commonly used option for 
traversing a DFS tree. As DFS suggests, we will first focus on 
the depth of the selected node and then move on to the width at 
that level. It uses a symmetric addressing rule for vertices. The 
efficient ordering is important for optimizing the algorithms 
that require input data to be in sorted lists. The Stack-data 
structure [8] is used to improve of time and space complexity 
of an algorithm. The pseudo code to perform this algorithm has 
a form:  
 
 void iteration-inorder(node* root) 
{stack<node*> s; 
// create pair of different data types to combine together two values: 
cost of case and mark of case 
pair<int, char> adjs[99]; 
node* curr=root; 
int i=0; 
while(curr!=NULL  || s.empty()==false) 
{ 
// create a stack of cases route 
while(curr!=NULL) 
{s.push(curr); 
curr=curr->left;} 
curr=s.top(); 
s.pop(); 
adjs[i].first=curr->data; 
adjs[i].second=curr->piliali; 
i=i+1; 
curr=curr->right; 
} 
 

Allow us to introduce the vector of credits requirement cases 
(see Table I). The elements of vector are record type and include 
symbol of department with a credit requirement: 

 
pair<int, char> adjs[] =  {make_pair(120, D), make_pair(400, 

B),make_pair(290, E),make_pair(0, A), make_pair(100, 
C),make_pair(700, F)} 

 
Similarly, we can use pre-order algorithm that will give us 

different sequences of data than in-order algorithm. Pre-order 
traversal is also the variant of DFS traversal algorithm. It uses 
a parent-child addressing rule for vertices. The Stack-data 
structure is used to improve of time and space complexity of an 
algorithm. The Pre-order algorithms result is in Table II. 

 
TABLE I 

THE VECTOR OF CASES 

0 1 2 3 4 5 

(120, D) (400, B) (290, E) (0, A) (100, C) (700, F) 

 
TABLE II 

THE VECTOR OF RESULTS 

0 1 2 3 4 5 

(0, A) (400, B) (120, D) (290, E) (100, C) (700, F)

 

Next variant of DFS traversal algorithm is a sost-order 
algorithm. It uses a child-parent visiting rule for vertices. The 
Stack-data structure is used to improve of time and space 
complexity of an algorithm. The post-order algorithm result is 
in Table III. 

 
TABLE III 

THE VECTOR OF ORDER RESULTS 

0 1 2 3 4 5 

(120, D) (290, E) (400, B) (700, F) (100, C) (0, A)

 

Let us consider BFS algorithm for ordering binary tree. The 
queue-data structure [9] is used to save visited nodes of tree for 
next exploration for build the track of document flow along of 
departments. The queue-data structure is used to improve of 
time and space complexity of an algorithm. The pseudo code to 
perform this algorithm has a form:  
 
 void iteration-bfsorder(node* root) 
{queue<node*> q; 
// create pair of different data types to combine together two values: 
cost of case and mark of case 
pair<int, char> adjs[99]; 
node* curr=root; 
int i=0; 
while(curr!=NULL  || q.empty()==false) 
{ 
// create a stack of cases route 
while(curr!=NULL) 
{q.push(curr); 
curr=curr->left;} 
curr=s.top(); 
q.pop(); 
adjs[i].first=curr->data; 
adjs[i].second=curr->piliali; 
i=i+1; 
curr=curr->right; 
} 
 

The BFS algorithms result is in Table IV. 
 

TABLE IV 
THE VECTOR OF BFS Results 

0 1 2 3 4 5 

(0, A) (400, B) (100, C) (120, D) (290, E) (700, F)

 

World Academy of Science, Engineering and Technology
International Journal of Social and Business Sciences

 Vol:18, No:7, 2024 

353International Scholarly and Scientific Research & Innovation 18(7) 2024 ISNI:0000000091950263

O
pe

n 
Sc

ie
nc

e 
In

de
x,

 S
oc

ia
l a

nd
 B

us
in

es
s 

Sc
ie

nc
es

 V
ol

:1
8,

 N
o:

7,
 2

02
4 

pu
bl

ic
at

io
ns

.w
as

et
.o

rg
/1

00
13

72
0.

pd
f



 

 

Let us consider Table I to build the order of priorities of the 
departments according to the data. The priority-queuing 
approach [8] to sort of cases in increase by the key of credits 
requirement is used (see Table V). The following pseudo code 
is performed: 
  
//introduce data structure- priority_queue; 
priority_queue<pair<int, char> > p1;  
//loop to sort cases in array 
for (int k=0; k<i; k++) 
 p1.push(adjs[k]); 
// introduce data structure- stack 
 stack<pair<int, char>> S[99];  
 int k=0; 
 while(!p1.empty()) 
  {cout<<p1.top().first<<" "<<p1.top().second<<endl; 
   adjs[k]=p1.top(); 
     p1.pop(); 
     k=k+1; } 

 
TABLE V 

THE ARRAY OF CASES 

0 1 2 3 4 5 

(0, A) (100, C) (120, D) (290, E) (400, B) (700, F)

 

On the next stage step by step to execute the extract operation 
of terminal elements from array (see Fig. 2) to create clusters 
stacks. How to set up the data to create a cluster stack array is 
as follows: 
 
for (int k=0; k<i/2; k++) 
 // build stacks of cases  
{ S[k].push(adjs[i-k-1]); 
 S[k].push(adjs[k]);} 
 for (int k=0; k<i/2; k++) 
  {cout<<endl<<k<<": "; 
 while(!S[k].empty()) 
   {cout<<S[k].top().first<<"- "<<S[k].top().second<<" ; "; 
   S[k].pop(); 

   }}} 
 

As a result cases clusters stacks is obtained (see Fig. 2). 
 

 
Fig. 2 Stacks of cases 

IV. CONCLUSION 

In this paper strategic case management problem has been 
solved. Decision making problem by selecting out different 
credit requirements cases with a potential outcomes has been 
decided. The hierarchical model of credit requirements in 
binary tree-diagram is constructed. Case selection algorithm 
across one time period consideration by the build of cases 
clusters stacks [10] is developed. The alternative tracks of 
documents flows are investigated by use the In-order, Pre- 
order, Post-order and Level Order Traversal (BFS) algorithms. 

An implementation of priority queues to support the case 

management operations is delivered. The features and 
effectiveness of the cluster approach for the documents to solve 
case management problem have been investigated. The 
algorithms for clustering cases in priority queues have been 
obtained. The cases stacking algorithms on the base of priority 
queues analysis have been constructed. This approach increases 
effectiveness of strategic management of cases-portfolio. 
Optimizing a case portfolio application has been involved 
minimize default risk. 

The corresponding pseudo codes for programing application 
have been constructed. The tools applied in this development 
are based on the binary tree data algorithms and dynamic 
structural analysis in C++ Object-Oriented Programming. For 
software implementation priority queue and stacks data 
structures technique are used. 

The proposed algorithms and their application in this 
development reduce the time and space complexity of software 
implementation of problem.  

 REFERENCES  
[1] Powell, Suzanne K.; Colleagues at Mayo Clinic Hospital, Arizona 

Work–Life Balance: How Some Case Managers Do It! Professional Case 
Management. 23(5):235-239, September/October 2018 

[2] Valenčík, Radim, Červenka, Jan. Analysis Tools of Connecting 
Investment Opportunities and Investment Means in the Area of Small and 
Medium-Sized Enterprises European Research Studies Vol. XIX, Issue 
4, 2016 pp. 130- 139 

[3] Gritsyuk, M. Katherina, Gritsyuk I.Vera, Technologies and Tools Used 
for Prediction of Characteristics of Activity of Industrial Enterprises. 
International Journal on Information Technologies and Security, No.4 
(vol. 12), 2020, pp. 47-62 

[4] Skiena, Steven. Sorting and Searching. The Algorithm Design Manual. 
Springer, 2008, p. 480. doi:10.1007/978-1-84800-070-4_4. ISBN 978-1-
84800-069-8. 

[5] Cheryshov, O, N. Choporov, A. P. Preobrazhenskiy, O. Ja. Kravets 
The Development of Optimization Model and Algorithm for Support of 
Resources Management in Organizational System, International Journal 
on Information Technologies and Security, No.2 (vol. 12), 2020, pp. 25-
36. 

[6] Chumburidze, Manana, Mzia Kiknadze, Nino Topuria, and Elza Bitsadze. 
"About the Algorithms of Strategic Management." In International 
Conference on Applied Mathematics, Modeling and Computational 
Science, pp. 647-654. Springer, Cham, 2019, DOI: 
https://doi.org/10.1007/978-3-030-63591-6_59. 

[7] Chumburidze, M. et Beradze, T. Cash Flows Management Algorithm and 
Their Applications. International Journal on Information Technologies & 
Security. 2020, Vol. 12 Issue 2, p15-24. 10p  

[8] Bennett, Nicholas. Introduction to Algorithms and Pseudo code, working 
paper in Project Exploring Modelling and Computation, August 2015 (19 
p.), DOI: 10.13140/RG.2.2.28657.28008 

[9] Chumburidze, M., & Shonia, N. (2022). The Algorithms of Strategic 
Financial Management. International Journal on Information 
Technologies & Security, 14(1). 

[10] Chumburidze, M., Chahua, G. and Sakhelashvili, T. (2021) Delivery 
Management Algorithms and Their Applications. International Journal 
of Advanced Research 9(5): pp596-601 DOI: 
http://dx.doi.org/10.21474/IJAR01/12881 

 
 

S[1] S[2] S[3] 

World Academy of Science, Engineering and Technology
International Journal of Social and Business Sciences

 Vol:18, No:7, 2024 

354International Scholarly and Scientific Research & Innovation 18(7) 2024 ISNI:0000000091950263

O
pe

n 
Sc

ie
nc

e 
In

de
x,

 S
oc

ia
l a

nd
 B

us
in

es
s 

Sc
ie

nc
es

 V
ol

:1
8,

 N
o:

7,
 2

02
4 

pu
bl

ic
at

io
ns

.w
as

et
.o

rg
/1

00
13

72
0.

pd
f


