Satellite Rainfall Prediction Techniques - A State of the Art Review
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 33122
Satellite Rainfall Prediction Techniques - A State of the Art Review

Authors: S. Sarumathi, N. Shanthi, S. Vidhya

Abstract:

In the present world, predicting rainfall is considered to be an essential and also a challenging task. Normally, the climate and rainfall are presumed to have non-linear as well as intricate phenomena. For predicting accurate rainfall, we necessitate advanced computer modeling and simulation. When there is an enhanced understanding of the spatial and temporal distribution of precipitation then it becomes enrichment to applications such as hydrologic, climatic and ecological. Conversely, there may be some kind of challenges occur in the community due to some application which results in the absence of consistent precipitation observation in remote and also emerging region. This survey paper provides a multifarious collection of methodologies which are epitomized by various researchers for predicting the rainfall. It also gives information about some technique to forecast rainfall, which is appropriate to all methods like numerical, traditional and statistical.

Keywords: Satellite Image, Segmentation, Feature Extraction, Classification, Clustering, Precipitation Estimation.

Digital Object Identifier (DOI): doi.org/10.5281/zenodo.1100597

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 3231

References:


[1] Deepak RanjanNayak, AmitavMahapatra, Pranati Mishra “A Survey on Rainfall Prediction using Artificial Neural Network” International Journal of Computer Applications (0975 – 8887) Volume 72– No.16, June 2013.
[2] SorooshSorooshian, Kuo-lin Hsu, Bisher Imam, and Yang Hong, “Global Precipitation Estimation from Satellite Image Using Artificial Neural Networks” Hydrological Modeling in Arid and Semi-Arid Areas, Edited by H.Wheater, S.Sorooshian and K.D.Sharma, Cambridge University Press, pp.21-28. 2008.
[3] S. Sorooshian, K. L.Hsu, X. Gao, H.V. Gupta, B. Imam, andD. Braithwaite, “Evaluation of PERSIANN system satellite based estimates of tropical rainfall,” Bull. Amer. Meteorol. Soc., vol. 81, p. 2035, 2000.
[4] Arkin and P. Xie “The global precipitation climatology project: First algorithm intercomparison project” Bull. Amer. Meteor. Soc.,75, 401– 419, 1994.
[5] Ebert, E. E., and M. J. Manton, “Performance of satellite rainfall estimation algorithms during TOGACOARE”. J. Atmos. Sci., 55, 1537– 1557.1998.
[6] Alder, G. J. Huffman, and P. R. Keehn, “Global rain estimates from microwave adjusted geosynchronous IR data”. Remote Sens. Rev., 11, 125–152.1994.
[7] Arkin, P. A., “The relationship between fractional coverage of high cloud and rainfall accumulations during GATE over the B-scale array”. Mon. Wea. Rev., 107, 1382–1387. 1979.
[8] Hsu, K. L., X. Gao, S. Sorooshian, and H. V. Gupta, “Precipitation estimation from remotely sensed information using artificial neural networks”. J. Appl. Meteor., 36, 1176–1190. 1997.
[9] Hsu, H. V. Gupta, X. Gao, and S. Sorooshian, “Estimation of physical variables from multichannel remotely sensed imagery using neural networks: Application to rainfall estimation”. Water Resour. Res., 35 (5), 1605–1618. 1999.
[10] Y. Hong, K. L. Hsu, S. Sorooshian, and X. G. Gao, “Precipitation estimation from remotely sensed imagery using an artificial neural network cloud classification system,” J. Appl. Meteorol., vol. 43, pp. 1834–1852, 2004.
[11] Kohonen, T., “Self-organized formation of topologically correct feature maps”. Biol. Cybernetics, 43, 59–69. 1982.
[12] Hsu, K., X. Gao, S. Sorooshian, and H. V. Gupta, “Precipitation estimation from remotely sensed information using artificial neural networks”. J. Appl. Meteor., 36, 1176–1190. 1997.
[13] Atlas, D., D. Rosenfeld, and D. B. Wolff, “Climatologically tuned reflectivity–rain rate relations and links to area–time integrals”. J. Appl. Meteor., 29, 1120–1135. 1990.
[14] R. J. Joyce, J. E. Janowiak, P. A. Arkin, and P. Xie, “CMORPH: A method that produces global precipitation estimates from passive microwave and infrared data at high spatial and temporal resolution,” J.Hydrometeorol., vol. 5, pp. 487–503, 2004.
[15] F. J. Turk and S. D. Miller, “Toward improved characterization of remotely sensed precipitation regimes with MODIS/AMSR-E blended data techniques,” IEEE Trans. Geosci. Remote Sens., vol. 43, pp. 1059 1069, 2005.
[16] T. Wilheit, C. D. Kummerow, and R. Ferraro, “Rainfall algorithms for AMSR-E,” IEEE Trans. Geosci. Remote Sens., vol. 41, no. 2, pp. 204– 214, Feb. 2003.
[17] C. D. Kummerow, Y. Hong, W. S. Olson, S. Yang, R. F. Adler, J. Mc- Collum, R. Ferraro, G. Petty, D. B. Shin, and T. T. Wilheit, “The evolution of the Goddard profiling algorithm (GPROF) for rainfall estimation from passive microwave sensors,” J. Appl. Meteorol., vol. 40, pp. 1801–1817, 2001.
[18] R. R. Ferraro, “Special sensor microwave imager derived global rainfall estimates for climatological applications”, J. Geophys. Res., vol. 102, no. D14, pp. 16 715–16 735, 1997.
[19] F. Weng, L. Zhao, R. R. Ferraro, G. Poe, X. Li, and N. C. Grody, “Advanced microwave sounding unit cloud and precipitation algorithms,” Radio Sci., vol. 38, no. 4, pp. 8068–8081, 2003.
[20] R. J. Joyce, J. E. Janowiak, P. A. Arkin, and P. Xie, “CMORPH: A method that produces global precipitation estimates from passive microwave and infrared data at 8-km, 1=2-hourly resolution,” J. Hydrometeorol., vol. 5, pp. 487–503, 2004.
[21] G. J. Huffman, R. F. Adler, D. T. Bolvin, G. J. Gu, E. J. Nelkin, K. P. Bowman, Y. Hong, E. F. Stocker, and D. B. Wolff, “The TRMM multisatellite precipitation analysis (TMPA): Quasi-global, multiyear, combined-sensor precipitation estimates at fine scales,” J. Hydrometeorol., vol. 8, pp. 38–55, 2007.
[22] Miller, J. R., “A climatological Z–R relationship for convective storms in the northern Great Plains”. Preprints, 15th Conf. on Radar Meteorology, Champaign–Urbana, IL, Amer. Meteor. Soc., 153–154. 1972.
[23] Krajewski, W. F., and J. A. Smith,“On the estimation of climatological Z–R relationships”. J. Appl. Meteor., 30, 1436– 1445. 1991.
[24] Huffman and Coauthors,“The Global Precipitation Climatology Project (GPCP) combined precipitation dataset”. Bull. Amer. Meteor. Soc., 78, 5–20. 1997.
[25] Huffman, R. F. Adler, M. Morrissey, D. T. Bolvin, S. Curtis, R. Joyce, B. McGavock, and J. Susskind, “Global precipitation at one-degree daily resolution from multisatellite observations”. J. Hydrometeor., 2, 36–50. 2001.
[26] SmadarShiffman “Cloud Detection from Satellite Imagery: a Comparison of Expert-Generated and Automatically-Generated Decision Trees” In Proceedings of the Eighth Workshop on Mining Scientific and Engineering Datasets, held in conjunction with the 2005 SIAM International Conference on Data Mining, April 21-23, Newport Beach, CA, 2005
[27] F. Murtagh, D. Barreto and J. Marcello, Decision boundaries using Bayes factors: the case of cloud masks. IEEE Transactions on Geoscience and Remote Sensing, 14, 2952-2958, 2003.
[28] Lee, Y., Wahba, G., Ackerman, S. A., Cloud classification of satellite radiance data by multicategory support vector machines, Journal of Atmospheric and Oceanic Technology Vol. 21 No. 2 pp. 159-169, 2004.
[29] Hansen, M., Dubayah, R., &DeFries, R, “Classification trees: an alternative to traditional land cover classifiers” International Journal of Remote Sensing, 17, 1075– 108, 1996.
[30] Promcharoen, S., Rangsanseri, Y., SuwitOngsomwang, S., Jaruppat, J., “Supervised Classification of Multispectral Satellite Images using Fuzzy Logic and Neural Network”, Proceeding of the 20th Asian Conference on Remote Sensing, November 22-25, 1999, Hong Kong, China.
[31] A.B. Davis, S.P. Brumby, N.R. Harvey, K. Lewis Hirsch, and C.A. Rohde, “Genetic refinement of cloud-masking algorithms for the multispectral thermal imager (MTI)" in Proc. IGARSS 2001, Sydney, Australia, 9-13 July 2001.
[32] Zhan, X., Sohlberg, R.A, Townshend, J.R.G, DiMiceli, C., Carroll M.L., Eastman, J.C., Hansen, M.C. , DeFries, R.S. “Detection of land cover changes using MODIS 250 m data” Remote Sensing of Environment (2002), pp. 336–350.
[33] Stowe, L. L., P. A. Davis, and E. P. McClain, “Scientific Basis and Initial Evaluation of the CLAVR-1 Global Clear/Cloud Classification Algorithm for the Advanced Very High Resolution Radiometer” J. Atmos. & Oceanic Tech., 16, 6, 656- 681, 1999.
[34] Thomas, S., A. K. Heidinger, “Comparison of NOAA's Operational AVHRR Derived Cloud Amount to other Satellite Derived Cloud Climatologies”in press to the Journal of Climate, 2004.
[35] J. C. Berg`es, I. Jobard, F. Chopin, and R. Roca “EPSAT-SG: a satellite method for precipitation estimation; its concepts and implementation for the AMMA experiment” Ann. Geophys., 28, 289–308, 2010
[36] Arkin, P. A.: The relationship between the fractional coverage of high cloud and rainfall accumulations during GATE over the Barray, Mon. Weather Rev., 107, 1382–1387, 1979.
[37] Von Storch, H., Langenberg, H., and Feser, F.: A spectral nudging technique for dynamical downscaling purposes, Mon. Weather Rev., 128, 3664–3673, 2000.
[38] Vicente, G., Scofield, R. A., and Menzel, W. P.: The operational GOES infrared rainfall estimation technique, B. Am. Meteorol. Soc., 79, 1883– 1898, 1998.
[39] M. Mahrooghy, V. G. Anantharaj, N. H. Younan, W. A. Petersen, F. J. Turk, and J. Aanstoos, “Infrared satellite precipitation estimate usingwaveletbased cloud classification and radar calibration,” in Proc. 2010 IEEE Int. Geoscience and Remote Sensing Symp. (IGARSS), 2010, pp.2345–2348.
[40] C. Kummerow, Y. Hong, W. S. Olson, S. Yang, R. F. Adler, J. McCollum, R. Ferraro, G. Petty, D. B. Shin, and T. T. Wilheit, “The evolution of the Goddard profiling algorithm (GPROF) for rainfall estimation from passive microwave sensors”, J. Appl. Meteor., 40, 1801- 1820, 2001
[41] Y. Lin, and K. E. Mitchell “The NCEP Stage II/IV hourly precipitation analyses: development and applications. Preprints”, 19th Conf. on Hydrology, American Meteorological Society, San Diego, CA, 9-13 January 2005, Paper 1.2., 2005
[42] Y. Hong, K. L. Hsu, S. Sorooshian, and X. G. Gao, “Precipitation Estimation from Remotely Sensed Imagery using an Artificial Neural Network Cloud Classification System,” Journal of Applied Meteorology, 43, 1834-1852, 2004
[43] M. Mahrooghy, V. G. Anantharaj, N. H. Younan, W. A. Petersen, and F. J. Turk, “An Adaptive Methodology To Enhance Infrared Satellite Precipitation”, 34th Conf. on Radar Meteorology, AMS, Williamsburg, VA, Paper 14.26., 4-9 October, 2009.
[44] T. Chronis, E. Anagnostou, and T. Dinku, “High frequency estimation of thunderstorms via Satellite Infrared and a long-range lightning network in Europe”, Quarterly Royal Meteorological Society Vol.130 No. 599, 2004.
[45] T. Kohonen, “Self-organized formation of topologically correct feature maps”. Biol. Cybernetics ,43, 59–69, 1982