Search results for: Thin plate
218 Vibration of Functionally Graded Cylindrical Shells under Free-Free Boundary Conditions
Authors: A.R.Tahmasebi Birgani, M.Hosseinjani Zamenjani, M.R.Isvandzibaei
Abstract:
In the present work, study of the vibration of thin cylindrical shells made of a functionally gradient material (FGM) composed of stainless steel and nickel is presented. Material properties are graded in the thickness direction of the shell according to volume fraction power law distribution. The objective is to study the natural frequencies, the influence of constituent volume fractions and the effects of boundary conditions on the natural frequencies of the FG cylindrical shell. The study is carried out using third order shear deformation shell theory. The governing equations of motion of FG cylindrical shells are derived based on shear deformation theory. Results are presented on the frequency characteristics, influence of constituent volume fractions and the effects of free-free boundary conditions.
Keywords: Vibration, FGM, Cylindrical shell.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1633217 A Study of the Growth of Single-Phase Mg0.5Zn0.5O Films for UV LED
Authors: Hong Seung Kim, Chang Hoi Kim, Lili Yue
Abstract:
Single-phase, high band gap energy Zn0.5Mg0.5O films were grown under oxygen pressure, using pulse laser deposition with a Zn0.5Mg0.5O target. Structural characterization studies revealed that the crystal structures of the ZnX-1MgXO films could be controlled via changes in the oxygen pressure. TEM analysis showed that the thickness of the deposited Zn1-xMgxO thin films was 50–75 nm. As the oxygen pressure increased, we found that one axis of the crystals did not show a very significant increase in the crystallization compared with that observed at low oxygen pressure. The X-ray diffraction peak intensity for the hexagonal-ZnMgO (002) plane increased relative to that for the cubic-ZnMgO (111) plane. The corresponding c-axis of the h-ZnMgO lattice constant increased from 5.141 to 5.148 Å, and the a-axis of the c-ZnMgO lattice constant decreased from 4.255 to 4.250 Å. EDX analysis showed that the Mg content in the mixed-phase ZnMgO films decreased significantly, from 54.25 to 46.96 at.%. As the oxygen pressure was increased from 100 to 150 mTorr, the absorption edge red-shifted from 3.96 to 3.81 eV; however, a film grown at the highest oxygen pressure tested here (200 mTorr).
Keywords: MgO, UV LED, ZnMgO, ZnO.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2122216 Ethylene Epoxidation in a Low-Temperature Parallel Plate Dielectric Barrier Discharge System: Effects of Ethylene Feed Position and O2/C2H4 Feed Molar Ratio
Authors: Bunphot Paosombat, Thitiporn Suttikul, Sumaeth Chavadej
Abstract:
The effects of ethylene (C2H4) feed position and O2/C2H4 feed molar ratio on ethylene epoxidation in a parallel dielectric barrier discharge (DBD) were studied. The results showed that the ethylene feed position fraction of 0.5 and the feed molar ratio of O2/C2H4 of 0.2:1 gave the highest EO selectivity of 34.3% and the highest EO yield of 5.28% with low power consumptions of 2.11×10-16 Ws/molecule of ethylene converted and 6.34×10-16 Ws/molecule of EO produced when the DBD system was operated under the best conditions: an applied voltage of 19 kV, an input frequency of 500 Hz and a total feed flow rate of 50 cm3/min. The separate ethylene feed system provided much higher epoxidation activity as compared to the mixed feed system which gave EO selectivity of 15.5%, EO yield of 2.1% and the power consumption of EO produced of 7.7×10-16 Ws/molecule.Keywords: Dielectric Barrier Discharge, C2H4 Feed Position, Epoxidation, Ethylene Oxide
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1701215 Engineered Cement Composite Materials Characterization for Tunneling Applications
Authors: S. Boughanem, D. A. Jesson, M. J. Mulheron, P.A. Smith C. Eddie, S. Psomas, M. Rimes
Abstract:
Cements, which are intrinsically brittle materials, can exhibit a degree of pseudo-ductility when reinforced with a sufficient volume fraction of a fibrous phase. This class of materials, called Engineered Cement Composites (ECC) has the potential to be used in future tunneling applications where a level of pseudo-ductility is required to avoid brittle failures. However uncertainties remain regarding mechanical performance. Previous work has focused on comparatively thin specimens; however for future civil engineering applications, it is imperative that the behavior in tension of thicker specimens is understood. In the present work, specimens containing cement powder and admixtures have been manufactured following two different processes and tested in tension. Multiple matrix cracking has been observed during tensile testing, leading to a “strain-hardening" behavior, confirming the possible suitability of ECC material when used as thick sections (greater than 50mm) in tunneling applications.Keywords: Cement composite, polymeric fibers, pseudoductility, test-geometry.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2468214 Prevention of Biofilm Formation in Urinary Catheter by Coating Enzymes/ Gentamycin/ EDTA
Authors: Niraj A. Ghanwate, P V Thakare, P R Bhise, Ashish Dhanke, Shubhangi Apotikar
Abstract:
Urinary Tract Infections (UTI) account for an estimated 25-40% nosocomial infection, out of which 90% are associated with urinary catheter, called Catheter associated urinary tract infection (CAUTI). The microbial populations within CAUTI frequently develop as biofilms. In the present study, microbial contamination of indwelling urinary catheters was investigated. Biofilm forming ability of the isolates was determined by tissue culture plate method. Prevention of biofilm formation in the urinary catheter by Pseudomonas aeruginosa was also determined by coating the catheter with some enzymes, gentamycin and EDTA. It was found that 64% of the urinary catheters get contaminated during the course of catheterization. Of the total 6 isolates, biofilm formation was seen in 100% Pseudomonas aeruginosa and E. coli, 90% in Enterococci, 80% in Klebsiella and 66% in S. aureus. It was noted that the biofilm production by Pseudomonas was prolonged by 7 days in amylase, 8 days in protease, 6 days in lysozyme, 7days in gentamycin and 5 days in EDTA treated catheter.
Keywords: CAUTI, biofilm, enzymes, EDTA, Pseudomonas.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2786213 Structural Characteristics of Batch Processed Agro-Waste Fibres
Authors: E. I. Akpan, S. O. Adeosun, G. I. Lawal, S. A. Balogun, X. D. Chen
Abstract:
The characterisation of agro-wastes fibres for composite applications from Nigeria using X-ray diffraction (XRD) and Scanning Electron Microscopy (SEM) has been done. Fibres extracted from groundnut shell, coconut husk, rice husk, palm fruit bunch and palm fruit stalk are processed using two novel cellulose fibre production methods developed by the authors. Cellulose apparent crystallinity calculated using the deconvolution of the diffractometer trace shows that the amorphous portion of cellulose was permeable to hydrolysis yielding high crystallinity after treatment. All diffratograms show typical cellulose structure with well-defined 110, 200 and 040 peaks. Palm fruit fibres had the highest 200 crystalline cellulose peaks compared to others and it is an indication of rich cellulose content. Surface examination of the resulting fibres using SEM indicates the presence of regular cellulose network structure with some agglomerated laminated layer of thin leaves of cellulose microfibrils. The surfaces were relatively smooth indicating the removal of hemicellulose, lignin and pectin.
Keywords: X-ray diffraction, SEM, cellulose, deconvolution, crystallinity.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2731212 Fabrication of Wearable Antennas through Thermal Deposition
Authors: Jeff Letcher, Dennis Tierney, Haider Raad
Abstract:
Antennas are devices for transmitting and/or receiving signals which make them a necessary component of any wireless system. In this paper, a thermal deposition technique is utilized as a method to fabricate antenna structures on substrates. Thin-film deposition is achieved by evaporating a source material (metals in our case) in a vacuum which allows vapor particles to travel directly to the target substrate which is encased with a mask that outlines the desired structure. The material then condenses back to solid state. This method is used in comparison to screen printing, chemical etching, and ink jet printing to indicate advantages and disadvantages to the method. The antenna created undergoes various testing of frequency ranges, conductivity, and a series of flexing to indicate the effectiveness of the thermal deposition technique. A single band antenna that is operated at 2.45 GHz intended for wearable and flexible applications was successfully fabricated through this method and tested. It is concluded that thermal deposition presents a feasible technique of producing such antennas.Keywords: Thermal deposition, wearable antennas, Bluetooth technology, flexible electronics.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1379211 Modes of Collapse of Compress–Expand Member under Axial Loading
Authors: Shigeyuki Haruyama, Aidil Khaidir Bin Muhamad, Ken Kaminishi, Dai-Heng Chen
Abstract:
In this paper, a study on the modes of collapse of compress- expand members are presented. Compress- expand member is a compact, multiple-combined cylinders, to be proposed as energy absorbers. Previous studies on the compress- expand member have clarified its energy absorption efficiency, proposed an approximate equation to describe its deformation characteristics and also highlighted the improvement that it has brought. However, for the member to be practical, the actual range of geometrical dimension that it can maintain its applicability must be investigated. In this study, using a virtualized materials that comply the bilinear hardening law, Finite element Method (FEM) analysis on the collapse modes of compress- expand member have been conducted. Deformation maps that plotted the member's collapse modes with regards to the member's geometric and material parameters were then presented in order to determine the dimensional range of each collapse modes.Keywords: Axial collapse, compress-expand member, tubular member, finite element method, modes of collapse, thin-walled cylindrical tube.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2023210 Steady State Natural Convection in Vertical Heated Rectangular Channel between Two Vertical Parallel MTR-Type Fuel Plates
Authors: Djalal Hamed
Abstract:
The aim of this paper is to perform an analytic solution of steady state natural convection in a narrow rectangular channel between two vertical parallel MTR-type fuel plates, imposed under a cosine shape heat flux to determine the margin of the nuclear core power at which the natural convection cooling mode can ensure a safe core cooling, where the cladding temperature should not be reach the specific safety limits (90 °C). For this purpose, a simple computer program is developed to determine the principal parameter related to the nuclear core safety such as the temperature distribution in the fuel plate and in the coolant (light water) as a function of the reactor power. Our results are validated throughout a comparison against the results of another published work, which is considered like a reference of this study.Keywords: Buoyancy force, friction force, friction factor, MTR-type fuel, natural convection, vertical heated rectangular channel.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 773209 Analysis of the Coupled Stretching Bending Problem of Stiffened Plates by a BEM Formulation Based on Reissner's Hypothesis
Authors: Gabriela R. Fernandes, Danilo H. Konda, Luiz C. F. Sanches
Abstract:
In this work, the plate bending formulation of the boundary element method - BEM, based on the Reissner?s hypothesis, is extended to the analysis of plates reinforced by beams taking into account the membrane effects. The formulation is derived by assuming a zoned body where each sub-region defines a beam or a slab and all of them are represented by a chosen reference surface. Equilibrium and compatibility conditions are automatically imposed by the integral equations, which treat this composed structure as a single body. In order to reduce the number of degrees of freedom, the problem values defined on the interfaces are written in terms of their values on the beam axis. Initially are derived separated equations for the bending and stretching problems, but in the final system of equations the two problems are coupled and can not be treated separately. Finally are presented some numerical examples whose analytical results are known to show the accuracy of the proposed model.
Keywords: Boundary elements, Building floor structures, Platebending.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1982208 Effects of Formic Acid on the Chemical State and Morphology of As-synthesized and Annealed ZnO Films
Authors: Chueh-Jung Huang, Chia-Hung Li, Hsueh-Lung Wang, Tsun-Nan Lin
Abstract:
Zinc oxide thin films with various microstructures were grown on substrates by using HCOOH-sols. The reaction mechanism of the sol system was investigated by performing an XPS analysis of as-synthesized films, due to the products of hydrolysis and condensation in the sol system contributing to the chemical state of the as-synthesized films. The chemical structures of the assynthesized films related to the microstructures of the final annealed films were also studied. The results of the Zn 2p3/2, C 1s and O1s XPS patterns indicate that the hydrolysis reaction in the sol system is strongly influenced by the HCOOH agent. The results of XRD and FE-SEM demonstrated the microstructures of the annealed films are related to the content of hydrolyzed zinc hydrate (Zn-OH) species present, and that content of the Zn-OH species in the sol system increases the HCOOH adding, and these Zn-OH species existing in the sol phase are responsible for large ZnO crystallites in the final annealed films.Keywords: zinc oxide, hydrolysis catalyst, zinc acetate source, formic acid.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1660207 Create and Design Visual Presentation to Promote Thai Cuisine
Authors: Supaporn Wimonchailerk
Abstract:
This research aims to study how to design and create the media to promote Thai cuisine. The study used qualitative research methods by using in-depth interview 3 key informants who have experienced in the production of food or cooking shows in television programs with an aspect of acknowledging Thai foods. The results showed that visual presentation is divided into four categories. First, the light meals should be presented in details via the close-up camera with lighting to make the food look more delicious. Then the curry presentation should be arranged a clear and crisp light focus on a colorful curry paste. Besides the vision of hot steam floating from the plate and a view of curry spread on steamed rice can call great attentions. Third, delivering good appearances of the fried or spicy foods, the images must allow the audiences to see the shine of the coat covering the texture of the food and the colorful of the ingredients. Fourth, the presentation of sweets is recommended to focus on details of food design, composition, and layout.
Keywords: Media production, television, promote, Thai cuisine.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 963206 Biomechanical Findings in Patients with Bipartite Medial Cuneiforms
Authors: Aliza Lee, Mark Wilt, John Bonk, Scott Floyd, Bradley Hoffman, Karen Uchmanowicz
Abstract:
Bipartite medial cuneiforms are relatively rare but may play a significant role in biomechanical and gait abnormalities. It is believed that a bipartite medial cuneiform may alter the available range of motion due to its larger morphological variant, thus limiting the metatarsal plantarflexion needed to achieve adequate hallux dorsiflexion for normal gait. Radiographic and clinical assessment were performed on two patients who reported with foot pain along the first ray. Both patients had visible bipartite medial cuneiforms on MRI. Using gait plate and Metascan ™ analysis, both were noted to have four measurements far beyond the expected range. Medial and lateral heel peak pressure, hallux peak pressure, and 1st metatarsal peak pressure were all noted to be increased. These measurements are believed to be increased due to the hindrance placed on the available ROM of the first ray by the increased size of the medial cuneiform. A larger patient population would be needed to fully understand this developmental anomaly.
Keywords: Bipartite medial cuneiforms, cuneiform, developmental anomaly, gait abnormality.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 424205 Estimation of Skew Angle in Binary Document Images Using Hough Transform
Authors: Nandini N., Srikanta Murthy K., G. Hemantha Kumar
Abstract:
This paper includes two novel techniques for skew estimation of binary document images. These algorithms are based on connected component analysis and Hough transform. Both these methods focus on reducing the amount of input data provided to Hough transform. In the first method, referred as word centroid approach, the centroids of selected words are used for skew detection. In the second method, referred as dilate & thin approach, the selected characters are blocked and dilated to get word blocks and later thinning is applied. The final image fed to Hough transform has the thinned coordinates of word blocks in the image. The methods have been successful in reducing the computational complexity of Hough transform based skew estimation algorithms. Promising experimental results are also provided to prove the effectiveness of the proposed methods.Keywords: Dilation, Document processing, Hough transform, Optical Character Recognition, Skew estimation, and Thinning.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 3266204 Effect of Viscous Dissipation and Axial Conduction in Thermally Developing Region of the Channel Partially Filled with a Porous Material Subjected to Constant Wall Heat Flux
Authors: D Bhargavi, J. Sharath Kumar Reddy
Abstract:
The present investigation has been undertaken to assess the effect of viscous dissipation and axial conduction on forced convection heat transfer in the entrance region of a parallel plate channel with the porous insert attached to both walls of the channel. The flow field is unidirectional. Flow in the porous region corresponds to Darcy-Brinkman model and the clear fluid region to that of plane Poiseuille flow. The effects of the parameters Darcy number, Da, Peclet number, Pe, Brinkman number, Br and a porous fraction γp on the local heat transfer coefficient are analyzed graphically. Effects of viscous dissipation employing the Darcy model and the clear fluid compatible model have been studied.
Keywords: Porous material, channel partially filled with a porous material, axial conduction, viscous dissipation.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 638203 Numerical Study of Vertical Wall Jets: Influence of the Prandtl Number
Authors: Amèni Mokni, Hatem Mhiri, Georges Le Palec, Philippe Bournot
Abstract:
This paper is a numerical investigation of a laminar isothermal plane two dimensional wall jet. Special attention has been paid to the effect of the inlet conditions at the nozzle exit on the hydrodynamic and thermal characteristics of the flow. The behaviour of various fluids evolving in both forced and mixed convection regimes near a vertical plate plane is carried out. The system of governing equations is solved with an implicit finite difference scheme. For numerical stability we use a staggered non uniform grid. The obtained results show that the effect of the Prandtl number is significant in the plume region in which the jet flow is governed by buoyant forces. Further for ascending X values, the buoyancy forces become dominating, and a certain agreement between the temperature profiles are observed, which shows that the velocity profile has no longer influence on the wall temperature evolution in this region. Fluids with low Prandtl number warm up more importantly, because for such fluids the effect of heat diffusion is higher.Keywords: Forced convection, Mixed convection, Prandtl number, Wall jet.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1777202 The Effect of Cracking on Stiffness of Shear Walls under Lateral Loads
Authors: Anas M. Fares
Abstract:
The lateral stiffness of buildings is one of the most important properties which define resistance to displacements under lateral loads. Moreover, it has a great impact on the natural period of the structures. Different stiffness’s values can ultimately affect the behavior of the structure under the seismic load and the lateral forces that will be applied to it. In this study the effect of cracking is studied on 2D shell thin cantilever shear wall by using ETABS. Multi linear elastic analysis is conducted with the ACI stiffness modifiers for each analysis step. The results showed that the cracks affect the value of the drift especially at the top of the high rise buildings and this will change the lateral stiffness and so change the fundamental period of the structures which lead to change in the applied shear force that comes from the earthquake. Finally, this study emphasizes that the finite element method can be considered as a good tool to predict the tensile stresses in the elements.
Keywords: Lateral loads, lateral displacement, reinforced concrete, shear wall, Cracks, ETABS, ACI code, stiffness.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1656201 Fully Printed Strain Gauges: A Comparison of Aerosoljet-Printing and Micropipette-Dispensing
Authors: Benjamin Panreck, Manfred Hild
Abstract:
Strain sensors based on a change in resistance are well established for the measurement of forces, stresses, or material fatigue. Within the scope of this paper, fully additive manufactured strain sensors were produced using an ink of silver nanoparticles. Their behavior was evaluated by periodic tensile tests. Printed strain sensors exhibit two advantages: Their measuring grid is adaptable to the use case and they do not need a carrier-foil, as the measuring structure can be printed directly onto a thin sprayed varnish layer on the aluminum specimen. In order to compare quality characteristics, the sensors have been manufactured using two different technologies, namely aerosoljet-printing and micropipette-dispensing. Both processes produce structures which exhibit continuous features (in contrast to what can be achieved with droplets during inkjet printing). Briefly summarized the results show that aerosoljet-printing is the preferable technology for specimen with non-planar surfaces whereas both technologies are suitable for flat specimen.Keywords: Aerosoljet-printing, micropipette-dispensing, printed electronics, printed sensors, strain gauge.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1009200 Three Dimensional Analysis of Sequential Quasi Isotropic Composite Disc for Rotating Machine Application
Authors: Amin Almasi
Abstract:
Composite laminates are relatively weak in out of plane loading, inter-laminar stress, stress concentration near the edge and stress singularities. This paper develops a new analytical formulation for laminated composite rotating disc fabricated from symmetric sequential quasi isotropic layers to predict three dimensional stress and deformation. This analysis is necessary to evaluate mechanical integrity of fiber reinforced multi-layer laminates used for high speed rotating applications such as high speed impellers. Three dimensional governing equations are written for rotating composite disc. Explicit solution is obtained with "Frobenius" expansion series. Based on analytical results, there are two separate zones of three dimensional stress fields in centre and edge of rotating disc. For thin discs, out of plane deformations and stresses are small in comparison with plane ones. For relatively thick discs deformation and stress fields are three dimensional.Keywords: Composite Disc, Rotating Machine.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1393199 Studying Frame-Resistant Steel Structures under Near Field Ground Motion
Authors: S. A. Hashemi, A. Khoshraftar
Abstract:
This paper presents the influence of the vertical seismic component on the non-linear dynamics analysis of three different structures. The subject structures were analyzed and designed according to recent codes. This paper considers three types of buildings: 5-, 10-, and 15-story buildings. The non-linear dynamics analysis of the structures with assuming elastic-perfectlyplastic behavior was performed using RAM PERFORM-3D software; the horizontal component was taken into consideration with and without the incorporation of the corresponding vertical component. Dynamic responses obtained for the horizontal component acting alone were compared with those obtained from the simultaneous application of both seismic components. The results show that the effect of the vertical component of ground motion may increase the axial load significantly in the interior columns and, consequently, the stories. The plastic mechanisms would be changed. The P-Delta effect is expected to increase. The punching base plate shear of the columns should be considered. Moreover, the vertical component increases the input energy when the structures exhibit inelastic behavior and are taller.Keywords: Inelastic behavior, non-linear dynamic analysis, steel structure, vertical component.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1580198 A Model Predicting the Microbiological Qualityof Aquacultured Sea Bream (Sparus aurata) According to Physicochemical Data: An Application in Western Greece Fish Aquaculture
Authors: Joan Iliopoulou-Georgudaki, Chris Theodoropoulos, Danae Venieri, Maria Lagkadinou
Abstract:
Monitoring of microbial flora in aquacultured sea bream, in relation to the physicochemical parameters of the rearing seawater, ended to a model describing the influence of the last to the quality of the fisheries. Fishes were sampled during eight months from four aqua farms in Western Greece and analyzed for psychrotrophic, H2S producing bacteria, Salmonella sp., heterotrophic plate count (PCA), with simultaneous physical evaluation. Temperature, dissolved oxygen, pH, conductivity, TDS, salinity, NO3 - and NH4 + ions were recorded. Temperature, dissolved oxygen and conductivity were correlated, respectively, to PCA, Pseudomonas sp. and Shewanella sp. counts. These parameters were the inputs of the model, which was driving, as outputs, to the prediction of PCA, Vibrio sp., Pseudomonas sp. and Shewanella sp. counts, and fish microbiological quality. The present study provides, for the first time, a ready-to-use predictive model of fisheries hygiene, leading to an effective management system for the optimization of aquaculture fisheries quality.
Keywords: Microbiological, model, physicochemical, Seabream.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1749197 Thermal Stability Boundary of FG Panel under Aerodynamic Load
Authors: Sang-Lae Lee, Ji-Hwan Kim
Abstract:
In this study, it is investigated the stability boundary of Functionally Graded (FG) panel under the heats and supersonic airflows. Material properties are assumed to be temperature dependent, and a simple power law distribution is taken. First-order shear deformation theory (FSDT) of plate is applied to model the panel, and the von-Karman strain- displacement relations are adopted to consider the geometric nonlinearity due to large deformation. Further, the first-order piston theory is used to model the supersonic aerodynamic load acting on a panel and Rayleigh damping coefficient is used to present the structural damping. In order to find a critical value of the speed, linear flutter analysis of FG panels is performed. Numerical results are compared with the previous works, and present results for the temperature dependent material are discussed in detail for stability boundary of the panel with various volume fractions, and aerodynamic pressures.Keywords: Functionally graded panels, Linear flutter analysis, Supersonic airflows, Temperature dependent material property.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1593196 Determining Full Stage Creep Properties from Miniature Specimen Creep Test
Authors: W. Sun, W. Wen, J. Lu, A. A. Becker
Abstract:
In this work, methods for determining creep properties which can be used to represent the full life until failure from miniature specimen creep tests based on analytical solutions are presented. Examples used to demonstrate the application of the methods include a miniature rectangular thin beam specimen creep test under three-point bending and a miniature two-material tensile specimen creep test subjected to a steady load. Mathematical expressions for deflection and creep strain rate of the two specimens were presented for the Kachanov-Rabotnov creep damage model. On this basis, an inverse procedure was developed which has potential applications for deriving the full life creep damage constitutive properties from a very small volume of material, in particular, for various microstructure constitutive regions, e.g. within heat-affected zones of power plant pipe weldments. Further work on validation and improvement of the method is addressed.Keywords: Creep damage property, analytical solutions, inverse approach, miniature specimen test.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 780195 Accuracy of Displacement Estimation and Selection of Capacitors for a Four Degrees of Freedom Capacitive Force Sensor
Authors: Chisato Murakami, Makoto Takahashi
Abstract:
Force sensor has been used as requisite for knowing information on the amount and the directions of forces on the skin surface. We have developed a four-degrees-of-freedom capacitive force sensor (approximately 20×20×5 mm3) that has a flexible structure and sixteen parallel plate capacitors. An iterative algorithm was developed for estimating four displacements from the sixteen capacitances using fourth-order polynomial approximation of characteristics between capacitance and displacement. The estimation results from measured capacitances had large error caused by deterioration of the characteristics. In this study, effective capacitors had major information were selected on the basis of the capacitance change range and the characteristic shape. Maximum errors in calibration and non-calibration points were 25%and 6.8%.However the maximum error was larger than desired value, the smallness of averaged value indicated the occurrence of a few large error points. On the other hand, error in non-calibration point was within desired value.
Keywords: Force sensors, capacitive sensors, estimation, iterative algorithms.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1616194 Electrochemical Performance of Carbon Nanotube Based Supercapacitor
Authors: Jafar Khan Kasi, Ajab Khan Kasi, Muzamil Bokhari
Abstract:
Carbon nanotube is one of the most attractive materials for the potential applications of nanotechnology due to its excellent mechanical, thermal, electrical and optical properties. In this paper we report a supercapacitor made of nickel foil electrodes, coated with multiwall carbon nanotubes (MWCNTs) thin film using electrophoretic deposition (EPD) method. Chemical vapor deposition method was used for the growth of MWCNTs and ethanol was used as a hydrocarbon source. High graphitic multiwall carbon nanotube was found at 750oC analyzing by Raman spectroscopy. We observed the electrochemical performance of supercapacitor by cyclic voltammetry. The electrodes of supercapacitor fabricated from MWCNTs exhibit considerably small equivalent series resistance (ESR), and a high specific power density. Electrophoretic deposition is an easy method in fabricating MWCNT electrodes for high performance supercapacitor.
Keywords: Carbon nanotube, chemical vapor deposition, catalyst, charge, cyclic voltammetry.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2489193 Simulation of Thin Film Relaxation by Buried Misfit Networks
Authors: A. Derardja
Abstract:
The present work is motivated by the idea that the layer deformation in anisotropic elasticity can be estimated from the theory of interfacial dislocations. In effect, this work which is an extension of a previous approach given by one of the authors determines the anisotropic displacement fields and the critical thickness due to a complex biperiodic network of MDs lying just below the free surface in view of the arrangement of dislocations. The elastic fields of such arrangements observed along interfaces play a crucial part in the improvement of the physical properties of epitaxial systems. New results are proposed in anisotropic elasticity for hexagonal networks of MDs which contain intrinsic and extrinsic stacking faults. We developed, using a previous approach based on the relative interfacial displacement and a Fourier series formulation of the displacement fields, the expressions of elastic fields when there is a possible dissociation of MDs. The numerical investigations in the case of the observed system Si/(111)Si with low twist angles show clearly the effect of the anisotropy and thickness when the misfit networks are dissociated.Keywords: Angular misfit, dislocation networks, plane interfaces, stacking faults.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1492192 Optimization of Design Parameters for Wire Mesh Fin Arrays as a Heat Sink Using Taguchi Method
Authors: Kavita H. Dhanawade, Hanamant S. Dhanawade
Abstract:
Heat transfer enhancement objects like extended surfaces, fins etc. are chosen for their thermal performance as well as for other design parameters depending on various applications. The present paper is on experimental study to investigate the heat transfer enhancement through wire mesh fin arrays equipped with horizontal base plate. The data used in performance analysis were obtained experimentally for the material (mild steel) for different heat inputs such as 40, 60, 80, 100 and 120 watt, by varying wire mesh diameter, fin height and spacing between two fin arrays. Using the Taguchi experimental design method, optimum design parameters and their levels were investigated. Average heat transfer coefficient was considered as a performance characteristic parameter. An L9 (33) orthogonal array was selected as an experimental plan. Optimum results were found by experimenting. It is observed that the wire mesh diameter and fin height have a higher impact on heat transfer coefficient as compared to spacing between two fin arrays.Keywords: Heat transfer enhancement, finned surface, wire mesh diameter, natural convection.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 813191 Multipurpose Three Dimensional Finite Element Procedure for Thermal Analysis in Pulsed Current Gas Tungsten Arc Welding of AZ 31B Magnesium Alloy Sheets
Authors: N.Karunakaran, V.Balasubramanian
Abstract:
This paper presents the results of a study aimed at establishing the temperature distribution during the welding of magnesium alloy sheets by Pulsed Current Gas Tungsten Arc Welding (PCGTAW) and Constant Current Gas Tungsten Arc Welding (CCGTAW) processes. Pulsing of the GTAW welding current influences the dimensions and solidification rate of the fused zone, it also reduces the weld pool volume hence a narrower bead. In this investigation, the base material considered was 2mm thin AZ 31 B magnesium alloy, which is finding use in aircraft, automobile and high-speed train components. A finite element analysis was carried out using ANSYS, and the results of the FEA were compared with the experimental results. It is evident from this study that the finite element analysis using ANSYS can be effectively used to model PCGTAW process for finding temperature distribution.Keywords: gas tungsten arc welding, pulsed current, finiteelement analysis, thermal analysis, magnesium alloy.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2003190 Characterization of the Energy Band Diagram of Fabricated SnO2/CdS/CdTe Thin Film Solar Cells
Authors: Rasha A. Abdullah, Mohammed. A. Razooqi, Adwan N. H. Al-Ajili
Abstract:
A SnO2/CdS/CdTe heterojunction was fabricated by thermal evaporation technique. The fabricated cells were annealed at 573K for periods of 60, 120 and 180 minutes. The structural properties of the solar cells have been studied by using X-ray diffraction. Capacitance- voltage measurements were studied for the as-prepared and annealed cells at a frequency of 102 Hz. The capacitance- voltage measurements indicated that these cells are abrupt. The capacitance decreases with increasing annealing time. The zero bias depletion region width and the carrier concentration increased with increasing annealing time. The carrier transport mechanism for the CdS/CdTe heterojunction in dark is tunneling recombination. The ideality factor is 1.56 and the reverse bias saturation current is 9.6×10-10A. The energy band lineup for the n- CdS/p-CdTe heterojunction was investigated using current - voltage and capacitance - voltage characteristics.
Keywords: SnO2/CdS/CdTe heterojunction, XRD, C-V measurement, I-V measurement, energy band diagram.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 3709189 Thermal Hydraulic Analysis of the IAEA 10MW Benchmark Reactor under Normal Operating Condition
Authors: Hamed Djalal
Abstract:
The aim of this paper is to perform a thermal-hydraulic analysis of the IAEA 10 MW benchmark reactor solving analytically and numerically, by mean of the finite volume method, respectively the steady state and transient forced convection in rectangular narrow channel between two parallel MTR-type fuel plates, imposed under a cosine shape heat flux. A comparison between both solutions is presented to determine the minimal coolant velocity which can ensure a safe reactor core cooling, where the cladding temperature should not reach a specific safety limit 90 °C. For this purpose, a computer program is developed to determine the principal parameter related to the nuclear core safety, such as the temperature distribution in the fuel plate and in the coolant (light water) as a function of the inlet coolant velocity. Finally, a good agreement is noticed between the both analytical and numerical solutions, where the obtained results are displayed graphically.
Keywords: Forced convection, friction factor pressure drop thermal hydraulic analysis, vertical heated rectangular channel.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 866