Search results for: Thermal adsorption
1007 Untargeted Small Metabolite Identification from Thermally Treated Tualang Honey
Authors: Lee Suan Chua
Abstract:
This study investigated the effects of thermal treatment on Tualang honey sample in terms of honey colour and heat-induced small metabolites. The heating process was carried out in a temperature controlled water batch at 90oC for 4 hours. The honey samples were put in cylinder tubes with the dimension of 1 cm diameter and 10 cm length for homogenous heat transfer. The results found that the thermal treatment produced not only hydroxylmethylfurfural, but also other harmful substances such as phthalic anhydride and radiolytic byproducts. The degradation of honey protein was due to the detection of free amino acids such as cysteine and phenylalanine in heat-treated honey samples. Sugar dehydration was also occurred because fragmented di-galactose was identified based on the presence of characteristic ions in the mass fragmentation pattern. The honey colour was found getting darker as the heating duration was increased up to 4 hours. Approximately, 60 mm PFund of increment was noticed for the honey colour with the colour change rate of 14.8 mm PFund per hour. Based on the principal component analysis, the score plot clearly shows that the chemical profile of Tualang honey was significantly altered after 2 hours of heating at 90oC.Keywords: Honey colour, hydroxylmethylfurfural, thermal treatment, Tualang honey.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 18701006 Electronics Thermal Management Driven Design of an IP65-Rated Motor Inverter
Authors: Sachin Kamble, Raghothama Anekal, Shivakumar Bhavi
Abstract:
Thermal management of electronic components packaged inside an IP65 rated enclosure is of prime importance in industrial applications. Electrical enclosure protects the multiple board configurations such as inverter, power, controller board components, busbars, and various power dissipating components from harsh environments. Industrial environments often experience relatively warm ambient conditions, and the electronic components housed in the enclosure dissipate heat, due to which the enclosures and the components require thermal management as well as reduction of internal ambient temperatures. Design of Experiments based thermal simulation approach with MOSFET arrangement, Heat sink design, Enclosure Volume, Copper and Aluminum Spreader, Power density, and Printed Circuit Board (PCB) type were considered to optimize air temperature inside the IP65 enclosure to ensure conducive operating temperature for controller board and electronic components through the different modes of heat transfer viz. conduction, natural convection and radiation using Ansys ICEPAK. MOSFET’s with the parallel arrangement, IP65 enclosure molded heat sink with rectangular fins on both enclosures, specific enclosure volume to satisfy the power density, Copper spreader to conduct heat to the enclosure, optimized power density value and selecting Aluminum clad PCB which improves the heat transfer were the contributors towards achieving a conducive operating temperature inside the IP-65 rated Motor Inverter enclosure. A reduction of 52 ℃ was achieved in internal ambient temperature inside the IP65 enclosure between baseline and final design parameters, which met the operative temperature requirements of the electronic components inside the IP-65 rated Motor Inverter.
Keywords: Ansys ICEPAK, Aluminum Clad PCB, IP 65 enclosure, motor inverter, thermal simulation.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 6651005 A Study of Thermal Convection in Two Porous Layers Governed by Brinkman's Model in Upper Layer and Darcy's Model in Lower Layer
Authors: M. S. Al-Qurashi
Abstract:
This work examines thermal convection in two porous layers. Flow in the upper layer is governed by Brinkman-s equations model and in the lower layer is governed by Darcy-s model. Legendre polynomials are used to obtain numerical solution when the lower layer is heated from below.Keywords: Brinkman's law, Darcy's law, porous layers, Legendre polynomials, the Oberbeck-Boussineq approximation.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 13811004 Thermal Performance and Environmental Assessment of Evaporative Cooling Systems: Case of Mina Valley, Saudi Arabia
Authors: A. Alharbi, R. Boukhanouf, T. Habeebullah, H. Ibrahim
Abstract:
This paper presents a detailed description of evaporative cooling systems used for space cooling in Mina Valley, Saudi Arabia. The thermal performance and environmental impact of the evaporative coolers were evaluated. It was found that the evaporative cooling systems used for space cooling in pilgrims’ accommodations and in the train stations could reduce energy consumption by as much as 75% and cut carbon dioxide emission by 78% compared to traditional vapour compression systems.
Keywords: Evaporative cooling, vapour compression, electricity consumption and CO2 emission.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 30421003 Numerical Simulations of Electronic Cooling with In-Line and Staggered Pin Fin Heat Sinks
Authors: Yue-Tzu Yang, Hsiang-Wen Tang, Jian-Zhang Yin, Chao-Han Wu
Abstract:
Three-dimensional incompressible turbulent fluid flow and heat transfer of pin fin heat sinks using air as a cooling fluid are numerically studied in this study. Two different kinds of pin fins are compared in the thermal performance, including circular and square cross sections, both are in-line and staggered arrangements. The turbulent governing equations are solved using a control-volume- based finite-difference method. Subsequently, numerical computations are performed with the realizable k - ԑ turbulence for the parameters studied, the fin height H, fin diameter D, and Reynolds number (Re) in the range of 7 ≤ H ≤ 10, 0.75 ≤ D ≤ 2, 2000 ≤ Re ≤ 126000 respectively. The numerical results are validated with available experimental data in the literature and good agreement has been found. It indicates that circular pin fins are streamlined in comparing with the square pin fins, the pressure drop is small than that of square pin fins, and heat transfer is not as good as the square pin fins. The thermal performance of the staggered pin fins is better than that of in-line pin fins because the staggered arrangements produce large disturbance. Both in-line and staggered arrangements show the same behavior for thermal resistance, pressure drop, and the entropy generation.
Keywords: Pin-fin, heat sinks, simulations, turbulent flow.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 12691002 3-D Transient Heat Transfer Analysis of Slab Heating Characteristics in a Reheating Furnace in Hot Strip Mills
Authors: J. Y. Jang, Y. W. Lee, C. N. Lin, C. H. Wang
Abstract:
The reheating furnace is used to reheat the steel slabs before the hot-rolling process. The supported system includes the stationary/moving beams, and the skid buttons which block some thermal radiation transmitted to the bottom of the slabs. Therefore, it is important to analyze the steel slab temperature distribution during the heating period. A three-dimensional mathematical transient heat transfer model for the prediction of temperature distribution within the slab has been developed. The effects of different skid button height (H=60mm, 90mm, and 120mm) and different gap distance between two slabs (S=50mm, 75mm, and 100mm) on the slab skid mark formation and temperature profiles are investigated. Comparison with the in-situ experimental data from Steel Company in Taiwan shows that the present heat transfer model works well for the prediction of thermal behavior of the slab in the reheating furnace. It is found that the skid mark severity decreases with an increase in the skid button height. The effect of gap distance is important only for the slab edge planes, while it is insignificant for the slab central planes.Keywords: 3-D, slab, transient heat conduction, reheating furnace, thermal radiation.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 23331001 An Intelligent Nondestructive Testing System of Ultrasonic Infrared Thermal Imaging Based on Embedded Linux
Authors: Hao Mi, Ming Yang, Tian-yue Yang
Abstract:
Ultrasonic infrared nondestructive testing is a kind of testing method with high speed, accuracy and localization. However, there are still some problems, such as the detection requires manual real-time field judgment, the methods of result storage and viewing are still primitive. An intelligent non-destructive detection system based on embedded linux is put forward in this paper. The hardware part of the detection system is based on the ARM (Advanced Reduced Instruction Set Computer Machine) core and an embedded linux system is built to realize image processing and defect detection of thermal images. The CLAHE algorithm and the Butterworth filter are used to process the thermal image, and then the boa server and CGI (Common Gateway Interface) technology are used to transmit the test results to the display terminal through the network for real-time monitoring and remote monitoring. The system also liberates labor and eliminates the obstacle of manual judgment. According to the experiment result, the system provides a convenient and quick solution for industrial non-destructive testing.Keywords: Remote monitoring, non-destructive testing, embedded linux system, image processing.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 9661000 Performance Improvement of a Supersonic External Compression Inlet by Heat Source Addition
Authors: Mohammad Reza Soltani, Mohammad Farahani, Javad Sepahi Younsi
Abstract:
Heat source addition to the axisymmetric supersonic inlet may improve the performance parameters, which will increase the inlet efficiency. In this investigation the heat has been added to the flow field at some distance ahead of an axisymmetric inlet by adding an imaginary thermal source upstream of cowl lip. The effect of heat addition on the drag coefficient, mass flow rate and the overall efficiency of the inlet have been investigated. The results show that heat addition causes flow separation, hence to prevent this phenomena, roughness has been added on the spike surface. However, heat addition reduces the drag coefficient and the inlet mass flow rate considerably. Furthermore, the effects of position, size, and shape on the inlet performance were studied. It is found that the thermal source deflects the flow streamlines. By improper location of the thermal source, the optimum condition has been obtained. For the optimum condition, the drag coefficient is considerably reduced and the inlet mass flow rate and its efficiency have been increased slightly. The optimum shape of the heat source is obtained too.Keywords: Drag coefficient, heat source, performanceparameters, supersonic inlet.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2290999 On Thermal Instabilities in a Viscoelastic Fluid Subject to Internal Heat Generation
Authors: Donna M. G. Comissiong, Tyrone D. Dass, Harold Ramkissoon, Alana R. Sankar
Abstract:
The B'enard-Marangoni thermal instability problem for a viscoelastic Jeffreys- fluid layer with internal heat generation is investigated. The fluid layer is bounded above by a realistic free deformable surface and by a plane surface below. Our analysis shows that while the internal heat generation and the relaxation time both destabilize the fluid layer, its stability may be enhanced by an increased retardation time.Keywords: Viscoelastic fluid, Jeffreys' model, Maxwell model, internal heat generation, retardation time, relaxation time.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1656998 Thermal and Mechanical Properties of Basalt Fibre Reinforced Concrete
Authors: Tumadhir M., Borhan
Abstract:
In this study, the thermal and mechanical properties of basalt fibre reinforced concrete were investigated. The volume fractions of basalt fibre of (0.1, 0.2, 0.3, and 0.5% by total mix volume) were used. Properties such as heat transfer, compressive and splitting tensile strengths were examined. Results indicated that the strength increases with increase the fibre content till 0.3% then there is a slight reduction when 0.5% fibre used. Lower amount of heat conducted through the thickness of concrete specimens than the conventional concrete was also recorded.Keywords: Chopped basalt fibre, Compressive strength, Splitting tensile strength, Heat transfer.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 5915997 Magnetohydrodynamic Maxwell Nanofluids Flow over a Stretching Surface through a Porous Medium: Effects of Non-Linear Thermal Radiation, Convective Boundary Conditions and Heat Generation/Absorption
Authors: Sameh E. Ahmed, Ramadan A. Mohamed, Abd Elraheem M. Aly, Mahmoud S. Soliman
Abstract:
In this paper, an enhancement of the heat transfer using non-Newtonian nanofluids by magnetohydrodynamic (MHD) mixed convection along stretching sheets embedded in an isotropic porous medium is investigated. Case of the Maxwell nanofluids is studied using the two phase mathematical model of nanofluids and the Darcy model is applied for the porous medium. Important effects are taken into account, namely, non-linear thermal radiation, convective boundary conditions, electromagnetic force and presence of the heat source/sink. Suitable similarity transformations are used to convert the governing equations to a system of ordinary differential equations then it is solved numerically using a fourth order Runge-Kutta method with shooting technique. The main results of the study revealed that the velocity profiles are decreasing functions of the Darcy number, the Deborah number and the magnetic field parameter. Also, the increase in the non-linear radiation parameters causes an enhancement in the local Nusselt number.
Keywords: MHD, nanofluids, stretching surface, non-linear thermal radiation, convective condition.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 960996 Investigation of Enhancement of Heat Transfer in Natural Convection Utilizing of Nanofluids
Authors: S. Etaig, R. Hasan, N. Perera
Abstract:
This paper analyses the heat transfer performance and fluid flow using different nanofluids in a square enclosure. The energy equation and Navier-Stokes equation are solved numerically using finite volume scheme. The effect of volume fraction concentration on the enhancement of heat transfer has been studied icorporating the Brownian motion; the influence of effective thermal conductivity on the enhancement was also investigated for a range of volume fraction concentration. The velocity profile for different Rayleigh number. Water-Cu, water AL2O3 and water-TiO2 were tested.Keywords: Computational fluid Dynamics, Natural convection, Nanofluid and Thermal conductivity.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1838995 Numerical Calculation of Heat Transfer in Water Heater
Authors: Michal Spilacek, Martin Lisy, Marek Balas, Zdenek Skala
Abstract:
This article is trying to determine the status of flue gas that is entering the KWH heat exchanger from combustion chamber in order to calculate the heat transfer ratio of the heat exchanger. Combination of measurement, calculation and computer simulation was used to create a useful way to approximate the heat transfer rate. The measurements were taken by a number of sensors that are mounted on the experimental device and by a thermal imaging camera. The results of the numerical calculation are in a good correspondence with the real power output of the experimental device. That result shows that the research has a good direction and can be used to propose changes in the construction of the heat exchanger, but still needs enhancements.
Keywords: Heat exchanger, heat transfer rate, numerical calculation, thermal images.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2839994 Thermal Distribution in Axial-Flow Fixed Bed with Flowing Gas
Authors: Kun Lei, Hongfang Ma, Haitao Zhang, Weiyong Ying, Dingye Fang
Abstract:
This paper reported an experimental research of steady-state heat transfer behaviour of a gas flowing through a fixed bed under the different operating conditions. Studies had been carried out in a fixed-bed packed methanol synthesis catalyst percolated by air at appropriate flow rate. Both radial and axial direction temperature distribution had been investigated under the different operating conditions. The effects of operating conditions including the reactor inlet air temperature, the heating pipe temperature and the air flow rate on temperature distribution was investigated and the experimental results showed that a higher inlet air temperature was conducive to uniform temperature distribution in the fixed bed. A large temperature drop existed at the radial direction, and the temperature drop increased with the heating pipe temperature increasing under the experimental conditions; the temperature profile of the vicinity of the heating pipe was strongly affected by the heating pipe temperature. A higher air flow rate can improve the heat transfer in the fixed bed. Based on the thermal distribution, heat transfer models of the fixed bed could be established, and the characteristics of the temperature distribution in the fixed bed could be finely described, that had an important practical significance.Keywords: Thermal distribution, heat transfer, axial-flow, fixed bed.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2481993 A Study on the Comparison of Mechanical and Thermal Properties According to Laminated Orientation of CFRP through Bending Test
Authors: Hee Jae Shin, Lee Ku Kwac, In Pyo Cha, Min Sang Lee, Hyun Kyung Yoon, Hong Gun Kim
Abstract:
In rapid industrial development, the demand for high-strength and lightweight materials have been increased. Thus, various CFRP (Carbon Fiber Reinforced Plastics) with composite materials are being used. The design variables of CFRP are its lamination direction, order and thickness. Thus, the hardness and strength of CFRP depends much on their design variables. In this paper, the lamination direction of CFRP was used to produce a symmetrical ply [0°/0°, -15°/+15°, -30°/+30°, -45°/+45°, -60°/+60°, -75°/+75° and 90°/90°] and an asymmetrical ply [0°/15°, 0°/30°, 0°/45°, 0°/60° 0°/75° and 0°/90°]. The bending flexure stress of the CFRP specimen was evaluated through a bending test. Its thermal property was measured using an infrared camera. The symmetrical specimen and the asymmetrical specimen were analyzed. The results showed that the asymmetrical specimen increased the bending loads according to the increase in the orientation angle; and from 0°, the symmetrical specimen showed a tendency opposite the asymmetrical tendency because the tensile force of fiber differs at the vertical direction of its load. Also, the infrared camera showed that the thermal property had a trend similar to that of the mechanical properties.
Keywords: Carbon Fiber Reinforced Plastic (CFRP), Bending Test, Infrared Camera, Composite.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2029992 Quantifying the UK’s Future Thermal Electricity Generation Water Use: Regional Analysis
Authors: Daniel Murrant, Andrew Quinn, Lee Chapman
Abstract:
A growing population has led to increasing global water and energy demand. This demand, combined with the effects of climate change and an increasing need to maintain and protect the natural environment, represents a potentially severe threat to many national infrastructure systems. This has resulted in a considerable quantity of published material on the interdependencies that exist between the supply of water and the thermal generation of electricity, often known as the water-energy nexus. Focusing specifically on the UK, there is a growing concern that the future availability of water may at times constrain thermal electricity generation, and therefore hinder the UK in meeting its increasing demand for a secure, and affordable supply of low carbon electricity. To provide further information on the threat the water-energy nexus may pose to the UK’s energy system, this paper models the regional water demand of UK thermal electricity generation in 2030 and 2050. It uses the strategically important Energy Systems Modelling Environment model developed by the Energy Technologies Institute. Unlike previous research, this paper was able to use abstraction and consumption factors specific to UK power stations. It finds that by 2050 the South East, Yorkshire and Humber, the West Midlands and North West regions are those with the greatest freshwater demand and therefore most likely to suffer from a lack of resource. However, it finds that by 2050 it is the East, South West and East Midlands regions with the greatest total water (fresh, estuarine and seawater) demand and the most likely to be constrained by environmental standards.
Keywords: Water-energy nexus, water resources, abstraction, climate change, power station cooling.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1549991 Removal of Cationic Heavy Metal and HOC from Soil-Washed Water Using Activated Carbon
Authors: Chi Kyu Ahn, Young Mi Kim, Seung Han Woo, Jong Moon Park
Abstract:
Soil washing process with a surfactant solution is a potential technology for the rapid removal of hydrophobic organic compound (HOC) from soil. However, large amount of washed water would be produced during operation and this should be treated effectively by proper methods. The soil washed water for complex contaminated site with HOC and heavy metals might contain high amount of pollutants such as HOC and heavy metals as well as used surfactant. The heavy metals in the soil washed water have toxic effects on microbial activities thus these should be removed from the washed water before proceeding to a biological waste-water treatment system. Moreover, the used surfactant solutions are necessary to be recovered for reducing the soil washing operation cost. In order to simultaneously remove the heavy metals and HOC from soil-washed water, activated carbon (AC) was used in the present study. In an anionic-nonionic surfactant mixed solution, the Cd(II) and phenanthrene (PHE) were effectively removed by adsorption on activated carbon. The removal efficiency for Cd(II) was increased from 0.027 mmol-Cd/g-AC to 0.142 mmol-Cd/g-AC as the mole ratio of SDS increased in the presence of PHE. The adsorptive capacity of PHE was also increased according to the SDS mole ratio due to the decrement of molar solubilization ratios (MSR) for PHE in an anionic-nonionic surfactant mixture. The simultaneous adsorption of HOC and cationic heavy metals using activated carbon could be a useful method for surfactant recovery and the reduction of heavy metal toxicity in a surfactant-enhanced soil washing process.
Keywords: Activated carbon, Anionic-nonionic surfactant mixture, Cationic heavy metal, HOC, Soil washing
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1731990 Patterned Growth of ZnO Nanowire Arrays on Zinc Foil by Thermal Oxidation
Authors: Farid Jamali Sheini, Dilip S. Joag, Mahendra A. More
Abstract:
A simple approach is demonstrated for growing large scale, nearly vertically aligned ZnO nanowire arrays by thermal oxidation method. To reveal effect of temperature on growth and physical properties of the ZnO nanowires, gold coated zinc substrates were annealed at 300 °C and 400 °C for 4 hours duration in air. Xray diffraction patterns of annealed samples indicated a set of well defined diffraction peaks, indexed to the wurtzite hexagonal phase of ZnO. The scanning electron microscopy studies show formation of ZnO nanowires having length of several microns and average of diameter less than 500 nm. It is found that the areal density of wires is relatively higher, when the annealing is carried out at higher temperature i.e. at 400°C. From the field emission studies, the values of the turn-on and threshold field, required to draw emission current density of 10 μA/cm2 and 100 μA/cm2 are observed to be 1.2 V/μm and 1.7 V/μm for the samples annealed at 300 °C and 2.9 V/μm and 3.7 V/μm for that annealed at 400 °C, respectively. The field emission current stability, investigated over duration of more than 2 hours at the preset value of 1 μA, is found to be fairly good in both cases. The simplicity of the synthesis route coupled with the promising field emission properties offer unprecedented advantage for the use of ZnO field emitters for high current density applications.Keywords: ZnO, Nanowires, Thermal oxidation, FieldEmission.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2059989 Temperature-dependent Structural Perturbation of Tuna Myoglobin
Authors: Yoshihiro Ochiai
Abstract:
To unveil the mechanism of fast autooxidation of fish myoglobins, the effect of temperature on the structural change of tuna myoglobin was investigated. Purified myoglobin was subjected to preincubation at 5, 20, 50 and 40oC. Overall helical structural decay through thermal treatment up to 95oC was monitored by circular dichroism spectrometry, while the structural changes around the heme pocket was measured by ultraviolet/visible absorption spectrophotometry. As a result, no essential structural change of myoglobin was observed under 30oC, roughly equivalent to their body temperature, but the structure was clearly damaged at 40oC. The Soret band absorption hardly differed irrespective of preincubation temperature, suggesting that the structure around the heme pocket was not perturbed even after thermal treatment.Keywords: denaturation, myoglobin, stability, tuna.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1985988 Design and Characteristics of New Test Facility for Flat Plate Boundary Layer Research
Authors: N. Patten, T. M. Young, P. Griffin
Abstract:
Preliminary results for a new flat plate test facility are presented here in the form of Computational Fluid Dynamics (CFD), flow visualisation, pressure measurements and thermal anemometry. The results from the CFD and flow visualisation show the effectiveness of the plate design, with the trailing edge flap anchoring the stagnation point on the working surface and reducing the extent of the leading edge separation. The flow visualization technique demonstrates the two-dimensionality of the flow in the location where the thermal anemometry measurements are obtained. Measurements of the boundary layer mean velocity profiles compare favourably with the Blasius solution, thereby allowing for comparison of future measurements with the wealth of data available on zero pressure gradient Blasius flows. Results for the skin friction, boundary layer thickness, frictional velocity and wall shear stress are shown to agree well with the Blasius theory, with a maximum experimental deviation from theory of 5%. Two turbulence generating grids have been designed and characterized and it is shown that the turbulence decay downstream of both grids agrees with established correlations. It is also demonstrated that there is little dependence of turbulence on the freestream velocity.Keywords: CFD, Flow Visualisation, Thermal Anemometry, Turbulence Grids.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1773987 Thermal Performance of an Air Heating Storing System
Authors: Mohammed A. Elhaj, Jamal S. Yassin
Abstract:
Owing to the lack of synchronization between the solar energy availability and the heat demands in a specific application, the energy storing sub-system is necessary to maintain the continuity of thermal process. The present work is dealing with an active solar heating storing system in which an air solar collector is connected to storing unit where this energy is distributed and provided to the heated space in a controlled manner. The solar collector is a box type absorber where the air flows between a number of vanes attached between the collector absorber and the bottom plate. This design can improve the efficiency due to increasing the heat transfer area exposed to the flowing air, as well as the heat conduction through the metal vanes from the top absorbing surface. The storing unit is a packed bed type where the air is coming from the air collector and circulated through the bed in order to add/remove the energy through the charging / discharging processes, respectively. The major advantage of the packed bed storage is its high degree of thermal stratification. Numerical solution of the packed bed energy storage is considered through dividing the bed into a number of equal segments for the bed particles and solved the energy equation for each segment depending on the neighbor ones. The studied design and performance parameters in the developed simulation model including, particle size, void fraction, etc. The final results showed that the collector efficiency was fluctuated between 55%-61% in winter season (January) under the climatic conditions of Misurata in Libya. Maximum temperature of 52ºC is attained at the top of the bed while the lower one is 25ºC at the end of the charging process of hot air into the bed. This distribution can satisfy the required load for the most house heating in Libya.
Keywords: Solar energy, thermal process, performance, collector, packed bed, numerical analysis, simulation.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1998986 Tribological Behaviour Improvement of Lubricant Using Copper (II) Oxide Nanoparticles as Additive
Authors: M. A. Hassan, M. H. Sakinah, K. Kadirgama, D. Ramasamy, M. M. Noor, M. M. Rahman
Abstract:
Tribological properties that include nanoparticles are an alternative to improve the tribological behaviour of lubricating oil, which has been investigated by many researchers for the past few decades. Various nanostructures can be used as additives for tribological improvement. However, this also depends on the characteristics of the nanoparticles. In this study, tribological investigation was performed to examine the effect of CuO nanoparticles on the tribological behaviour of Syntium 800 SL 10W−30. Three parameters used in the analysis using the wear tester (piston ring) were load, revolutions per minute (rpm), and concentration. The specifications of the nanoparticles, such as size, concentration, hardness, and shape, can affect the tribological behaviour of the lubricant. The friction and wear experiment was conducted using a tribo-tester and the Response Surface Methodology method was used to analyse any improvement of the performance. Therefore, two concentrations of 40 nm nanoparticles were used to conduct the experiments, namely, 0.005 wt % and 0.01 wt % and compared with base oil 0 wt % (control). A water bath sonicator was used to disperse the nanoparticles in base oil, while a tribo-tester was used to measure the coefficient of friction and wear rate. In addition, the thermal properties of the nanolubricant were also measured. The results have shown that the thermal conductivity of the nanolubricant was increased when compared with the base oil. Therefore, the results indicated that CuO nanoparticles had improved the tribological behaviour as well as the thermal properties of the nanolubricant oil.
Keywords: Concentration, improvement, tribological, Copper (II) oxide, nanolubricant.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1892985 Study of Incineration of Acacia Wood Chips for Biomass Power Plant of the Royal Thai Navy in Sattahip, Chonburi Province, Thailand
Authors: Thanapong Suriyea, Teeratas Pornyungyuen, Koonlaya Kanokjaruvijit
Abstract:
This research is aimed to find optimal values of parameters of acacia wood chips combustion in a bubbling fluidized bed for electrification within the area of the Royal Thai Navy in Sattahip, Chonburi province, Thailand. The size of wood chips falls in the range of 25 mm in diameter. The bed temperature is set within the range of 800±10 oC with the air flow rate of 2.1-3.1 m/min corresponding to the air-fuel ratio between 0.71 to 1.03. The resulting thermal efficiency is approximately 95% with a thermal output of 474.76 kWth, which produced the electricity 0.131 kW-hr.
Keywords: Acacia Wood Chips, Biomass, Combustion, Fluidized Bed.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2704984 Preparation of Protective Coating Film on Metal Alloy
Authors: Rana Th. A. Al-Rubaye
Abstract:
A novel chromium-free protective coating films based on a zeolite coating was growing onto a FeCrAlloy metal using in – situ hydrothermal method. The zeolite film was obtained using in-situ crystallization process that is capable of coating large surfaces with complex shape and in confined spaces has been developed. The zeolite coating offers an advantage of a high mechanical stability and thermal stability. The physicochemical properties were investigated using X-ray diffraction (XRD), Electron Microscopy (SEM), Energy Dispersive X–ray Analysis (EDX) and Thermogravimetric Analysis (TGA). The transition from oxide-on-alloy wires to hydrothermally synthesised uniformly zeolite coated surfaces was followed using SEM and XRD. In addition, the robustness of the prepared coating was confirmed by subjecting these to thermal cycling (ambient to 550oC).Keywords: FeCrAlloy, Zeolite ZSM-5. Zeolite coating.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1842983 Evaluation of Optimal Residence Time in a Hot Rolled Reheating Furnace
Authors: Dong-Eun Lee
Abstract:
To calculate the temperature distribution of the slab in a hot rolled reheating furnace a mathematical model has been developed by considering the thermal radiation in the furnace and transient conduction in the slab. The furnace is modeled as radiating medium with spatially varying temperature. Radiative heat flux within the furnace including the effect of furnace walls, combustion gases, skid beams and buttons is calculated using the FVM and is applied as the boundary condition of the transient conduction equation of the slab. After determining the slab emissivity by comparison between simulation and experimental work, variation of heating characteristics in the slab is investigated in the case of changing furnace temperature with various time and the slab residence time is optimized with this evaluation.Keywords: Reheating Furnace, Thermal Radiation, ResidenceTime, FVM for Radiation
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2497982 Study of Aero-thermal Effects with Heat Radiation in Optical Side Window
Authors: Chun-Chi Li, Da-Wei Huang, Yin-Chia Su, Liang-Chih Tasi
Abstract:
In hypersonic environments, the aerothermal effect makes it difficult for the optical side windows of optical guided missiles to withstand high heat. This produces cracking or breaking, resulting in an inability to function. This study used computational fluid mechanics to investigate the external cooling jet conditions of optical side windows. The turbulent models k-ε and k-ω were simulated. To be in better accord with actual aerothermal environments, a thermal radiation model was added to examine suitable amounts of external coolants and the optical window problems of aero-thermodynamics. The simulation results indicate that when there are no external cooling jets, because airflow on the optical window and the tail groove produce vortices, the temperatures in these two locations reach a peak of approximately 1600 K. When the external cooling jets worked at 0.15 kg/s, the surface temperature of the optical windows dropped to approximately 280 K. When adding thermal radiation conditions, because heat flux dissipation was faster, the surface temperature of the optical windows fell from 280 K to approximately 260 K. The difference in influence of the different turbulence models k-ε and k-ω on optical window surface temperature was not significant.Keywords: aero-optical side window, aerothermal effect, cooling, hypersonic flow
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 3116981 The Design of PIP Controller for a Thermal System with Large Time Delay
Authors: Seiyed Hamid Zareh, Atabak Sarrafan, Kambiz Ghaemi Osgouie
Abstract:
This paper will first describe predictor controllers when the proportional-integral-derivative (PID) controllers are inactive for procedures that have large delay time (LDT) in transfer stage. Therefore in those states, the predictor controllers are better than the PID controllers, then compares three types of predictor controllers. The value of these controller-s parameters are obtained by trial and error method, so here an effort has been made to obtain these parameters by Ziegler-Nichols method. Eventually in this paper Ziegler-Nichols method has been described and finally, a PIP controller has been designed for a thermal system, which circulates hot air to keep the temperature of a chamber constant.Keywords: Proportional-integral-predictive controller, Transferfunction, Delay time, Transport-lag.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1794980 Forced Heat Transfer Convection in a Porous Channel with an Oriented Confined Jet
Authors: A. Abdedou, K. Bouhadef
Abstract:
The present study is an analysis of the forced convection heat transfer in porous channel with an oriented jet at the inlet with uniform velocity and temperature distributions. The upper wall is insulated when the bottom one is kept at constant temperature higher than that of the fluid at the entrance. The dynamic field is analysed by the Brinkman-Forchheimer extended Darcy model and the thermal field is traduced by the energy one equation model. The numerical solution of the governing equations is obtained by using the finite volume method. The results mainly concern the effect of Reynolds number, jet angle and thermal conductivity ratio on the flow structure and local and average Nusselt numbers evolutions.
Keywords: Forced convection, oriented confined jet, porous media.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2002979 Application of Residual Correction Method on Hyperbolic Thermoelastic Response of Hollow Spherical Medium in Rapid Transient Heat Conduction
Authors: Po-Jen Su, Huann-Ming Chou
Abstract:
In this article, we used the residual correction method to deal with transient thermoelastic problems with a hollow spherical region when the continuum medium possesses spherically isotropic thermoelastic properties. Based on linear thermoelastic theory, the equations of hyperbolic heat conduction and thermoelastic motion were combined to establish the thermoelastic dynamic model with consideration of the deformation acceleration effect and non-Fourier effect under the condition of transient thermal shock. The approximate solutions of temperature and displacement distributions are obtained using the residual correction method based on the maximum principle in combination with the finite difference method, making it easier and faster to obtain upper and lower approximations of exact solutions. The proposed method is found to be an effective numerical method with satisfactory accuracy. Moreover, the result shows that the effect of transient thermal shock induced by deformation acceleration is enhanced by non-Fourier heat conduction with increased peak stress. The influence on the stress increases with the thermal relaxation time.Keywords: Maximum principle, non-Fourier heat conduction, residual correction method, thermo-elastic response.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1747978 Investigation of Long-Term Thermal Insulation Performance of Vacuum Insulation Panels with Various Enveloping Methods
Authors: Inseok Yeo, Tae-Ho Song
Abstract:
To practically apply vacuum insulation panels (VIPs) to buildings or home appliances, VIPs have demanded long-term lifespan with outstanding insulation performance. Service lives of VIPs enveloped with Al-foil and three-layer Al-metallized envelope are calculated. For Al-foil envelope, the service life is longer but edge conduction is too large compared with the Al-metallized envelope. To increase service life even more, the proposed double enveloping method and metal-barrier-added enveloping method are further analyzed. The service lives of the VIP to employ two enveloping methods are calculated. Also, pressure increase and thermal insulation performance characteristics are investigated. For the metalbarrier- added enveloping method, effective thermal conductivity increase with time is close to that of Al-foil envelope, especially, for getter-inserted VIPs. For double enveloping method, if water vapor is perfectly adsorbed, the effect of service life enhancement becomes much greater. From these methods, the VIP can be guaranteed for service life of more than 20 years.
Keywords: Vacuum insulation panels, Service life, Double enveloping, Metal-barrier-added enveloping, Edge conduction.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2451