Search results for: Pressure recovery
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 1728

Search results for: Pressure recovery

1188 Wastewater Treatment with Ammonia Recovery System

Authors: M. Örvös, T. Balázs, K. F. Both

Abstract:

From environmental aspect purification of ammonia containing wastewater is expected. High efficiency ammonia desorption can be done from the water by air on proper temperature. After the desorption process, ammonia can be recovered and used in another technology. The calculation method described below give some methods to find either the minimum column height or ammonia rich solution of the effluent.

Keywords: Absorber, desorber, packed column.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2636
1187 Hydrodynamic Analysis of Reservoir Due to Vertical Component of Earthquake Using an Analytical Solution

Authors: M. Pasbani Khiavi, M. A. Ghorbani

Abstract:

This paper presents an analytical solution to get a reliable estimation of the hydrodynamic pressure on gravity dams induced by vertical component earthquake when solving the fluid and dam interaction problem. Presented analytical technique is presented for calculation of earthquake-induced hydrodynamic pressure in the reservoir of gravity dams allowing for water compressibility and wave absorption at the reservoir bottom. This new analytical solution can take into account the effect of bottom material on seismic response of gravity dams. It is concluded that because the vertical component of ground motion causes significant hydrodynamic forces in the horizontal direction on a vertical upstream face, responses to the vertical component of ground motion are of special importance in analysis of concrete gravity dams subjected to earthquakes.

Keywords: Dam, Reservoir, Analytical solution, Vertical component, Earthquake

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1725
1186 Utilizing Taguchi Experimental Design for Optimizing Effective Parameters in Tire Vulcanization

Authors: Ipak Torkpour

Abstract:

In order to convert natural rubber or related polymers to material with varying physical properties such as elastic modulus or durability, a chemical process named sulfur vulcanization is needed. This can be either done by heating sulfur or sulfur-containing compounds. The main goal of this process is to produce untreated natural rubber latex that can be the main source of manufacturing for several rubber producers. Temperature, pressure, and time are considered as three crucial factors in the tire vulcanization process. The present study is an attempt to optimize these crucial parameters, with the aim of achieving maximum tire modulus using Taguchi experimental design. The results revealed that the optimal parameter values are as follows: a temperature of 170 °C, a pressure of 110 bar, and a time duration of 230 seconds. Under these optimized conditions, the obtained tire modulus reached 8.8 kgf.

Keywords: Rubber vulcanization, experimental design, Taguchi, polymers.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 51
1185 Kinetic and Removable of Amoxicillin Using Aliquat336 as a Carrier via a HFSLM

Authors: Teerapon Pirom, Ura Pancharoen

Abstract:

Amoxicillin is an antibiotic which is widely used to treat various infections in both human beings and animals. However, when amoxicillin is released into the environment, it is a major problem. Amoxicillin causes bacterial resistance to these drugs and failure of treatment with antibiotics. Liquid membrane is of great interest as a promising method for the separation and recovery of the target ions from aqueous solutions due to the use of carriers for the transport mechanism, resulting in highly selectivity and rapid transportation of the desired metal ions. The simultaneous processes of extraction and stripping in a single unit operation of liquid membrane system are very interesting. Therefore, it is practical to apply liquid membrane, particularly the HFSLM for industrial applications as HFSLM is proved to be a separation process with lower capital and operating costs, low energy and extractant with long life time, high selectivity and high fluxes compared with solid membranes. It is a simple design amenable to scaling up for industrial applications. The extraction and recovery for (Amoxicillin) through the hollow fiber supported liquid membrane (HFSLM) using aliquat336 as a carrier were explored with the experimental data. The important variables affecting on transport of amoxicillin viz. extractant concentration and operating time were investigated. The highest AMOX- extraction percentages of 85.35 and Amoxicillin stripping of 80.04 were achieved with the best condition at 6 mmol/L [aliquat336] and operating time 100 min. The extraction reaction order (n) and the extraction reaction rate constant (kf) were found to be 1.00 and 0.0344 min-1, respectively.

Keywords: Aliquat336, amoxicillin, HFSLM, kinetic.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1677
1184 Nongovernmental Organisations’ Sustainable Strategic Planning and Its Impact on Donors’ Loyalty

Authors: Farah Mahmoud Attallah, Sara El-Deeb

Abstract:

The non-profit sector has been heavily rising with the rise of sustainable development in developed and developing countries. Most economies are putting high pressure on this sector, believing that nongovernmental organizations (NGOs) are one of the main rescues during crises worldwide. However, with the rising number of those NGOs comes their incapability of sustaining their performance and fundraising. Additionally, donors who are considered the key partners for those organizations have become knowledgeable about this sector which made them more demanding, putting high pressure on those organizations to believe that there must be a valuable return for the economy in order to donate. This research aims to study the impact of a sustainable strategic planning model on raising loyal donors; the proposed model of this research presents several independent variables determining their impact on donors' intention to become loyal.

Keywords: Non-profit sector, non-governmental organizations, strategic planning, sustainable business model.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 115
1183 Experimental Challenges and Solutions in Design and Operation of the Test Rig for Water Lubricated Journal Bearing

Authors: Ravindra Mallya, B. Satish Shenoy, B. Raghuvir Pai

Abstract:

The study deals with the challenges in developing a test rig to test the performance of water lubricated journal bearing. The test rig is designed to simulate the working conditions of the bearing in order to understand their performance before they are put in operation. The bearing that is studied is the commercially available water lubricated bearing which has a rubber liner bonded with a rigid metal shell. The lubricant enters the bearing axially through a pressurized inlet tank and exits to an outlet tank which is at sufficiently low pressure. The load on the bearing is applied through the dead weight system which acts both in upward and downward direction so that net load acts on the bearing. The issues in feeding the lubricant into the bearing from the inlet side and preventing the leakage of the lubricant is discussed. The application of the load on the test bearing while maintaining the bearing afloat is also discussed.

Keywords: Axial groove, hydrodynamic pressure, journal bearing, test rig, water lubrication.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2622
1182 Solid Particle Erosion of Heat Treated TNB-V4 at Ambient and Elevated Temperatures

Authors: Muhammad Naveed, Richard Stechow, Sebastian Bolz, Katharina Hobusch, Sabine Weiß

Abstract:

Solid particle erosion has been identified as a critical wear phenomenon which takes place during operation of aeroengines in dusty environment. The present work discusses the erosion behavior of Ti-44.5Al-6.25Nb-0.8Mo-0.1B alloy (TNB-V4) which finds its application in low pressure gas turbines and can be used for high pressure compressors too. Prior to the erosion tests, the alloy was heat treated to improve the mechanical properties. Afterwards, specimens were eroded at impact angles of 30° and 90° at room and high temperatures (100 °C-400 °C). Volume loss and erosion behavior are studied through gravimetric analysis, whereas erosion mechanisms are characterized through scanning electron microscopy. The results indicate a clear difference in the erosion mechanism for different impact angles. The influence of the test temperature on the erosion behavior of the alloy is also discussed in the present contribution.

Keywords: Solid particle erosion, gamma TiAl, TNB-V4, high temperature erosion.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1488
1181 Instability Problem of Turbo-Machines with Radial Distortion Problems

Authors: Yasuo Obikane, Sofiane Khelladi

Abstract:

In the upstream we place a piece of ring and rotate it with 83Hz, 166Hz, 333Hz,and 666H to find the effect of the periodic distortion.In the experiment this type of the perturbation will not allow since the mechanical failure of any parts of the equipment in the upstream will destroy the blade system. This type of study will be only possible by CFD. We use two pumps NS32 (ENSAM) and three blades pump (Tamagawa Univ). The benchmark computations were performed without perturbation parts, and confirm the computational results well agreement in head-flow rate. We obtained the pressure fluctuation growth rate that is representing the global instability of the turbo-system. The fluctuating torque components were 0.01Nm(5000rpm), 0.1Nm(10000rmp), 0.04Nm(20000rmp), 0.15Nm( 40000rmp) respectively. Only for 10000rpm(166Hz) the output toque was random, and it implies that it creates unsteady flow by separations on the blades, and will reduce the pressure loss significantly

Keywords: inlet distorsion, perturbation, turbo-machine

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1440
1180 The Effect of Pulling and Rotation Speed on the Jet Grout Columns

Authors: İbrahim Hakkı Erkan, Özcan Tan

Abstract:

The performance of jet grout columns was affected by many controlled and uncontrolled parameters. The leading parameters for the controlled ones can be listed as injection pressure, rod pulling speed, rod rotation speed, number of nozzles, nozzle diameter and Water/Cement ratio. And the uncontrolled parameters are soil type, soil structure, soil layering condition, underground water level, the changes in strength parameters and the rheologic properties of cement in time. In this study, the performance of jet grout columns and the effects of pulling speed and rotation speed were investigated experimentally. For this purpose, a laboratory type jet grouting system was designed for the experiments. Through this system, jet grout columns were produced in three different conditions. The results of the study showed that the grout pressure and the lifting speed significantly affect the performance of the jet grouting columns.

Keywords: Jet grout, sandy soils, soil improvement, soilcrete.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1580
1179 Investigation of the Effect of Cavitator Angle and Dimensions for a Supercavitating Vehicle

Authors: Sri Raman A., A.K.Ghosh

Abstract:

At very high speeds, bubbles form in the underwater vehicles because of sharp trailing edges or of places where the local pressure is lower than the vapor pressure. These bubbles are called cavities and the size of the cavities grows as the velocity increases. A properly designed cavitator can induce the formation of a single big cavity all over the vehicle. Such a vehicle travelling in the vaporous cavity is called a supercavitating vehicle and the present research work mainly focuses on the dynamic modeling of such vehicles. Cavitation of the fins is also accounted and the effect of the same on trajectory is well explained. The entire dynamics has been developed using the state space approach and emphasis is given on the effect of size and angle of attack of the cavitator. Control law has been established for the motion of the vehicle using Non-linear Dynamic Inverse (NDI) with cavitator as the control surface.

Keywords: High speed underwater vehicle, Non-Linear Dynamic Inverse (NDI), six-dof modeling, Supercavitation, Torpedo.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 71561
1178 Simulation and Experimentation on the Contact Width of New Metal Gasket for Asbestos Substitution

Authors: Moch. Agus Choiron, Yoshihiro Kurata, Shigeyuki Haruyama, Ken Kaminishi

Abstract:

The contact width is important design parameter for optimizing the design of new metal gasket for asbestos substitution gasket. The contact width is found have relationship with the helium leak quantity. In the increasing of axial load value, the helium leak quantity is decreasing and the contact width is increasing. This study provides validity method using simulation analysis and the result is compared to experimental using pressure sensitive paper. The results denote similar trend data between simulation and experimental result. Final evaluation is determined by helium leak quantity to check leakage performance of gasket design. Considering the phenomena of position change on the convex contact, it can be developed the optimization of gasket design by increasing contact width.

Keywords: contact width, simulation, pressure sensitive paper.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1920
1177 The Effect of Eight Weeks of Aerobic Training on Indices of Cardio-Respiratory and Exercise Tolerance in Overweight Women with Chronic Asthma

Authors: Somayeh Negahdari, Mohsen Ghanbarzadeh, Masoud Nikbakht, Heshmatolah Tavakol

Abstract:

Asthma, obesity and overweight are the main factors causing change within the heart and respiratory airways. Asthma symptoms are normally observed during exercising. Epidemiological studies have indicated asthma symptoms occurring due to certain lifestyle habits; for example, a sedentary lifestyle. In this study, eight weeks of aerobic exercises resulted in a positive effect overall in overweight women experiencing mild chronic asthma. The quasi-experimental applied research has been done based on experimental and control groups. The experimental group (seven patients) and control group (n = 7) were graded before and after the test. According to the Borg dyspnea and fatigue Perception Index, the training intensity has determined. Participants in the study performed a sub-maximal aerobic activity schedule (45% to 80% of maximum heart rate) for two months, while the control group (n = 7) stayed away from aerobic exercise. Data evaluation and analysis of covariance compared both the pre-test and post-test with paired t-test at significance level of P≤ 0.05. After eight weeks of exercise, the results of the experimental group show a significant decrease in resting heart rate, systolic blood pressure, minute ventilation, while a significant increase in maximal oxygen uptake and tolerance activity (P ≤ 0.05). In the control group, there was no significant difference in these parameters ((P ≤ 0.05). The results indicate the aerobic activity can strengthen the respiratory muscles, while other physiological factors could result in breathing and heart recovery. Aerobic activity also resulted in favorable changes in cardiovascular parameters, and exercise tolerance of overweight women with chronic asthma.

Keywords: Asthma, respiratory cardiac index, exercise tolerance, aerobic, overweight.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 729
1176 Water Vapor Plasma Torch: Design, Characteristics and Applications

Authors: A. Tamošiūnas, P. Valatkevičius, V. Grigaitiene, V. Valinčius

Abstract:

The atmospheric pressure plasma torch with a direct current arc discharge stabilized by water vapor vortex was experimentally investigated. Overheated up to 450K water vapor was used as plasma forming gas. Plasma torch design is one of the most important factors leading to a stable operation of the device. The electrical and thermal characteristics of the plasma torch were determined during the experimental investigations. The design and the basic characteristics of the water vapor plasma torch are presented in the paper. Plasma torches with the electric arc stabilized by water vapor vortex provide special performance characteristics in some plasma processing applications such as thermal plasma neutralization and destruction of organic wastes enabling to extract high caloric value synthesis gas as by-product of the process. Syngas could be used as a surrogate fuel partly replacing the dependence on the fossil fuels or used as a feedstock for hydrogen, methanol production.

Keywords: Arc discharge, atmospheric pressure thermal plasma, plasma torch, water vapor.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 4446
1175 Convection through Light Weight Timber Constructions with Mineral Wool

Authors: J. Schmidt, O. Kornadt

Abstract:

The major part of light weight timber constructions consists of insulation. Mineral wool is the most commonly used insulation due to its cost efficiency and easy handling. The fiber orientation and porosity of this insulation material enables flowthrough. The air flow resistance is low. If leakage occurs in the insulated bay section, the convective flow may cause energy losses and infiltration of the exterior wall with moisture and particles. In particular the infiltrated moisture may lead to thermal bridges and growth of health endangering mould and mildew. In order to prevent this problem, different numerical calculation models have been developed. All models developed so far have a potential for completion. The implementation of the flow-through properties of mineral wool insulation may help to improve the existing models. Assuming that the real pressure difference between interior and exterior surface is larger than the prescribed pressure difference in the standard test procedure for mineral wool ISO 9053 / EN 29053, measurements were performed using the measurement setup for research on convective moisture transfer “MSRCMT". These measurements show, that structural inhomogeneities of mineral wool effect the permeability only at higher pressure differences, as applied in MSRCMT. Additional microscopic investigations show, that the location of a leak within the construction has a crucial influence on the air flow-through and the infiltration rate. The results clearly indicate that the empirical values for the acoustic resistance of mineral wool should not be used for the calculation of convective transfer mechanisms.

Keywords: convection, convective transfer, infiltration, mineralwool, permeability, resistance, leakage

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2110
1174 Large-Eddy Simulation of Hypersonic Configuration Aerodynamics

Authors: Huang Shengqin, Xiao Hong

Abstract:

LES with mixed subgrid-scale model has been used to simulate aerodynamic performance of hypersonic configuration. The simulation was conducted to replicate conditions and geometry of a model which has been previously tested. LES Model has been successful in predict pressure coefficient with the max error 1.5% besides afterbody. But in the high Mach number condition, it is poor in predict ability and product 12.5% error. The calculation error are mainly conducted by the distribution swirling. The fact of poor ability in the high Mach number and afterbody region indicated that the mixed subgrid-scale model should be improved in large eddied especially in hypersonic separate region. In the condition of attach and sideslip flight, the calculation results have waves. LES are successful in the prediction the pressure wave in hypersonic flow.

Keywords: Hypersonic, LES, mixed Subgrid-scale model, experiment.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1545
1173 Excitation Experiments of a Cone Loudspeaker and Vibration-Acoustic Analysis Using FEM

Authors: Y. Hu, X. Zhao, T. Yamaguchi, M. Sasajima, Y. Koike

Abstract:

To focus on the vibration mode of a cone loudspeaker, which acts as an electroacoustic transducer, excitation experiments were performed using two types of loudspeaker units: one employing an impulse hammer and the other a sweep signal. The on-axis sound pressure frequency properties of the loudspeaker were evaluated, and the characteristic properties of the loudspeakers were successfully determined in both excitation experiments. Moreover, under conditions identical to the experiment conditions, a coupled analysis of the vibration-acoustics of the cone loudspeaker was performed using an acoustic analysis software program that considers the impact of damping caused by air viscosity. The result of sound pressure frequency properties with the numerical analysis are the most closely match that measured in the excitation experiments over a wide range of frequency bands.

Keywords: Anechoic room, finite element method, impulse hammer, loudspeaker, reverberation room, sweep signal.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1768
1172 Influence of Insulation System Methods on Dissipation Factor and Voltage Endurance

Authors: Farzad Yavari, Hamid Chegini, Saeed Lotfi

Abstract:

This paper reviews the comparison of Resin Rich (RR) and Vacuum Pressure Impregnation (VPI) insulation system qualities for stator bar of rotating electrical machines. Voltage endurance and tangent delta are two diagnostic tests to determine the quality of insulation systems. The paper describes the trend of dissipation factor while performing voltage endurance test for different stator bar samples made with RR and VPI insulation system methods. Some samples were made with the same strands and insulation thickness but with different main wall material to prove the influence of insulation system methods on stator bar quality. Also, some of the samples were subjected to voltage at the temperature of their insulation class, and their dissipation factor changes were measured and studied.

Keywords: Vacuum pressure impregnation, resin rich, insulation, stator bar, dissipation factor, voltage endurance.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 554
1171 Absorption of CO2 in EAF Reducing Slag from Stainless Steel Making Process by Wet Grinding

Authors: B.M.N. Nik Hisyamudin, S. Yokoyama, M. Umemoto

Abstract:

In the current study, we have conducted an experimental investigation on the utilization of electronic arc furnace (EAF) reducing slag for the absorption of CO2 via wet grinding method. It was carried out by various grinding conditions. The slag was ground in the vibrating ball mill in the presence of CO2 and pure water under ambient temperature. The reaction behavior was monitored with constant pressure method, and the changes of experimental systems volume as a function of grinding time were measured. It was found that the CO2 absorption occurred as soon as the grinding started. The CO2 absorption was significantly increased in the case of wet grinding compare to the dry grinding. Generally, the amount of CO2 absorption increased as the amount of water, weight of slag and initial pressure increased. However, it was decreased when the amount of water exceeds 200ml and when smaller balls were used. The absorption of CO2 occurred simultaneously with the start of the grinding and it stopped when the grinding was stopped. According to this research, the CO2 reacted with the CaO inside the slag, forming CaCO3.

Keywords: CO2 absorption, EAF reducing slag, vibration ball mill, wet grinding.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1746
1170 An Experimental Investigation of Petrodiesel and Cotton Seed Biodiesel (CSOME) in Diesel Engine

Authors: P. V. Rao, Jaedaa Abdulhamid

Abstract:

Biodiesel is widely investigated to solve the twin problem of depletion of fossil fuel and environmental degradation. The main objective of the present work is to compare performance, emissions, and combustion characteristics of biodiesel derived from cotton seed oil in a diesel engine with the baseline results of petrodiesel fuel. Tests have been conducted on a single cylinder, four stroke CIDI diesel engine with a speed of 1500 rpm and a fixed compression ratio of 17.5 at different load conditions. The performance parameters evaluated include brake thermal efficiency, brake specific fuel consumption, brake power, indicated mean effective pressure, mechanical efficiency, and exhaust gas temperature. Regarding combustion study, cylinder pressure, rate of pressure rise, net heat release rate, cumulative heat release, mean gas temperature, mass fraction burned, and fuel line pressure were evaluated. The emission parameters such as carbon monoxide, carbon dioxide, un-burnt hydrocarbon, oxides of nitrogen, and smoke opacity were also measured by a smoke meter and an exhaust gas analyzer and compared with baseline results. The brake thermal efficiency of cotton seed oil methyl ester (CSOME) was lower than that of petrodiesel and brake specific fuel consumption was found to be higher. However, biodiesel resulted in the reduction of carbon dioxide, un-burnt hydrocarbon, and smoke opacity at the expense of nitrogen oxides. Carbon monoxide emissions for biodiesel was higher at maximum output power. It has been found that the combustion characteristics of cotton seed oil methyl ester closely followed those of standard petrodiesel. The experimental results suggested that biodiesel derived from cotton seed oil could be used as a good substitute to petrodiesel fuel in a conventional diesel without any modification.

Keywords: Diesel engine, Cotton seed, Biodiesel, performance, combustion, emissions.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1316
1169 Effect of Injection Moulding Process Parameter on Tensile Strength Using Taguchi Method

Authors: Gurjeet Singh, M. K. Pradhan, Ajay Verma

Abstract:

The plastic industry plays very important role in the economy of any country. It is generally among the leading share of the economy of the country. Since metals and their alloys are very rarely available on the earth. Therefore, to produce plastic products and components, which finds application in many industrial as well as household consumer products is beneficial. Since 50% plastic products are manufactured by injection moulding process. For production of better quality product, we have to control quality characteristics and performance of the product. The process parameters plays a significant role in production of plastic, hence the control of process parameter is essential. In this paper the effect of the parameters selection on injection moulding process has been described. It is to define suitable parameters in producing plastic product. Selecting the process parameter by trial and error is neither desirable nor acceptable, as it is often tends to increase the cost and time. Hence, optimization of processing parameter of injection moulding process is essential. The experiments were designed with Taguchi’s orthogonal array to achieve the result with least number of experiments. Plastic material polypropylene is studied. Tensile strength test of material is done on universal testing machine, which is produced by injection moulding machine. By using Taguchi technique with the help of MiniTab-14 software the best value of injection pressure, melt temperature, packing pressure and packing time is obtained. We found that process parameter packing pressure contribute more in production of good tensile plastic product.

Keywords: Injection moulding, tensile strength, Taguchi method, poly-propylene.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 3721
1168 Application of Artificial Neural Network for the Prediction of Pressure Distribution of a Plunging Airfoil

Authors: F. Rasi Maezabadi, M. Masdari, M. R. Soltani

Abstract:

Series of experimental tests were conducted on a section of a 660 kW wind turbine blade to measure the pressure distribution of this model oscillating in plunging motion. In order to minimize the amount of data required to predict aerodynamic loads of the airfoil, a General Regression Neural Network, GRNN, was trained using the measured experimental data. The network once proved to be accurate enough, was used to predict the flow behavior of the airfoil for the desired conditions. Results showed that with using a few of the acquired data, the trained neural network was able to predict accurate results with minimal errors when compared with the corresponding measured values. Therefore with employing this trained network the aerodynamic coefficients of the plunging airfoil, are predicted accurately at different oscillation frequencies, amplitudes, and angles of attack; hence reducing the cost of tests while achieving acceptable accuracy.

Keywords: Airfoil, experimental, GRNN, Neural Network, Plunging.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1627
1167 Simulation and Analysis of the Shift Process for an Automatic Transmission

Authors: Kei-Lin Kuo

Abstract:

The automatic transmission (AT) is one of the most important components of many automobile transmission systems. The shift quality has a significant influence on the ride comfort of the vehicle. During the AT shift process, the joint elements such as the clutch and bands engage or disengage, linking sets of gears to create a fixed gear ratio. Since these ratios differ between gears in a fixed gear ratio transmission, the motion of the vehicle could change suddenly during the shift process if the joint elements are engaged or disengaged inappropriately, additionally impacting the entire transmission system and increasing the temperature of connect elements.The objective was to establish a system model for an AT powertrain using Matlab/Simulink. This paper further analyses the effect of varying hydraulic pressure and the associated impact on shift quality during both engagment and disengagement of the joint elements, proving that shift quality improvements could be achieved with appropriate hydraulic pressure control.

Keywords: Automatic transmission, Simulation and analysis, Shift quality.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 4461
1166 Thermography Evaluation on Facial Temperature Recovery after Elastic Gum

Authors: A. Dionísio, L. Roseiro, J. Fonseca, P. Nicolau

Abstract:

Thermography is a non-radiating and contact-free technology which can be used to monitor skin temperature. The efficiency and safety of thermography technology make it a useful tool for detecting and locating thermal changes in skin surface, characterized by increases or decreases in temperature. This work intends to be a contribution for the use of thermography as a methodology for evaluation of skin temperature in the context of orofacial biomechanics. The study aims to identify the oscillations of skin temperature in the left and right hemiface regions of the masseter muscle, during and after thermal stimulus, and estimate the time required to restore the initial temperature after the application of the stimulus. Using a FLIR T430sc camera, a data acquisition protocol was followed with a group of eight volunteers, aged between 22 and 27 years. The tests were performed in a controlled environment with the volunteers in a comfortably static position. The thermal stimulus involves the use of an ice volume with controlled size and contact surface. The skin surface temperature was recorded in two distinct situations, namely without further stimulus and with the additions of a stimulus obtained by a chewing gum. The data obtained were treated using FLIR Research IR Max software. The time required to recover the initial temperature ranged from 20 to 52 minutes when no stimulus was added and varied between 8 and 26 minutes with the chewing gum stimulus. These results show that recovery is faster with the addition of the stimulus and may guide clinicians regarding the pre and post-operative times with ice therapy, in the presence or absence of mechanical stimulus that increases muscle functions (e.g. phonetics or mastication).

Keywords: Thermography, orofacial biomechanics, skin temperature, ice therapy.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1110
1165 Failure Analysis of a Fractured Control Pressure Tube from an Aircraft Engine

Authors: M. P. Valles-González, A. González Meije, A. Pastor Muro, M. García-Martínez, B. González Caballero

Abstract:

This paper studies a failure case of a fuel pressure supply tube from an aircraft engine. Multiple fracture cases of the fuel pressure control tube from aircraft engines have been reported. The studied set was composed by the mentioned tube, a welded connecting pipe, where the fracture has been produced, and a union nut. The fracture has been produced in one of the most critical zones of the tube, in a region next to the supporting body of the union nut to the connector. The tube material was X6CrNiTi18-10, an austenitic stainless steel. Chemical composition was determined using an X-Ray fluorescence spectrometer (XRF) and combustion equipment. Furthermore, the material was characterized mechanically, by a hardness test, and microstructurally using a stereo microscope and an optical microscope. The results confirmed that the material was within specifications. To determine the macrofractographic features, a visual examination and an observation using a stereo microscope of the tube fracture surface were carried out. The results revealed a tube plastic macrodeformation, surface damaged and signs of a possible corrosion process. Fracture surface was also inspected by scanning electron microscopy (FE-SEM), equipped with an energy-dispersive X-ray microanalysis system (EDX), to determine the microfractographic features in order to find out the failure mechanism involved in the fracture. Fatigue striations, which are typical from a progressive fracture by a fatigue mechanism, were observed. The origin of the fracture was placed in defects located on the outer wall of the tube, leading to a final overload fracture.

Keywords: Aircraft Engine, microstructure, fatigue, FE-SEM, fractography, fracture, fuel tube, stainless steel.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 502
1164 Case-Based Reasoning Application to Predict Geological Features at Site C Dam Construction Project

Authors: S. Behnam Malekzadeh, I. Kerr, T. Kaempffer, T. Harper, A Watson

Abstract:

The Site C Hydroelectric dam is currently being constructed in north-eastern British Columbia on sub-horizontal sedimentary strata that dip approximately 15 meters from one bank of the Peace River to the other. More than 615 pressure sensors (Vibrating Wire Piezometers) have been installed on bedding planes (BPs) since construction began, with over 80 more planned before project completion. These pressure measurements are essential to monitor the stability of the rock foundation during and after construction and for dam safety purposes. BPs are identified by their clay gouge infilling, which varies in thickness from less than 1 to 20 mm and can be challenging to identify as the core drilling process often disturbs or washes away the gouge material. Without the use of depth predictions from nearby boreholes, stratigraphic markers, and downhole geophysical data, it is difficult to confidently identify BP targets for the sensors. In this paper, a Case-Based Reasoning (CBR) method was used to develop an empirical model called the Bedding Plane Elevation Prediction (BPEP) to help geologists and geotechnical engineers to predict geological features and BPs at new locations in a fast and accurate manner. To develop CBR, a database was developed based on 64 pressure sensors already installed on key bedding planes BP25, BP28, and BP31 on the Right Bank, including BP elevations and coordinates. 13 (20%) of the most recent cases were selected to validate and evaluate the accuracy of the developed model, while the similarity was defined as the distance between previous cases and recent cases to predict the depth of significant BPs. The average difference between actual BP elevations and predicted elevations for above BPs was ± 55 cm, while the actual results showed that 69% of predicted elevations were within ± 79 cm of actual BP elevations while 100% of predicted elevations for new cases were within ± 99 cm range. Eventually, the actual results will be used to develop the database and improve BPEP to perform as a learning machine to predict more accurate BP elevations for future sensor installations.

Keywords: Case-Based Reasoning, CBR, geological feature, geology, piezometer, pressure sensor, core logging, dam construction.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 120
1163 Heat Exchanger Design

Authors: Su Thet Mon Than, Khin Aung Lin, Mi Sandar Mon

Abstract:

This paper is intended to assist anyone with some general technical experience, but perhaps limited specific knowledge of heat transfer equipment. A characteristic of heat exchanger design is the procedure of specifying a design, heat transfer area and pressure drops and checking whether the assumed design satisfies all requirements or not. The purpose of this paper is how to design the oil cooler (heat exchanger) especially for shell-and-tube heat exchanger which is the majority type of liquid-to-liquid heat exchanger. General design considerations and design procedure are also illustrated in this paper and a flow diagram is provided as an aid of design procedure. In design calculation, the MatLAB and AutoCAD software are used. Fundamental heat transfer concepts and complex relationships involved in such exchanger are also presented in this paper. The primary aim of this design is to obtain a high heat transfer rate without exceeding the allowable pressure drop. This computer program is highly useful to design the shell-and-tube type heat exchanger and to modify existing deign.

Keywords: Shell-and-Tube Heat Exchanger, MatLAB and AutoCAD

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 7899
1162 Identification of Key Parameters for Benchmarking of Combined Cycle Power Plants Retrofit

Authors: S. Sabzchi Asl, N. Tahouni, M. H. Panjeshahi

Abstract:

Benchmarking of a process with respect to energy consumption, without accomplishing a full retrofit study, can save both engineering time and money. In order to achieve this goal, the first step is to develop a conceptual-mathematical model that can easily be applied to a group of similar processes. In this research, we have aimed to identify a set of key parameters for the model which is supposed to be used for benchmarking of combined cycle power plants. For this purpose, three similar combined cycle power plants were studied. The results showed that ambient temperature, pressure and relative humidity, number of HRSG evaporator pressure levels and relative power in part load operation are the main key parameters. Also, the relationships between these parameters and produced power (by gas/ steam turbine), gas turbine and plant efficiency, temperature and mass flow rate of the stack flue gas were investigated.

Keywords: Combined cycle power plant, energy benchmarking, modelling, Retrofit.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1669
1161 The Application of HLLC Numerical Solver to the Reduced Multiphase Model

Authors: Fatma Ghangir, Andrzej F. Nowakowski, Franck C. G. A. Nicolleau, Thomas M. Michelitsch

Abstract:

The performance of high-resolution schemes is investigated for unsteady, inviscid and compressible multiphase flows. An Eulerian diffuse interface approach has been chosen for the simulation of multicomponent flow problems. The reduced fiveequation and seven equation models are used with HLL and HLLC approximation. The authors demonstrated the advantages and disadvantages of both seven equations and five equations models studying their performance with HLL and HLLC algorithms on simple test case. The seven equation model is based on two pressure, two velocity concept of Baer–Nunziato [10], while five equation model is based on the mixture velocity and pressure. The numerical evaluations of two variants of Riemann solvers have been conducted for the classical one-dimensional air-water shock tube and compared with analytical solution for error analysis.

Keywords: Multiphase flow, gas-liquid flow, Godunov schems, Riemann solvers, HLL scheme, HLLC scheme.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2569
1160 Finite Element Modeling of Rotating Mixing of Toothpaste

Authors: Inamullah Bhatti, Ahsanullah Baloch, Khadija Qureshi

Abstract:

The objective of this research is to examine the shear thinning behaviour of mixing flow of non-Newtonian fluid like toothpaste in the dissolution container with rotating stirrer. The problem under investigation is related to the chemical industry. Mixing of fluid is performed in a cylindrical container with rotating stirrer, where stirrer is eccentrically placed on the lid of the container. For the simulation purpose the associated motion of the fluid is considered as revolving of the container, with stick stirrer. For numerical prediction, a time-stepping finite element algorithm in a cylindrical polar coordinate system is adopted based on semi-implicit Taylor-Galerkin/pressure-correction scheme. Numerical solutions are obtained for non-Newtonian fluids employing power law model. Variations with power law index have been analysed, with respect to the flow structure and pressure drop.

Keywords: finite element simulation, mixing fluid, rheology, rotating flow, toothpaste

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2230
1159 Effect of Preloading on the Contact Stress Distribution of a Dovetail Interface

Authors: Kaliyaperumal Anandavel, Raghu V. Prakash, Antonio Davis

Abstract:

This paper presents the influence of preloading on a) the contact tractions, b) slip levels and c) stresses at the dovetail blade-disc interface of an aero-engine through a three-dimensional (3D) finite element (FE) modeling and analysis. The preloading is applied by an interference fit at the dovetail interface and the bulk loading is applied through the rotational speed of rotor. Preloading at the dovetail interface reduces the peak contact pressure developed due to bulk loading up to 35%, and reduces the peak contact pressure and stress difference between top and bottom contact edges. Increasing the level of preloading reduces the cyclic stress amplitude at the interface up to certain values of preload and as a consequence, an improvement in fatigue life could be expected. Fretting damage, due to vibration and wind milling effect during engine ground condition, can be minimized by preloading the dovetail interface.

Keywords: Dovetail interface, Preload, Interference fit, ContactStress, Fretting Fatigue.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 3191