Search results for: Phase Change Memory.
2963 Phase Behavior and Structure Properties of Supported Lipid Monolayers and Bilayers in Interaction with Silica Nanoparticles
Authors: Ndeye Rokhaya Faye, Ibtissem Gammoudi, Fabien Moroté, Christine Grauby-Heywang, TouriaCohen-Bouhacina
Abstract:
In this study we investigate silica nanoparticle (SiO2- NP) effects on the structure and phase properties of supported lipid monolayers and bilayers, coupling surface pressure measurements, fluorescence microscopy and atomic force microscopy. SiO2-NPs typically in size range of 10nm to 100 nm in diameter are tested. Our results suggest first that lipid molecules organization depends to their nature. Secondly, lipid molecules in the vinicity of big aggregates nanoparticles organize in liquid condensed phase whereas small aggregates are localized in both fluid liquid-expanded (LE) and liquid-condenced (LC). We demonstrated also by atomic force microscopy that by measuring friction forces it is possible to get information as if nanoparticle aggregates are recovered or not by lipid monolayers and bilayers.
Keywords: Atomic force microscopy, fluorescence microscopy, Langmuir films, silica nanoparticles, supported membrane models.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 26422962 Robust & Energy Efficient Universal Gates for High Performance Computer Networks at 22nm Process Technology
Authors: M. Geetha Priya, K. Baskaran, S. Srinivasan
Abstract:
Digital systems are said to be constructed using basic logic gates. These gates are the NOR, NAND, AND, OR, EXOR & EXNOR gates. This paper presents a robust three transistors (3T) based NAND and NOR gates with precise output logic levels, yet maintaining equivalent performance than the existing logic structures. This new set of 3T logic gates are based on CMOS inverter and Pass Transistor Logic (PTL). The new universal logic gates are characterized by better speed and lower power dissipation which can be straightforwardly fabricated as memory ICs for high performance computer networks. The simulation tests were performed using standard BPTM 22nm process technology using SYNOPSYS HSPICE. The 3T NAND gate is evaluated using C17 benchmark circuit and 3T NOR is gate evaluated using a D-Latch. According to HSPICE simulation in 22 nm CMOS BPTM process technology under given conditions and at room temperature, the proposed 3T gates shows an improvement of 88% less power consumption on an average over conventional CMOS logic gates. The devices designed with 3T gates will make longer battery life by ensuring extremely low power consumption.
Keywords: Low power, CMOS, pass-transistor, flash memory, logic gates.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 24362961 Theoretical Study on the Forced Vibration of One Degree of Freedom System, Equipped with Inerter, under Load-Type or Displacement-Type Excitation
Authors: Barenten Suciu
Abstract:
In this paper, a theoretical study on the forced vibration of one degree of freedom system equipped with inerter, working under load-type or displacement-type excitation, is presented. Differential equations of movement are solved under cosinusoidal excitation, and explicit relations for the magnitude, resonant magnitude, phase angle, resonant frequency, and critical frequency are obtained. Influence of the inertance and damping on these dynamic characteristics is clarified. From the obtained results, one concludes that the inerter increases the magnitude of vibration and the phase angle of the damped mechanical system. Moreover, the magnitude ratio and difference of phase angles are not depending on the actual type of excitation. Consequently, such kind of similitude allows for the comparison of various theoretical and experimental results, which can be broadly found in the literature.
Keywords: One degree of freedom vibration, inerter, parallel connection, load-type excitation, displacement-type excitation.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 8682960 In vitro and in vivo Assessment of Cholinesterase Inhibitory Activity of the Bark Extracts of Pterocarpus santalinus L. for the Treatment of Alzheimer’s Disease
Authors: K. Biswas, U. H. Armin, S. M. J. Prodhan, J. A. Prithul, S. Sarker, F. Afrin
Abstract:
Alzheimer’s disease (AD) (a progressive neurodegenerative disorder) is mostly predominant cause of dementia in the elderly. Prolonging the function of acetylcholine by inhibiting both acetylcholinesterase and butyrylcholinesterase is most effective treatment therapy of AD. Traditionally Pterocarpus santalinus L. is widely known for its medicinal use. In this study, in vitro acetylcholinesterase inhibitory activity was investigated and methanolic extract of the plant showed significant activity. To confirm this activity (in vivo), learning and memory enhancing effects were tested in mice. For the test, memory impairment was induced by scopolamine (cholinergic muscarinic receptor antagonist). Anti-amnesic effect of the extract was investigated by the passive avoidance task in mice. The study also includes brain acetylcholinesterase activity. Results proved that scopolamine induced cognitive dysfunction was significantly decreased by administration of the extract solution, in the passive avoidance task and inhibited brain acetylcholinesterase activity. These results suggest that bark extract of Pterocarpus santalinus can be better option for further studies on AD via their acetylcholinesterase inhibitory actions.
Keywords: Pterocarpus santalinus, cholinesterase inhibitor, passive avoidance, Alzheimer’s disease.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 8272959 An Approach to Capture, Evaluate and Handle Complexity of Engineering Change Occurrences in New Product Development
Authors: Mohammad Rostami Mehr, Seyed Arya Mir Rashed, Arndt Lueder, Magdalena Mißler-Behr
Abstract:
This paper represents the conception that complex problems do not necessary need similar complex solutions in order to cope with the complexity. Furthermore, a simple solution based on established methods can provide a sufficient way dealing with the complexity. To verify this conception, the presented paper focuses on the field of change management as a part of new product development process in automotive sector. In the field of complexity management, dealing with increasing complexity is essential, while, only non-flexible rigid processes that are not designed to handle complexity are available. The basic methodology of this paper can be divided in four main sections: 1) analyzing the complexity of the change management, 2) literature review in order to identify potential solutions and methods, 3) capturing and implementing expertise of experts from change management filed of an automobile manufacturing company and 4) systematical comparison of the identified methods from literature and connecting these with defined requirements of the complexity of the change management in order to develop a solution. As a practical outcome, this paper provides a method to capture the complexity of engineering changes (EC) and includes it within the EC evaluation process, following case-related process guidance to cope with the complexity. Furthermore, this approach supports the conception that dealing with complexity is possible while utilizing rather simple and established methods by combining them in to a powerful tool.
Keywords: complexity management, new product development, engineering change management, flexibility
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 5572958 Perceptions of Climate Change Risk to Forest Ecosystems: A Case Study of Patale Community Forestry User Group, Nepal
Authors: N. R. P Withana, E. Auch
Abstract:
The purpose of this study was to investigate perceptions of climate change risk to forest ecosystems and forestbased communities as well as perceived effectiveness of adaptation strategies for climate change as well as challenges for adaptation. Data was gathered using a pre-tested semi-structured questionnaire. Simple random selection technique was applied. For the majority of issues, the responses were obtained on multi-point likert scales, and the scores provided were, in turn, used to estimate the means and other useful estimates. A composite knowledge index developed using correct responses to a set of self-rated statements were used to evaluate the issues. The mean of the knowledge index was 0.64. Also all respondents recorded values of the knowledge index above 0.25. Increase forest fire was perceived by respondents as the greatest risk to forest eco-system. Decrease access to water supplies was perceived as the greatest risk to livelihoods of forest based communities. The most effective adaptation strategy relevant to climate change risks to forest eco-systems and forest based communities livelihoods in Kathmandu valley in Nepal as perceived by the respondents was reforestation and afforestation. As well, lack of public awareness was perceived as the major limitation for climate change adaptation. However, perceived risks as well as effective adaptation strategies showed an inconsistent association with knowledge indicators and social-cultural variables. The results provide useful information to any party who involve with climate change issues in Nepal, since such attempts would be more effective once the people’s perceptions on these aspects are taken into account.
Keywords: Climate change, forest ecosystems, forest-based communities, risk perceptions.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 22962957 Study of the Late Phase of Core Degradation during Reflooding by Safety Injection System for VVER1000 with ASTECv2 Computer Code
Authors: Antoaneta Stefanova, Rositsa Gencheva, Pavlin Groudev
Abstract:
This paper presents the modeling approach in SBO sequence for VVER 1000 reactors and describes the reactor core behavior at late in-vessel phase in case of late reflooding by HPIS and gives preliminary results for the ASTECv2 validation. The work is focused on investigation of plant behavior during total loss of power and the operator actions. The main goal of these analyses is to assess the phenomena arising during the Station blackout (SBO) followed by primary side high pressure injection system (HPIS) reflooding of already damaged reactor core at very late “in-vessel” phase. The purpose of the analyses is to define how the later HPIS switching on can delay the time of vessel failure or possibly avoid vessel failure. The times for HPP injection were chosen based on previously performed investigations.Keywords: VVER, operator action validation, reflooding of overheated reactor core, ASTEC computer code.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 14422956 Analysis of the Gait Characteristics of Soldier between the Normal and Loaded Gait
Authors: Ji-il Park, Min Kyu Yu, Jong-woo Lee, Sam-hyeon Yoo
Abstract:
The purpose of this research is to analyze the gait strategy between the normal and loaded gait. To this end, five male participants satisfied two conditions: the normal and loaded gait (backpack load 25.2 kg). As expected, results showed that additional loads elicited not a proportional increase in vertical and shear ground reaction force (GRF) parameters but also increase of the impulse, momentum and mechanical work. However, in case of the loaded gait, the time duration of the double support phase was increased unexpectedly. It is because the double support phase which is more stable than the single support phase can reduce instability of the loaded gait. Also, the directions of the pre-collision and after-collision were moved upward and downward compared to the normal gait. As a result, regardless of the additional backpack load, the impulse-momentum diagram during the step-to-step transition was maintained such as the normal gait. It means that human walk efficiently to keep stability and minimize total net works in case of the loaded gait.Keywords: Normal gait, loaded gait, impulse, collision, gait analysis, mechanical work, backpack load.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 12642955 Lime-Pozzolan Plasters with Enhanced Thermal Capacity
Authors: Z. Pavlík, A. Trník, M. Pavlíková, M. Keppert, R. Černý
Abstract:
A new type of lightweight plaster with the thermal capacity enhanced by PCM (Phase Change Material) addition is analyzed. The basic physical characteristics, namely the bulk density, matrix density, total open porosity, and pore size distribution are measured at first. For description of mechanical properties, compressive strength measurements are done. The thermal properties are characterized by transient impulse techniques as well as by DSC analysis that enables determination of the specific heat capacity as a function of temperature. The resistivity against the liquid water ingress is described by water absorption coefficient measurement. The experimental results indicate a good capability of the designed plaster to moderate effectively the interior climate of buildings.
Keywords: Lime-pozzolan plaster, PCM addition, enhanced thermal capacity, DSC analysis.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 24372954 ECG-Based Heartbeat Classification Using Convolutional Neural Networks
Authors: Jacqueline R. T. Alipo-on, Francesca I. F. Escobar, Myles J. T. Tan, Hezerul Abdul Karim, Nouar AlDahoul
Abstract:
Electrocardiogram (ECG) signal analysis and processing are crucial in the diagnosis of cardiovascular diseases which are considered as one of the leading causes of mortality worldwide. However, the traditional rule-based analysis of large volumes of ECG data is time-consuming, labor-intensive, and prone to human errors. With the advancement of the programming paradigm, algorithms such as machine learning have been increasingly used to perform an analysis on the ECG signals. In this paper, various deep learning algorithms were adapted to classify five classes of heart beat types. The dataset used in this work is the synthetic MIT-Beth Israel Hospital (MIT-BIH) Arrhythmia dataset produced from generative adversarial networks (GANs). Various deep learning models such as ResNet-50 convolutional neural network (CNN), 1-D CNN, and long short-term memory (LSTM) were evaluated and compared. ResNet-50 was found to outperform other models in terms of recall and F1 score using a five-fold average score of 98.88% and 98.87%, respectively. 1-D CNN, on the other hand, was found to have the highest average precision of 98.93%.
Keywords: Heartbeat classification, convolutional neural network, electrocardiogram signals, ECG signals, generative adversarial networks, long short-term memory, LSTM, ResNet-50.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1892953 Forecasting the Sea Level Change in Strait of Hormuz
Authors: Hamid Goharnejad, Amir Hossein Eghbali
Abstract:
Recent investigations have demonstrated the global sea level rise due to climate change impacts. In this study, climate changes study the effects of increasing water level in the strait of Hormuz. The probable changes of sea level rise should be investigated to employ the adaption strategies. The climatic output data of a GCM (General Circulation Model) named CGCM3 under climate change scenario of A1b and A2 were used. Among different variables simulated by this model, those of maximum correlation with sea level changes in the study region and least redundancy among themselves were selected for sea level rise prediction by using stepwise regression. One of models (Discrete Wavelet artificial Neural Network) was developed to explore the relationship between climatic variables and sea level changes. In these models, wavelet was used to disaggregate the time series of input and output data into different components and then ANN was used to relate the disaggregated components of predictors and input parameters to each other. The results showed in the Shahid Rajae Station for scenario A1B sea level rise is among 64 to 75 cm and for the A2 Scenario sea level rise is among 90 t0 105 cm. Furthermore, the result showed a significant increase of sea level at the study region under climate change impacts, which should be incorporated in coastal areas management.Keywords: Climate change scenarios, sea-level rise, strait of Hormuz, artificial neural network, fuzzy logic.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 24242952 Control Improvement of a C Sugar Cane Crystallization Using an Auto-Tuning PID Controller Based on Linearization of a Neural Network
Authors: S. Beyou, B. Grondin-Perez, M. Benne, C. Damour, J.-P. Chabriat
Abstract:
The industrial process of the sugar cane crystallization produces a residual that still contains a lot of soluble sucrose and the objective of the factory is to improve its extraction. Therefore, there are substantial losses justifying the search for the optimization of the process. Crystallization process studied on the industrial site is based on the “three massecuites process". The third step of this process constitutes the final stage of exhaustion of the sucrose dissolved in the mother liquor. During the process of the third step of crystallization (Ccrystallization), the phase that is studied and whose control is to be improved, is the growing phase (crystal growth phase). The study of this process on the industrial site is a problem in its own. A control scheme is proposed to improve the standard PID control law used in the factory. An auto-tuning PID controller based on instantaneous linearization of a neural network is then proposed.
Keywords: Auto-tuning, PID, Instantaneous linearization, Neural network, Non linear process, C-crystallisation.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 14682951 Modelling the Occurrence of Defects and Change Requests during User Acceptance Testing
Authors: Kevin McDaid, Simon P. Wilson
Abstract:
Software developed for a specific customer under contract typically undergoes a period of testing by the customer before acceptance. This is known as user acceptance testing and the process can reveal both defects in the system and requests for changes to the product. This paper uses nonhomogeneous Poisson processes to model a real user acceptance data set from a recently developed system. In particular a split Poisson process is shown to provide an excellent fit to the data. The paper explains how this model can be used to aid the allocation of resources through the accurate prediction of occurrences both during the acceptance testing phase and before this activity begins. Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 23402950 Design of Stable IIR Digital Filters with Specified Group Delay Errors
Authors: Yasunori Sugita, Toshinori Yoshikawa
Abstract:
The design problem of Infinite Impulse Response (IIR) digital filters is usually expressed as the minimization problem of the complex magnitude error that includes both the magnitude and phase information. However, the group delay of the filter obtained by solving such design problem may be far from the desired group delay. In this paper, we propose a design method of stable IIR digital filters with prespecified maximum group delay errors. In the proposed method, the approximation problems of the magnitude-phase and group delay are separately defined, and these two approximation problems are alternately solved using successive projections. As a result, the proposed method can design the IIR filters that satisfy the prespecified allowable errors for not only the complex magnitude but also the group delay by alternately executing the coefficient update for the magnitude-phase and the group delay approximation. The usefulness of the proposed method is verified through some examples.Keywords: Filter design, Group delay approximation, Stable IIRfilters, Successive projection method.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 15612949 Design and Implementation of a Software Platform Based on Artificial Intelligence for Product Recommendation
Authors: G. Settanni, A. Panarese, R. Vaira, A. Galiano
Abstract:
Nowadays, artificial intelligence is used successfully in the field of e-commerce for its ability to learn from a large amount of data. In this research study, a prototype software platform was designed and implemented in order to suggest to users the most suitable products for their needs. The platform includes a recommender system based on artificial intelligence algorithms that provide suggestions and decision support to the customer. Specifically, support vector machine algorithms have been implemented combined with natural language processing techniques that allow the user to interact with the system, express their requests and receive suggestions. The interested user can access the web platform on the internet using a computer, tablet or mobile phone, register, provide the necessary information and view the products that the system deems them the most appropriate. The platform also integrates a dashboard that allows the use of the various functions, which the platform is equipped with, in an intuitive and simple way. Also, Long Short-Term Memory algorithms have been implemented and trained on historical data in order to predict customer scores of the different items. Items with the highest scores are recommended to customers.
Keywords: Deep Learning, Long Short-Term Memory, Machine Learning, Recommender Systems, Support Vector Machine.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 3262948 A New Stabilizing GPC for Nonminimum Phase LTI Systems Using Time Varying Weighting
Authors: Mahdi Yaghobi, Mohammad Haeri
Abstract:
In this paper, we show that the stability can not be achieved with current stabilizing MPC methods for some unstable processes. Hence we present a new method for stabilizing these processes. The main idea is to use a new time varying weighted cost function for traditional GPC. This stabilizes the closed loop system without adding soft or hard constraint in optimization problem. By studying different examples it is shown that using the proposed method, the closed-loop stability of unstable nonminimum phase process is achieved.Keywords: GPC, Stability, Varying Weighting Coefficients.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 14642947 Scale Time Offset Robust Modulation (STORM) in a Code Division Multiaccess Environment
Authors: David M. Jenkins Jr.
Abstract:
Scale Time Offset Robust Modulation (STORM) [1]– [3] is a high bandwidth waveform design that adds time-scale to embedded reference modulations using only time-delay [4]. In an environment where each user has a specific delay and scale, identification of the user with the highest signal power and that user-s phase is facilitated by the STORM processor. Both of these parameters are required in an efficient multiuser detection algorithm. In this paper, the STORM modulation approach is evaluated with a direct sequence spread quadrature phase shift keying (DS-QPSK) system. A misconception of the STORM time scale modulation is that a fine temporal resolution is required at the receiver. STORM will be applied to a QPSK code division multiaccess (CDMA) system by modifying the spreading codes. Specifically, the in-phase code will use a typical spreading code, and the quadrature code will use a time-delayed and time-scaled version of the in-phase code. Subsequently, the same temporal resolution in the receiver is required before and after the application of STORM. In this paper, the bit error performance of STORM in a synchronous CDMA system is evaluated and compared to theory, and the bit error performance of STORM incorporated in a single user WCDMA downlink is presented to demonstrate the applicability of STORM in a modern communication system.Keywords: Pseudonoise coded communication, Cyclic codes, Code division multiaccess
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 16302946 0.13-µm Complementary Metal-Oxide Semiconductor Vector Modulator for Beamforming System
Authors: J. S. Kim
Abstract:
This paper presents a 0.13-µm Complementary Metal-Oxide Semiconductor (CMOS) vector modulator for beamforming system. The vector modulator features a 360° phase and gain range of -10 dB to 10 dB with a root mean square phase and amplitude error of only 2.2° and 0.45 dB, respectively. These features make it a suitable for wireless backhaul system in the 5 GHz industrial, scientific, and medical (ISM) bands. It draws a current of 20.4 mA from a 1.2 V supply. The total chip size is 1.87x1.34 mm².
Keywords: CMOS, vector modulator, beamforming, wireless backhaul, ISM.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 10572945 Optimizing Forecasting for Indonesia's Coal and Palm Oil Exports: A Comparative Analysis of ARIMA, ANN, and LSTM Methods
Authors: Mochammad Dewo, Sumarsono Sudarto
Abstract:
The Exponential Triple Smoothing Algorithm approach nowadays, which is used to anticipate the export value of Indonesia's two major commodities, coal and palm oil, has a Mean Percentage Absolute Error (MAPE) value of 30-50%, which may be considered as a "reasonable" forecasting mistake. Forecasting errors of more than 30% shall have a domino effect on industrial output, as extra production adds to raw material, manufacturing and storage expenses. Whereas, reaching an "excellent" classification with an error value of less than 10% will provide new investors and exporters with confidence in the commercial development of related sectors. Industrial growth will bring out a positive impact on economic development. It can be applied for other commodities if the forecast error is less than 10%. The purpose of this project is to create a forecasting technique that can produce precise forecasting results with an error of less than 10%. This research analyzes forecasting methods such as ARIMA (Autoregressive Integrated Moving Average), ANN (Artificial Neural Network) and LSTM (Long-Short Term Memory). By providing a MAPE of 1%, this study reveals that ANN is the most successful strategy for forecasting coal and palm oil commodities in Indonesia.
Keywords: ANN, Artificial Neural Network, ARIMA, Autoregressive Integrated Moving Average, export value, forecast, LSTM, Long Short Term Memory.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2242944 Phase Diagram Including a Negative Pressure Region for a Thermotropic Liquid Crystal in a Metal Berthelot Tube
Abstract:
Thermodynamic properties of liquids under negative pressures are interesting and important in fields of scienceand technology. Here, phase transitions of a thermotropic liquid crystal are investigatedin a range from positive to negative pressures with a metal Berthelot tube using a commercial pressure transducer.Two co-existinglines, namely crystal (Kr) –nematic (N), and isotropic liquid (I) - nematic (N) lines, weredrawn in a pressure - temperature plane. The I-N line was drawn to ca. -5 (MPa).
Keywords: Berthelot method, liquid crystal, negative pressure.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 16972943 Design of Stilling Basins using Artificial Roughness
Authors: N. AboulAtta, G. Ezizah, N. Yousif , S. Fathy
Abstract:
The stilling basins are commonly used to dissipate the energy and protect the downstream floor from erosion. The aim of the present experimental work is to improve the roughened stilling basin using T-shape roughness instead of the regular cubic one and design this new shape. As a result of the present work the best intensity and the best roughness length are identified. Also, it is found that the T-shape roughness save materials and reduce the jump length compared to the cubic one. Sensitivity analysis was performed and it was noticed that the change in the length of jump is more sensitive to the change in roughness length than the change in intensity.Keywords: hydraulic jump, energy dissipater, roughened bed, stilling basin.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 19762942 Tagging by Combining Rules- Based Method and Memory-Based Learning
Authors: Tlili-Guiassa Yamina
Abstract:
Many natural language expressions are ambiguous, and need to draw on other sources of information to be interpreted. Interpretation of the e word تعاون to be considered as a noun or a verb depends on the presence of contextual cues. To interpret words we need to be able to discriminate between different usages. This paper proposes a hybrid of based- rules and a machine learning method for tagging Arabic words. The particularity of Arabic word that may be composed of stem, plus affixes and clitics, a small number of rules dominate the performance (affixes include inflexional markers for tense, gender and number/ clitics include some prepositions, conjunctions and others). Tagging is closely related to the notion of word class used in syntax. This method is based firstly on rules (that considered the post-position, ending of a word, and patterns), and then the anomaly are corrected by adopting a memory-based learning method (MBL). The memory_based learning is an efficient method to integrate various sources of information, and handling exceptional data in natural language processing tasks. Secondly checking the exceptional cases of rules and more information is made available to the learner for treating those exceptional cases. To evaluate the proposed method a number of experiments has been run, and in order, to improve the importance of the various information in learning.Keywords: Arabic language, Based-rules, exceptions, Memorybased learning, Tagging.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 16232941 Single Phase Fluid Flow in Series of Microchannel Connected via Converging-Diverging Section with or without Throat
Authors: Abhishek Kumar Chandra, Kaushal Kishor, Wasim Khan, Dhananjay Singh, M. S. Alam
Abstract:
Single phase fluid flow through series of uniform microchannels connected via transition section (converging-diverging section with or without throat) was analytically and numerically studied to characterize the flow within the channel and in the transition sections. Three sets of microchannels of diameters 100, 184, and 249 μm were considered for investigation. Each set contains 10 numbers of microchannels of length 20 mm, connected to each other in series via transition sections. Transition section consists of either converging-diverging section with throat or without throat. The effect of non-uniformity in microchannels on pressure drop was determined by passing water/air through the set of channels for Reynolds number 50 to 1000. Compressibility and rarefaction effects in transition sections were also tested analytically and numerically for air flow. The analytical and numerical results show that these configurations can be used in enhancement of transport processes. However, converging-diverging section without throat shows superior performance over with throat configuration.Keywords: Contraction-expansion flow, integrated microchannel, microchannel network, single phase flow.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 9092940 The Recession as an Opportunity for Curbing Transport Emissions
Authors: Gabor Szendro, Maria Csete
Abstract:
The effects of the transport sector on the environment are a well-recognized issue in the European Union and around the world. This area is a subject of much discussion as to how these negative effects could be minimized, especially with regards to impacts contributing to climate change. This paper aims to investigate the results of the economic crisis and how its consequences could be exploited to combat air pollution.
Keywords: Air pollution, climate change, recession, transport
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 11982939 Multiscale Analysis and Change Detection Based on a Contrario Approach
Authors: F.Katlane, M.S.Naceur, M.A.Loghmari
Abstract:
Automatic methods of detecting changes through satellite imaging are the object of growing interest, especially beca²use of numerous applications linked to analysis of the Earth’s surface or the environment (monitoring vegetation, updating maps, risk management, etc...). This work implemented spatial analysis techniques by using images with different spatial and spectral resolutions on different dates. The work was based on the principle of control charts in order to set the upper and lower limits beyond which a change would be noted. Later, the a contrario approach was used. This was done by testing different thresholds for which the difference calculated between two pixels was significant. Finally, labeled images were considered, giving a particularly low difference which meant that the number of “false changes” could be estimated according to a given limit.Keywords: multi-scale, a contrario approach, significantthresholds, change detection.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 14652938 Transient Population Dynamics of Phase Singularities in 2D Beeler-Reuter Model
Authors: Hidetoshi Konno, Akio Suzuki
Abstract:
The paper presented a transient population dynamics of phase singularities in 2D Beeler-Reuter model. Two stochastic modelings are examined: (i) the Master equation approach with the transition rate (i.e., λ(n, t) = λ(t)n and μ(n, t) = μ(t)n) and (ii) the nonlinear Langevin equation approach with a multiplicative noise. The exact general solution of the Master equation with arbitrary time-dependent transition rate is given. Then, the exact solution of the mean field equation for the nonlinear Langevin equation is also given. It is demonstrated that transient population dynamics is successfully identified by the generalized Logistic equation with fractional higher order nonlinear term. It is also demonstrated the necessity of introducing time-dependent transition rate in the master equation approach to incorporate the effect of nonlinearity.
Keywords: Transient population dynamics, Phase singularity, Birth-death process, Non-stationary Master equation, nonlinear Langevin equation, generalized Logistic equation.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 15932937 Piezoelectric Power Output Predictions Using Single-Phase Flow to Power Flow Meters
Authors: Umar Alhaji Mukhtar, Abubakar Mohammed El-jummah
Abstract:
This research involved the utilization of fluid flow energy to predict power output using Lead Zirconate Titanate (PZT) piezoelectric stacks. The aim of this work is to extract energy from a controlled level of pressure fluctuation in single-phase flow which forms a part of the energy harvesting technology that powers flow meters. A device- Perspex box was developed and fixed to 50.8 mm rig to induce pressure fluctuation in the flow. An experimental test was carried out using the single-phase water flow in the developed rig in order to measure the power output generation from the piezoelectric stacks. 16 sets of experimental tests were conducted to ensure the maximum output result. The acquired signal of the pressure fluctuation was used to simulate the expected electrical output from the piezoelectric material. The results showed a maximum output voltage of 12 V with an instantaneous output power of 1 µW generated, when the pressure amplitude is 2.6 kPa at a frequency of 2.4 Hz.
Keywords: Energy harvesting, experimental test, perspex rig, pressure fluctuation.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 7002936 A Prediction of Attractive Evaluation Objects Based On Complex Sequential Data
Authors: Shigeaki Sakurai, Makino Kyoko, Shigeru Matsumoto
Abstract:
This paper proposes a method that predicts attractive evaluation objects. In the learning phase, the method inductively acquires trend rules from complex sequential data. The data is composed of two types of data. One is numerical sequential data. Each evaluation object has respective numerical sequential data. The other is text sequential data. Each evaluation object is described in texts. The trend rules represent changes of numerical values related to evaluation objects. In the prediction phase, the method applies new text sequential data to the trend rules and evaluates which evaluation objects are attractive. This paper verifies the effect of the proposed method by using stock price sequences and news headline sequences. In these sequences, each stock brand corresponds to an evaluation object. This paper discusses validity of predicted attractive evaluation objects, the process time of each phase, and the possibility of application tasks.
Keywords: Trend rule, frequent pattern, numerical sequential data, text sequential data, evaluation object.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 12352935 A PIM (Processor-In-Memory) for Computer Graphics : Data Partitioning and Placement Schemes
Authors: Jae Chul Cha, Sandeep K. Gupta
Abstract:
The demand for higher performance graphics continues to grow because of the incessant desire towards realism. And, rapid advances in fabrication technology have enabled us to build several processor cores on a single die. Hence, it is important to develop single chip parallel architectures for such data-intensive applications. In this paper, we propose an efficient PIM architectures tailored for computer graphics which requires a large number of memory accesses. We then address the two important tasks necessary for maximally exploiting the parallelism provided by the architecture, namely, partitioning and placement of graphic data, which affect respectively load balances and communication costs. Under the constraints of uniform partitioning, we develop approaches for optimal partitioning and placement, which significantly reduce search space. We also present heuristics for identifying near-optimal placement, since the search space for placement is impractically large despite our optimization. We then demonstrate the effectiveness of our partitioning and placement approaches via analysis of example scenes; simulation results show considerable search space reductions, and our heuristics for placement performs close to optimal – the average ratio of communication overheads between our heuristics and the optimal was 1.05. Our uniform partitioning showed average load-balance ratio of 1.47 for geometry processing and 1.44 for rasterization, which is reasonable.Keywords: Data Partitioning and Placement, Graphics, PIM, Search Space Reduction.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 14932934 A Study on Fatigue Performance of Asphalt Using AMPT
Authors: Yuan Jie Kelvin Lu, Amin Chegenizadeh
Abstract:
Asphalt pavement itself is a mixture made up of mainly aggregates, binders, and fillers that acts as a composition used for pavement construction. An experimental program was setup to determine the fatigue performance test of Asphalt with three different grades of conventional binders. Asphalt specimen has achieved the maximum optimum bulk density and air voids with a consistent bulk density of 2.3 t/m3, with an air void of 5% ± 0.5, before loading into the Asphalt Mixture Performance Tested (AMPT) for fatigue test. The number of cycles is defined as the point where phase angle drops, which is caused by the formation of cracks due to the increasing micro cracks when asphalt is undergoing repeated cycles of loading. Thus, the data collected are analyzed using the drop of phase angle as failure criteria. Based in the data analyzed, it is evident that the fatigue life of asphalt lies on the grade of binder. The result obtained shows that all specimens do experience a drop in phase angle due to macro cracks in the asphalt specimen.Keywords: Asphalt binder, AMPT, CX test, simplified–viscoelastic continuum damage (S-VECD).
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2147