Search results for: Flow of optimum loadimpedances
2537 Electromagnetic Flow Meter Efficiency
Authors: Andrey D. Andreev, Ilona I. Iatcheva, Dimitar N. Karastoyanov, Rumena D. Stancheva
Abstract:
A study of electromagnetic flow meter is presented in the paper. Comparison has been made between the analytical and the numerical results by the use of FEM numerical analysis (Quick Field 5.6) for determining polarization voltage through the circle cross section of the polarization transducer. Exciting and geometrical parameters increasing its effectiveness has been examined. The aim is to obtain maximal output signal. The investigations include different variants of the magnetic flux density distribution around the tube: homogeneous field of magnitude Bm, linear distribution with maximal value Bm and trapezium distribution conserving the same exciting magnetic energy as the homogeneous field.
Keywords: Effectiveness, electromagnetic flow meter, finite element method, polarization voltage.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 23102536 Development of Machinable Ellipses by NURBS Curves
Authors: Yuan L. Lai, Jian H. Chen, Jui P. Hung
Abstract:
Owning to the high-speed feed rate and ultra spindle speed have been used in modern machine tools, the tool-path generation plays a key role in the successful application of a High-Speed Machining (HSM) system. Because of its importance in both high-speed machining and tool-path generation, approximating a contour by NURBS format is a potential function in CAD/CAM/CNC systems. It is much more convenient to represent an ellipse by parametric form than to connect points laboriously determined in a CNC system. A new approximating method based on optimum processes and NURBS curves of any degree to the ellipses is presented in this study. Such operations can be the foundation of tool-radius compensation interpolator of NURBS curves in CNC system. All operating processes for a CAD tool is presented and demonstrated by practical models.Keywords: Ellipse, Approximation, NURBS, Optimum.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 22982535 Control of Thermal Flow in Machine Tools Using Shape Memory Alloys
Authors: Reimund Neugebauer, Welf-Guntram Drossel, Andre Bucht, Christoph Ohsenbrügge
Abstract:
In this paper the authors propose and verify an approach to control heat flow in machine tool components. Thermal deformations are a main aspect that affects the accuracy of machining. Due to goals of energy efficiency, thermal basic loads should be reduced. This leads to inhomogeneous and time variant temperature profiles. To counteract these negative consequences, material with high melting enthalpy is used as a method for thermal stabilization. The increased thermal capacity slows down the transient thermal behavior. To account for the delayed thermal equilibrium, a control mechanism for thermal flow is introduced. By varying a gap in a heat flow path the thermal resistance of an assembly can be controlled. This mechanism is evaluated in two experimental setups. First to validate the ability to control the thermal resistance and second to prove the possibility of a self-sufficient option based on the selfsensing abilities of thermal shape memory alloys.
Keywords: energy-efficiency, heat transfer path, MT thermal stability, thermal shape memory alloy
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 19322534 A Finite Volume Procedure on Unstructured Meshes for Fluid-Structure Interaction Problems
Authors: P I Jagad, B P Puranik, A W Date
Abstract:
Flow through micro and mini channels requires relatively high driving pressure due to the large fluid pressure drop through these channels. Consequently the forces acting on the walls of the channel due to the fluid pressure are also large. Due to these forces there are displacement fields set up in the solid substrate containing the channels. If the movement of the substrate is constrained at some points, then stress fields are established in the substrate. On the other hand, if the deformation of the channel shape is sufficiently large then its effect on the fluid flow is important to be calculated. Such coupled fluid-solid systems form a class of problems known as fluidstructure interactions. In the present work a co-located finite volume discretization procedure on unstructured meshes is described for solving fluid-structure interaction type of problems. A linear elastic solid is assumed for which the effect of the channel deformation on the flow is neglected. Thus the governing equations for the fluid and the solid are decoupled and are solved separately. The procedure is validated by solving two benchmark problems, one from fluid mechanics and another from solid mechanics. A fluid-structure interaction problem of flow through a U-shaped channel embedded in a plate is solved.Keywords: Finite volume method, flow induced stresses, fluidstructureinteraction, unstructured meshes.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 18902533 Effect of Swirl on Gas-Fired Combustion Behavior in a 3-D Rectangular Combustion Chamber
Authors: Man Young Kim
Abstract:
The objective of this work is to investigate the turbulent reacting flow in a three dimensional combustor with emphasis on the effect of inlet swirl flow through a numerical simulation. Flow field is analyzed using the SIMPLE method which is known as stable as well as accurate in the combustion modeling, and the finite volume method is adopted in solving the radiative transfer equation. In this work, the thermal and flow characteristics in a three dimensional combustor by changing parameters such as equivalence ratio and inlet swirl angle have investigated. As the equivalence ratio increases, which means that more fuel is supplied due to a larger inlet fuel velocity, the flame temperature increases and the location of maximum temperature has moved towards downstream. In the mean while, the existence of inlet swirl velocity makes the fuel and combustion air more completely mixed and burnt in short distance. Therefore, the locations of the maximum reaction rate and temperature were shifted to forward direction compared with the case of no swirl.Keywords: Gaseous Fuel, Inlet Swirl, Thermal Radiation, Turbulent Combustion
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 16342532 Physico-chemical Treatment of Tar-Containing Wastewater Generated from Biomass Gasification Plants
Authors: Vrajesh Mehta, Anal Chavan
Abstract:
Treatment of tar-containing wastewater is necessary for the successful operation of biomass gasification plants (BGPs). In the present study, tar-containing wastewater was treated using lime and alum for the removal of in-organics, followed by adsorption on powdered activated carbon (PAC) for the removal of organics. Limealum experiments were performed in a jar apparatus and activated carbon studies were performed in an orbital shaker. At optimum concentrations, both lime and alum individually proved to be capable of removing color, total suspended solids (TSS) and total dissolved solids (TDS), but in both cases, pH adjustment had to be carried out after treatment. The combination of lime and alum at the dose ratio of 0.8:0.8 g/L was found to be optimum for the removal of inorganics. The removal efficiency achieved at optimum concentrations were 78.6, 62.0, 62.5 and 52.8% for color, alkalinity, TSS and TDS, respectively. The major advantages of the lime-alum combination were observed to be as follows: no requirement of pH adjustment before and after treatment and good settleability of sludge. Coagulation-precipitation followed by adsorption on PAC resulted in 92.3% chemical oxygen demand (COD) removal and 100% phenol removal at equilibrium. Ammonia removal efficiency was found to be 11.7% during coagulation-flocculation and 36.2% during adsorption on PAC. Adsorption of organics on PAC in terms of COD and phenol followed Freundlich isotherm with Kf = 0.55 & 18.47 mg/g and n = 1.01 & 1.45, respectively. This technology may prove to be one of the fastest and most techno-economically feasible methods for the treatment of tar-containing wastewater generated from BGPs.Keywords: Activated carbon, Alum, Biomass gasification, Coagulation-flocculation, Lime, Tar-containing wastewater.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 36732531 Numerical Analysis of Roughness Effect on Mini and Microchannels: Hydrodynamics and Heat Transfer
Authors: El-Ghalia Filali, Cherif Gadouche, Mohamed Tahar
Abstract:
A three-dimensional numerical simulation of flow through mini and microchannels with designed roughness is conducted here. The effect of the roughness height (surface roughness), geometry, Reynolds number on the friction factor, and Nusselt number is investigated. The study is carried out by employing CFD software, CFX. Our work focuses on a water flow inside a circular mini-channel of 1 mm and microchannels of 500 and 100 m in diameter. The speed entry varies from 0.1 m/s to 20 m/s. The general trend can be observed that bigger sizes of roughness element lead to higher flow resistance. It is found that the friction factor increases in a nonlinear fashion with the increase in obstruction height. Particularly, the effect of roughness can no longer be ignored at relative roughness height higher than 3%. A significant increase in Poiseuille number is detected for all configurations considered. The same observation can be done for Nusselt number. The transition zone between laminar and turbulent flow depends on the channel diameter.Keywords: Heat transfer, hydrodynamics, micro-channel, roughness.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 17682530 Numerical Simulation of a Pressure Regulated Valve to Find Out the Characteristics of Passive Control Circuit
Authors: Binod Kumar Saha
Abstract:
The objective of the present paper is a numerical analysis of the flow forces acting on spool surfaces of a pressure regulated valve. The transient, compressible and turbulent flow structures inside the valve are simulated using ANSYS FLUENT coupled with a special UDF. Here, valve inlet pressure is varied in a stepwise manner. For every value of inlet pressure, transient analysis leads to a quasi-static flow through the valve. Spool forces are calculated based on different pressures at inlet. From this information of spool forces, pressure characteristic of the passive control circuit has been derived.Keywords: Pressure Regulating Valve, Spool Opening, Spool Movement, Force Balance, CFD.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 38652529 CFD Study of Subcooled Boiling Flow at Elevated Pressure Using a Mechanistic Wall Heat Partitioning Model
Authors: Machimontorn Promtong, Sherman C. P. Cheung, Guan H. Yeoh, Sara Vahaji, Jiyuan Tu
Abstract:
The wide range of industrial applications involved with boiling flows promotes the necessity of establishing fundamental knowledge in boiling flow phenomena. For this purpose, a number of experimental and numerical researches have been performed to elucidate the underlying physics of this flow. In this paper, the improved wall boiling models, implemented on ANSYS CFX 14.5, were introduced to study subcooled boiling flow at elevated pressure. At the heated wall boundary, the Fractal model, Force balance approach and Mechanistic frequency model are given for predicting the nucleation site density, bubble departure diameter, and bubble departure frequency. The presented wall heat flux partitioning closures were modified to consider the influence of bubble sliding along the wall before the lift-off, which usually happens in the flow boiling. The simulation was performed based on the Two-fluid model, where the standard k-ω SST model was selected for turbulence modelling. Existing experimental data at around 5 bars were chosen to evaluate the accuracy of the presented mechanistic approach. The void fraction and Interfacial Area Concentration (IAC) are in good agreement with the experimental data. However, the predicted bubble velocity and Sauter Mean Diameter (SMD) are over-predicted. This over-prediction may be caused by consideration of only dispersed and spherical bubbles in the simulations. In the future work, the important physical mechanisms of bubbles, such as merging and shrinking during sliding on the heated wall will be incorporated into this mechanistic model to enhance its capability for a wider range of flow prediction.
Keywords: CFD, mechanistic model, subcooled boiling flow, two-fluid model.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 12702528 The Role of Velocity Map Quality in Estimation of Intravascular Pressure Distribution
Authors: Ali Pashaee, Parisa Shooshtari, Gholamreza Atae, Nasser Fatouraee
Abstract:
Phase-Contrast MR imaging methods are widely used for measurement of blood flow velocity components. Also there are some other tools such as CT and Ultrasound for velocity map detection in intravascular studies. These data are used in deriving flow characteristics. Some clinical applications are investigated which use pressure distribution in diagnosis of intravascular disorders such as vascular stenosis. In this paper an approach to the problem of measurement of intravascular pressure field by using velocity field obtained from flow images is proposed. The method presented in this paper uses an algorithm to calculate nonlinear equations of Navier- Stokes, assuming blood as an incompressible and Newtonian fluid. Flow images usually suffer the lack of spatial resolution. Our attempt is to consider the effect of spatial resolution on the pressure distribution estimated from this method. In order to achieve this aim, velocity map of a numerical phantom is derived at six different spatial resolutions. To determine the effects of vascular stenoses on pressure distribution, a stenotic phantom geometry is considered. A comparison between the pressure distribution obtained from the phantom and the pressure resulted from the algorithm is presented. In this regard we also compared the effects of collocated and staggered computational grids on the pressure distribution resulted from this algorithm.Keywords: Flow imaging, pressure distribution estimation, phantom, resolution.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 16822527 Numerical Analysis of Laminar Reflux Condensation from Gas-Vapour Mixtures in Vertical Parallel Plate Channels
Authors: Foad Hassaninejadafarahani, Scott Ormiston
Abstract:
Reflux condensation occurs in vertical channels and tubes when there is an upward core flow of vapour (or gas-vapour mixture) and a downward flow of the liquid film. The understanding of this condensation configuration is crucial in the design of reflux condensers, distillation columns, and in loss-of-coolant safety analyses in nuclear power plant steam generators. The unique feature of this flow is the upward flow of the vapour-gas mixture (or pure vapour) that retards the liquid flow via shear at the liquid-mixture interface. The present model solves the full, elliptic governing equations in both the film and the gas-vapour core flow. The computational mesh is non-orthogonal and adapts dynamically the phase interface, thus produces a sharp and accurate interface. Shear forces and heat and mass transfer at the interface are accounted for fundamentally. This modeling is a big step ahead of current capabilities by removing the limitations of previous reflux condensation models which inherently cannot account for the detailed local balances of shear, mass, and heat transfer at the interface. Discretisation has been done based on finite volume method and co-located variable storage scheme. An in-house computer code was developed to implement the numerical solution scheme. Detailed results are presented for laminar reflux condensation from steam-air mixtures flowing in vertical parallel plate channels. The results include velocity and gas mass fraction profiles, as well as axial variations of film thickness.
Keywords: Reflux Condensation, Heat Transfer, Channel, Laminar Flow
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 18522526 Dual Solutions in Mixed Convection Boundary Layer Flow: A Stability Analysis
Authors: Anuar Ishak
Abstract:
The mixed convection stagnation point flow toward a vertical plate is investigated. The external flow impinges normal to the heated plate and the surface temperature is assumed to vary linearly with the distance from the stagnation point. The governing partial differential equations are transformed into a set of ordinary differential equations, which are then solved numerically using MATLAB routine boundary value problem solver bvp4c. Numerical results show that dual solutions are possible for a certain range of the mixed convection parameter. A stability analysis is performed to determine which solution is linearly stable and physically realizable.
Keywords: Dual solutions, heat transfer, mixed convection, stability analysis.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 24822525 Blood Cell Dynamics in a Simple Shear Flow using an Implicit Fluid-Structure Interaction Method Based on the ALE Approach
Authors: Choeng-Ryul Choi, Chang-Nyung Kim, Tae-Hyub Hong
Abstract:
A numerical method is developed for simulating the motion of particles with arbitrary shapes in an effectively infinite or bounded viscous flow. The particle translational and angular motions are numerically investigated using a fluid-structure interaction (FSI) method based on the Arbitrary-Lagrangian-Eulerian (ALE) approach and the dynamic mesh method (smoothing and remeshing) in FLUENT ( ANSYS Inc., USA). Also, the effects of arbitrary shapes on the dynamics are studied using the FSI method which could be applied to the motions and deformations of a single blood cell and multiple blood cells, and the primary thrombogenesis caused by platelet aggregation. It is expected that, combined with a sophisticated large-scale computational technique, the simulation method will be useful for understanding the overall properties of blood flow from blood cellular level (microscopic) to the resulting rheological properties of blood as a mass (macroscopic).Keywords: Blood Flow, Fluid-Structure Interaction (FSI), Micro-Channels, Arbitrary Shapes, Red Blood Cells (RBCs)
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 23112524 Optimal Water Conservation in a Mechanical Cooling Tower Operations
Authors: M. Boumaza, Y. Bakhabkhi
Abstract:
Water recycling represents an important challenge for many countries, in particular in countries where this natural resource is rare. On the other hand, in many operations, water is used as a cooling medium, as a high proportion of water consumed in industry is used for cooling purposes. Generally this water is rejected directly to the nature. This reject will cause serious environment damages as well as an important waste of this precious element.. On way to solve these problems is to reuse and recycle this warm water, through the use of natural cooling medium, such as air in a heat exchanger unit, known as a cooling tower. A poor performance, design or reliability of cooling towers will result in lower flow rate of cooling water an increase in the evaporation of water, an hence losses of water and energy. This paper which presents an experimental investigate of thermal and hydraulic performances of a mechanical cooling tower, enables to show that the water evaporation rate, Mev, increases with an increase in the air and water flow rates, as well as inlet water temperature and for fixed air flow rates, the pressure drop (ΔPw/Z) increases with increasing , L, due to the hydrodynamic behavior of the air/water flow.
Keywords: water, recycle, performance, cooling tower
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 28172523 A Numerical Study on Rear-spoiler of Passenger Vehicle
Authors: Xu-xia Hu, Eric T. T. Wong
Abstract:
The simulation of external aerodynamics is one of the most challenging and important automotive CFD applications. With the rapid developments of digital computers, CFD is used as a practical tool in modern fluid dynamics research. It integrates fluid mechanics disciplines, mathematics and computer science. In this study, two different types of simulations were made, one for the flow around a simplified high speed passenger car with a rear-spoiler and the other for the flow without a rear-spoiler. The standard k-ε model is selected to numerically simulate the external flow field of the simplified Camry model with or without a rear-spoiler. Through an analysis of the simulation results, a new rear spoiler is designed and it shows a mild reduction of the vehicle aerodynamics drag. This leads to less vehicle fuel consumption on the road.
Keywords: CFD, vehicle rear-spoiler design.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 48982522 Dynamic Stall Vortex Formation of OA-209 Airfoil at Low Reynolds Number
Authors: Aung Myo Thu, Sang Eon Jeon, Yung Hwan Byun, Soo Hyung Park
Abstract:
The unsteady flow field around oscillating OA-209 airfoil at a Reynolds number of 3.5×105 were investigated. Three different reduced frequencies were tested in order to see how it affects the hysteresis loop of an airfoil. At a reduced frequency of 0.05 the deep dynamic stall phenomenon was observed. Lift overshooting was observed as a result of dynamic stall vortex (DSV) shedding. Further investigation was carried out to find out the cause of DSV formation and shedding over airfoil. Particle image velocimetry (PIV) and CFD tools were used and it was found out that dynamic stall separation (DSS), which is separated from leading edge separation (LES) and trailing edge separation (TES), triggered the dynamic stall vortex (DSV).
Keywords: Airfoil Flow, CFD, PIV, Dynamic Stall, Flow Separation.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 31742521 SPH Method used for Flow Predictions at a Turgo Impulse Turbine: Comparison with Fluent
Authors: Phoevos K. Koukouvinis, John S. Anagnostopoulos, Dimitris E. Papantonis
Abstract:
This work is an attempt to use the standard Smoothed Particle Hydrodynamics methodology for the simulation of the complex unsteady, free-surface flow in a rotating Turgo impulse water turbine. A comparison of two different geometries was conducted. The SPH method due to its mesh-less nature is capable of capturing the flow features appearing in the turbine, without diffusion at the water/air interface. Furthermore results are compared with a commercial CFD package (Fluent®) and the SPH algorithm proves to be capable of providing similar results, in much less time than the mesh based CFD program. A parametric study was also performed regarding the turbine inlet angle.Keywords: Smoothed Particle Hydrodynamics, Mesh-lessmethods, Impulse turbines, Turgo turbine.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 26412520 Comprehensive Nonlinearity Simulation of Different Types and Modes of HEMTs with Respect to Biasing Conditions
Authors: M. M. Karkhanehchi, A. Ammani
Abstract:
A simple analytical model has been developed to optimize biasing conditions for obtaining maximum linearity among lattice-matched, pseudomorphic and metamorphic HEMT types as well as enhancement and depletion HEMT modes. A nonlinear current-voltage model has been simulated based on extracted data to study and select the most appropriate type and mode of HEMT in terms of a given gate-source biasing voltage within the device so as to employ the circuit for the highest possible output current or voltage linear swing. Simulation results can be used as a basis for the selection of optimum gate-source biasing voltage for a given type and mode of HEMT with regard to a circuit design. The consequences can also be a criterion for choosing the optimum type or mode of HEMT for a predetermined biasing condition.Keywords: Biasing, characteristic, linearity, simulation.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 15022519 Gas Flow into Rotary Valve Intake and Exhaust Mechanism in Internal Combustion Engine
Authors: R. Usubamatov, Z. A. Rashid
Abstract:
Simple design of a rotary valve system is capable of controlling intake and exhaust gases, which will eliminate the need of known complex mechanisms. The cost of material and production, maintenance, and noise level of the system can be further reduced. The new mechanism enables the elimination of the overlapping of valves work that reduces gas leakage. This paper examines theoretically the gas flow through the holes of a rotary valve design in a small engine. Preliminary results show that the new gas flow has many positive differences than a conventional poppet-valve system. New dependencies on the gas speed enable the finding of better solutions for the geometry of a rotary valve system that will result in a higher efficiency of an internal-combustion engine of the automotive industry.
Keywords: Gas arrangement, internal combustion engine.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 33452518 Transient Solution of an Incompressible Viscous Flow in a Channel with Sudden Expansion/Contraction
Authors: Durga C. Dalal, Swapan K. Pandit
Abstract:
In this paper, a numerical study has been made to analyze the transient 2-D flows of a viscous incompressible fluid through channels with forward or backward constriction. Problems addressed include flow through sudden contraction and sudden expansion channel geometries with rounded and increasingly sharp reentrant corner. In both the cases, numerical results are presented for the separation and reattachment points, streamlines, vorticity and flow patterns. A fourth order accurate compact scheme has been employed to efficiently capture steady state solutions of the governing equations. It appears from our study that sharpness of the throat in the channel is one of the important parameters to control the strength and size of the separation zone without modifying the general flow patterns. The comparison between the two cases shows that the upstream geometry plays a significant role on vortex growth dynamics.Keywords: Forward and backward constriction, HOC scheme, Incompressible viscous flows, Separation and reattachment points.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 16962517 Effects of Paste Content on Flow Characteristics of SCC Containing Local Natural Pozzolan
Authors: Muhammad Nouman Haral, Abdulaziz I. Al-Negheimesh, Galal Fares, Mohammad Iqbal Khan, Abdulrahman M. Alhozaimy
Abstract:
Natural pozzolan (NP) is one of the potential prehistoric alternative binders in the construction industry. It has been investigated as cement replacement in ordinary concrete by several researchers for many purposes. Various supplementary cementitious materials (SCMs) such as fly ash, limestone dust and silica fume are widely used in the production of SCC; however, limited studies to address the effect of NP on the properties of SCC are documented. The current research is composed of different SCC paste and concrete mixtures containing different replacement levels of local NP as an alternative SCM. The effect of volume of paste containing different amounts of local NP related to W/B ratio and cement content on SCC fresh properties was assessed. The variations in the fresh properties of SCC paste and concrete represented by slump flow (flowability) and the flow rate were determined and discussed. The results indicated that the flow properties of SCC paste and concrete mixtures, at their optimized superplasticizer dosages, were affected by the binder content of local NP and the total volume fraction of SCC paste.
Keywords: Binder, fresh properties, natural pozzolan, paste, SCC.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 27862516 Experimental and Numerical Investigation of Flow Control Using a Novel Active Slat
Authors: Basman Elhadidi, Islam Elqatary, Osama Mohamady, Hesham Othman
Abstract:
An active slat is developed to increase the lift and delay the separation for a DU96-W180 airfoil. The active slat is a fixed slat that can be closed, fully opened or intermittently opened by a rotating vane depending on the need. Experimental results show that the active slat has reduced the mean pressure and increased the mean velocity on the suction side of the airfoil for all positive angles of attack, indicating an increase of lift. The experimental data and numerical simulations also show that the direction of actuator vane rotation can influence the mixing of the flow streams on the suction side and hence influence the aerodynamic performance.
Keywords: Active slat, flow control.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 27782515 Numerical Study of Developing Laminar Forced Convection Flow of Water/CuO Nanofluid in a Circular Tube with a 180 Degrees Curve
Authors: Hamed K. Arzani, Hamid K. Arzani, S.N. Kazi, A. Badarudin
Abstract:
Numerical investigation into convective heat transfer of CuO-Water based nanofluid in a pipe with return bend under laminar flow conditions has been done. The impacts of Reynolds number and the volume concentration of nanoparticles on the flow and the convective heat transfer behaviour are investigated. The results indicate that the increase in Reynolds number leads to the enhancement of average Nusselt number, and the increase in specific heat in the presence of the nanofluid results in improvement in heat transfer. Also, the presence of the secondary flow in the curve plays a key role in increasing the average Nusselt number and it appears higher than the inlet and outlet tubes. However, the pressure drop curve increases significantly in the tubes with the increase in nanoparticles concentration.Keywords: Laminar forced convection, nanofluid, curve, return bend, CFD.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 12862514 Numerical Investigation of the Thermal Separation in a Vortex Tube
Authors: N.Pourmahmoud, S.Akhesmeh
Abstract:
This work has been carried out in order to provide an understanding of the physical behaviors of the flow variation of pressure and temperature in a vortex tube. A computational fluid dynamics model is used to predict the flow fields and the associated temperature separation within a Ranque–Hilsch vortex tube. The CFD model is a steady axisymmetric model (with swirl) that utilizes the standard k-ε turbulence model. The second–order numerical schemes, was used to carry out all the computations. Vortex tube with a circumferential inlet stream and an axial (cold) outlet stream and a circumferential (hot) outlet stream was considered. Performance curves (temperature separation versus cold outlet mass fraction) were obtained for a specific vortex tube with a given inlet mass flow rate. Simulations have been carried out for varying amounts of cold outlet mass flow rates. The model results have a good agreement with experimental data.
Keywords: Ranque–Hilsch vortex tube, Temperature separation, k–ε model, cold mass fraction.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 24262513 3D Numerical Simulation of Scouring around Bridge Piers (Case Study: Bridge 524 Crosses the Tanana River)
Authors: T. Esmaeili, A. A. Dehghani, A. R. Zahiri, K. Suzuki
Abstract:
Due to the three- dimensional flow pattern interacting with bed material, the process of local scour around bridge piers is complex. Modeling 3D flow field and scour hole evolution around a bridge pier is more feasible nowadays because the computational cost and computational time have significantly decreased. In order to evaluate local flow and scouring around a bridge pier, a completely three-dimensional numerical model, SSIIM program, was used. The model solves 3-D Navier-Stokes equations and a bed load conservation equation. The model was applied to simulate local flow and scouring around a bridge pier in a large natural river with four piers. Computation for 1 day of flood condition was carried out to predict the maximum local scour depth. The results show that the SSIIM program can be used efficiently for simulating the scouring in natural rivers. The results also showed that among the various turbulence models, the k-ω model gives more reasonable results.
Keywords: Bridge piers, flood, numerical simulation, SSIIM.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 29042512 Numerical Modeling of Flow in USBR II Stilling Basin with End Adverse Slope
Authors: Hamidreza Babaali, Alireza Mojtahedi, Nasim Soori, Saba Soori
Abstract:
Hydraulic jump is one of the effective ways of energy dissipation in stilling basins that the energy is highly dissipated by jumping. Adverse slope surface at the end stilling basin is caused to increase energy dissipation and stability of the hydraulic jump. In this study, the adverse slope has been added to end of United States Bureau of Reclamation (USBR) II stilling basin in hydraulic model of Nazloochay dam with scale 1:40, and flow simulated into stilling basin using Flow-3D software. The numerical model is verified by experimental data of water depth in stilling basin. Then, the parameters of water level profile, Froude Number, pressure, air entrainment and turbulent dissipation investigated for discharging 300 m3/s using K-Ɛ and Re-Normalization Group (RNG) turbulence models. The results showed a good agreement between numerical and experimental model as numerical model can be used to optimize of stilling basins.
Keywords: Experimental and numerical modeling, end adverse slope, flow parameters, USBR II Stilling Basin.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 9942511 The Role of Satisfaction on Performance among Afe Babalola University Team Sports
Authors: B. O. Diyaolu
Abstract:
Viability and competency during competition is the dream of every team sports so as to have a good result. But it seems factors abound which deter the performance of even a good sports team. Different individuals with different state of mind all come together to perform in team sports with different degree of satisfaction. This study investigated the role of satisfaction on performance among Afe Babalola University team sports. Descriptive survey research design was used and the population consists of all male and female athletes in the team sports that participated in the last 2019 Ekiti State Higher Institution games (ESHIGA). Total enumeration technique was used for the three team sports; football (44), basketball (24) and volleyball (24). A total of 92 participants were involved in the research. The instrument used for the study was a modified Athlete Satisfaction Scale (ASS). The questionnaire was divided into two sections. The Cronbach’s Alpha reliability coefficient of 0.71 was obtained. The hypotheses were tested at 0.05 significant levels. The completed questionnaire was collated, coded, and analyzed using descriptive statistics of frequency counts and percentage and inferential statistics of chi-square (X2). Findings of this study revealed that satisfaction significantly influences team sports performance among Athletes of Afe Babalola University. The responsibility of satisfying athlete lies on the coaches, fans, sports administrators as well as organizers of such event, as it is not only financial reward that gives satisfaction. The performance of a team sports is quiet important and its being determined by the degree of satisfaction of each individual that make up the team. All effort must be made to satisfy athlete in order to guarantee optimum performance.
Keywords: Athlete satisfaction, Optimum achievement, Optimum performance, Sports performance, Team sports.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 8662510 Computational Fluid Dynamics Modeling of Downward Bubbly Flows
Authors: Mahmood Reza Rahimi, Hajir Karimi
Abstract:
Downward turbulent bubbly flows in pipes were modeled using computational fluid dynamics tools. The Hydrodynamics, phase distribution and turbulent structure of twophase air-water flow in a 57.15 mm diameter and 3.06 m length vertical pipe was modeled by using the 3-D Eulerian-Eulerian multiphase flow approach. Void fraction, liquid velocity and turbulent fluctuations profiles were calculated and compared against experimental data. CFD results are in good agreement with experimental data.Keywords: CFD, Bubbly flow, Vertical pipe, Population balance modeling, Gas void fraction, Liquid velocity, Normal turbulent stresses.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 24852509 Using Submerge Fermentation Method to Production of Extracellular Lipase by Aspergillus niger
Authors: Masoumeh Ghasemi, Afshin Farahbakhsh, Arman Farahbakhsh, Ali Asghar Safari
Abstract:
In this study, lipase production has been investigated using submerge fermentation by Aspergillus niger in Kilka fish oil as main substrate. The Taguchi method with an L9 orthogonal array design was used to investigate the effect of parameters and their levels on lipase productivity. The optimum conditions for Kilka fish oil concentration, incubation temperature and pH were obtained 3 gr./ml 35°C and 7, respectively. The amount of lipase activity in optimum condition was obtained 4.59IU/ml. By comparing this amount with the amount of productivity in the olive oil medium based on the cost of each medium, it was that using Kilka fish oil is 84% economical. Therefore Kilka fish oil can be used as an economical and suitable substrate in the lipase production and industrial usages.
Keywords: Lipase, Aspergillus niger, Kilka Fish oil, Submerge Fermentation method.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 28762508 The Modification of the Mixed Flow Pump with Respect to Stability of the Head Curve
Authors: Roman Klas, František Pochylý, Pavel Rudolf
Abstract:
This paper is focused on the CFD simulation of the radiaxial pump (i.e. mixed flow pump) with the aim to detect the reasons of Y-Q characteristic instability. The main reasons of pressure pulsations were detected by means of the analysis of velocity and pressure fields within the pump combined with the theoretical approach. Consequently, the modifications of spiral case and pump suction area were made based on the knowledge of flow conditions and the shape of dissipation function. The primary design of pump geometry was created as the base model serving for the comparison of individual modification influences. The basic experimental data are available for this geometry. This approach replaced the more complicated and with respect to convergence of all computational tasks more difficult calculation for the compressible liquid flow. The modification of primary pump consisted in inserting the three fins types. Subsequently, the evaluation of pressure pulsations, specific energy curves and visualization of velocity fields were chosen as the criterion for successful design.
Keywords: CFD, radiaxial pump, spiral case, stability
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1573