Search results for: steel slag
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 810

Search results for: steel slag

300 Briquetting of Metal Chips by Controlled Impact: Experimental Study

Authors: Todor Penchev, Dimitar Karastojanov, Ivan Altaparmakov

Abstract:

For briquetting of metal chips are used hydraulic and mechanical presses. The density of the briquettes in this case is about 60% - 70 % on the density of solid metal. In this work are presented the results of experimental studies for briquetting of metal chips, by using a new technology for impact briquetting. The used chips are by Armco iron, steel, cast iron, copper, aluminum and brass. It has been found that: (i) in a controlled impact the density of the briquettes can be increases up to 30%; (ii) at the same specific impact energy Es (J/sm3) the density of the briquettes increases with increasing of the impact velocity; (iii), realization of the repeated impact leads to decrease of chips density, which can be explained by distribution of elastic waves in the briquette.

Keywords: Briquetting, chips briquetting, impact briquetting.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1426
299 Earth Grid Safety Consideration: Civil Upgrade Works for an Energised Substation

Authors: M. Nassereddine, A. Hellany, M. Nagrial, J. Rizk

Abstract:

The demand on High voltage (HV) infrastructures is growing due to the corresponding growth in industries and population. Many areas are being developed and therefore require additional electrical power to comply with the demand. Substation upgrade is one of the rapid solutions to ensure the continuous supply of power to customers. This upgrade requires civil modifications to structures and fences. The civil work requires excavation and steel works that may create unsafe touch conditions. This paper presents a brief theoretical overview of the touch voltage inside and around substations and uses CDEGS software to simulate a case study.

Keywords: Earth safety, High Voltage, AC interference, Earthing Design.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2225
298 Design Alternatives for Lateral Force-Resisting Systems of Tall Buildings in Dubai, UAE

Authors: Mohammad AlHamaydeh, Sherif Yehia, Nader Aly, Ammar Douba, Layane Hamzeh

Abstract:

Four design alternatives for lateral force-resisting systems of tall buildings in Dubai, UAE are presented. Quantitative comparisons between the different designs are also made. This paper is intended to provide different feasible lateral systems to be used in Dubai in light of the available seismic hazard studies of the UAE. The different lateral systems are chosen in conformance with the International Building Code (IBC). Moreover, the expected behavior of each system is highlighted and light is shed on some of the cost implications associated with lateral system selection.

Keywords: Concrete, Dual, Dubai UAE Seismicity, Special Moment-Resisting Frames (SMRF), Special Shear Wall, Steel

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 3527
297 Modeling Studies for Electrocoagulation

Authors: A. Genç, R. Hacıoğlu, B. Bakırcı

Abstract:

Synthetic oily wastewaters were prepared from metal working fluids (MWF). Electrocoagulation experiments were performed under constant voltage application. The current, conductivity, pH, dissolved oxygen concentration and temperature were recorded on line at every 5 seconds during the experiments. Effects of applied voltage differences, electrode materials and distance between electrodes on removal efficiency have been investigated. According to the experimental results, the treatment of MWF wastewaters by iron electrodes rather than aluminum and stainless steel was much quicker; and the distance between electrodes should be less than 1cm. The electrocoagulation process was modeled by using block oriented approach and found out that it can be modeled as a single input and multiple output system. Modeling studies indicates that the electrocoagulation process has a nonlinear model structure.

Keywords: Electrocoagulation, oily wastewater, SIMO systems.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2087
296 Eccentric Loading of CFDST Columns

Authors: Trevor N. Haas, Alexander Koen

Abstract:

Columns have traditionally been constructed of reinforced concrete or structural steel. Much attention was allocated to estimate the axial capacity of the traditional column sections to the detriment of other forms of construction. Other forms of column construction such as Concrete Filled Double Skin Tubes received little research attention, and almost no attention when subjected to eccentric loading. This paper investigates the axial capacity of columns when subjected to eccentric loading. The experimental axial capacities are compared to other established theoretical formulae on concentric loading to determine a possible relationship. The study found a good correlation between the reduction in axial capacity for different column lengths and hollow section ratios.

Keywords: CSDST, CFST, Axial Capacity.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 3182
295 Structural Safety Evaluation of Zip-Line Due to Dynamic Impact Load

Authors: Bu Seog Ju, Jae Sang Kim, Woo Young Jung

Abstract:

In recent year, with recent increase of interest towards leisure sports, increased number of Zip-Line or Zip-Wire facilities has built. Many researches have been actively conducted on the emphasis of the cable and the wire at the bridge. However, very limited researches have been conducted on the safety of the Zip-Line structure. In fact, fall accidents from Zip-Line have been reported frequently. Therefore, in this study, the structural safety of Zip-Line under dynamic impact loading condition were evaluated on the previously installed steel cable for leisure (Zip-Line), using 3-dimensional nonlinear Finite Element (FE) model. The result from current study would assist assurance of systematic stability of Zip-Line.

Keywords: Zip-Line, Wire, Cable, 3D FE Model, Safety.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 4107
294 Estimating the Technological Deviation Impact on the Value of the Output Parameter of the Induction Converter

Authors: Marinka K. Baghdasaryan, Siranush M. Muradyan, Avgen A. Gasparyan

Abstract:

Based on the experimental data, the impact of resistance and reactance of the winding, as well as the magnetic permeability of the magnetic circuit steel material on the value of the electromotive force of the induction converter is investigated. The obtained results allow estimating the main technological spreads and determining the maximum level of the electromotive force change. By the method of experiment planning, the expression of a polynomial for the electromotive force which can be used to estimate the adequacy of mathematical models to be used at the investigation and design of induction converters is obtained.

Keywords: Induction converter, electromotive force, expectation, technological spread, deviation, planning an experiment, polynomial, confidence level.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1944
293 Research on Static and Dynamic Behavior of New Combination of Aluminum Honeycomb Panel and Rod Single-layer Latticed Shell

Authors: Xu Chen, Zhao Caiqi

Abstract:

In addition to the advantages of light weight, resistant corrosion and ease of processing, aluminum is also applied to the long-span spatial structures. However, the elastic modulus of aluminum is lower than that of the steel. This paper combines the high performance aluminum honeycomb panel with the aluminum latticed shell, forming a new panel-and-rod composite shell structure. Through comparative analysis between the static and dynamic performance, the conclusion that the structure of composite shell is noticeably superior to the structure combined before.

Keywords: Combination of aluminum honeycomb panel and rod latticed shell, dynamic performance, response spectrum analysis, seismic properties.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1946
292 Slow Pyrolysis of Biowastes: Environmental, Exergetic, and Energetic Assessment

Authors: Daniela Zalazar-Garcia, Erick Torres, Germán Mazza

Abstract:

Slow pyrolysis of a pellet of pistachio waste was studied using a lab-scale stainless-steel reactor. Experiments were conducted at different heating rates (5, 10, and 15 K/min). A 3-E (environmental, exergetic, and energetic) analysis for the processing of 20 kg/h of biowaste was carried out. Experimental results showed that biochar and gas yields decreased with an increase in the heating rate (43% to 36% and 28% to 24%, respectively), while the bio-oil yield increased (29% to 40%). Finally, from the 3-E analysis and the experimental results, it can be suggested that an increase in the heating rate resulted in a higher pyrolysis exergetic efficiency (70%), due to an increase of the bio-oil yield with high-energy content.

Keywords: 3E assessment, biowaste pellet, life cycle assessment, slow pyrolysis.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 515
291 Low Power Consuming Electromagnetic Actuators for Pulsed Pilot Stages

Authors: M. Honarpardaz, Z. Zhang, J. Derkx, A. Trangärd, J. Larsson

Abstract:

Pilot stages are one of the most common positioners and regulators in industry. In this paper, we present two novel concepts for pilot stages with low power consumption to regulate a pneumatic device. Pilot 1, first concept, is designed based on a conventional frame core electro-magnetic actuator and a leaf spring to control the air flow and pilot 2 has an axisymmetric actuator and spring made of non-oriented electrical steel. Concepts are simulated in a system modeling tool to study their dynamic behavior. Both concepts are prototyped and tested. Experimental results are comprehensively analyzed and compared. The most promising concept that consumes less than 8 mW is highlighted and presented.

Keywords: Electro-magnetic actuator, multidisciplinary system, low power consumption, pilot stage.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 967
290 Effect of Zr Addition on Mechanical Properties of Cr-Mo Plastic Mold Steels

Authors: Hyun-Ho Kim, Seok-Jae Lee, Oh-Yeon Lee

Abstract:

We investigated the effects of the additions of Zr and other alloying elements on the mechanical properties and microstructure in Cr-Mo plastic mold steels. The addition of alloying elements changed the microstructure of the normalized samples from the upper bainite to lower bainite due to the increased hardenability. The tempering temperature influenced the strength and hardness values, especially the phenomenon of 350oC embrittlement was observed. The alloy additions of Cr, Mo, and V improved the resistance to the temper embrittlement. The addition of Zr improved the tensile strength and yield strength, but the impact energy was sharply decreased. It may be caused by the formation of Zr-MnS inclusion and rectangular-shaped Zr inclusion due to the Zr addition.

Keywords: Inclusions, mechanical properties, plastic mold steel, Zr addition.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2332
289 Nano Effects of Nitrogen Ion Implantation on TiN Hard Coatings Deposited by PVD and IBAD

Authors: Branko Skoric, Aleksandar Miletic, Pal Terek, Lazar Kovacevic, Milan Kukuruzovic

Abstract:

In this paper, we present the results of a study of TiN thin films which are deposited by a Physical Vapour Deposition (PVD) and Ion Beam Assisted Deposition (IBAD). In the present investigation the subsequent ion implantation was provided with N5+ ions. The ion implantation was applied to enhance the mechanical properties of surface. The thin film deposition process exerts a number of effects such as crystallographic orientation, morphology, topography, densification of the films. A variety of analytic techniques were used for characterization, such as scratch test, calo test, Scanning electron microscopy (SEM), Atomic Force Microscope (AFM), X-ray diffraction (XRD) and Energy Dispersive X-ray analysis (EDAX).

Keywords: Steel, coating, super hard, ion implantation, nanohardness.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1218
288 Evaluation of the Displacement-Based and the Force-Based Adaptive Pushover Methods in Seismic Response Estimation of Irregular Buildings Considering Torsional Effects

Authors: R. Abbasnia, F. Mohajeri Nav, S. Zahedifar, A. Tajik

Abstract:

Recent years, adaptive pushover methods have been developed for seismic analysis of structures. Herein, the accuracy of the displacement-based adaptive pushover (DAP) method, which is introduced by Antoniou and Pinho [2004], is evaluated for Irregular buildings. The results are compared to the force-based procedure. Both concrete and steel frame structures, asymmetric in plan and elevation are analyzed and also torsional effects are taking into the account. These analyses are performed using both near fault and far fault records. In order to verify the results, the Incremental Dynamic Analysis (IDA) is performed.

Keywords: Pushover Analysis, DAP, IDA, Torsion.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 3099
287 The Overload Behaviour of Reinforced Concrete Flexural Members

Authors: Angelo Thurairajah

Abstract:

Sufficient ultimate deformation is necessary to demonstrate the member ductility, which is dependent on the section and the material ductility. The concrete cracking phase of softening prior to the plastic hinge formation is an essential feature as well. The nature of the overload behaviour is studied using the order of the ultimate deflection. The ultimate deflection is primarily dependent on the slenderness (span to depth ratio), the ductility of the reinforcing steel, the degree of moment redistribution, the type of loading, and the support conditions. The ultimate deflection and the degree of moment redistribution from the analytical study are in good agreement with the experimental results and the moment redistribution provisions of the Australian Standards AS3600 Concrete Structures Code.

Keywords: Ductility, softening, ultimate deflection, overload behaviour, moment redistribution.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 397
286 Study of Intergranular Corrosion in Austenitic Stainless Steels Using Electrochemical Impedance Spectroscopy

Authors: Satish Kolli, Adriana Ferancova, David Porter, Jukka Kömi

Abstract:

Electrochemical impedance spectroscopy (EIS) has been used to detect sensitization in austenitic stainless steels that are heat treated in the temperature regime 600-820 °C to produce different degrees of sensitization in the material. The tests were conducted at five different DC potentials in the transpassive region. The quantitative determination of degree of sensitization has been done using double loop electrochemical potentiokinetic reactivation tests (DL-EPR). The correlation between EIS Nyquist diagrams and DL-EPR degree of sensitization values has been studied. The EIS technique can be used as a qualitative tool in determining the intergranular corrosion in austenitic stainless steels that are heat treated at a given temperature.

Keywords: Electrochemical impedance spectroscopy, intergranular corrosion, sensitization, stainless steel.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 872
285 The Effect of the Direct Contact Heat Exchanger on Steam Power Plant

Authors: Mohamed A. Elhaj, Salahedin A. Aljahime

Abstract:

An actual power plant, which is the power plant of Iron and Steel Factory at Misurata city in Libya , has been modeled using Matlab in order to compare its results to the actual results of the actual cycle. This paper concentrates on two factors: a- The comparison between exergy losses in the actual cycle and the modeled cycle. b- The effect of extracting pressure on temperature water at boiler inlet. Closed heat exchangers used in this plant have been substituted by open heat exchangers in the current study of the modeled power plant and the required changes in the pressure have been considered. In the following investigation the two points mentioned above are taken in consideration.

Keywords: Steam Power Plant, Contact Heat exchanger, Exergy, Cycle Efficiency.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1366
284 Thermomechanical Damage Modeling of F114 Carbon Steel

Authors: A. El Amri, M. El Yakhloufi Haddou, A. Khamlichi

Abstract:

The numerical simulation based on the Finite Element Method (FEM) is widely used in academic institutes and in the industry. It is a useful tool to predict many phenomena present in the classical manufacturing forming processes such as fracture. But, the results of such numerical model depend strongly on the parameters of the constitutive behavior model. The influences of thermal and mechanical loads cause damage. The temperature and strain rate dependent materials’ properties and their modelling are discussed. A Johnson-Cook Model of damage has been selected for the numerical simulations. Virtual software called the ABAQUS 6.11 is used for finite element analysis. This model was introduced in order to give information concerning crack initiation during thermal and mechanical loads.

Keywords: Thermomechanical fatigue, failure, numerical simulation, fracture, damages.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1495
283 Fragility Assessment for Torsionally Asymmetric Buildings in Plan

Authors: S. Feli, S. Tavousi Tafreshi, A. Ghasemi

Abstract:

The present paper aims at evaluating the response of three-dimensional buildings with in-plan stiffness irregularities that have been subjected to two-way excitation ground motion records simultaneously. This study is broadly-based fragility assessment with greater emphasis on structural response at in-plan flexible and stiff sides. To this end, three type of three-dimensional 5-story steel building structures with stiffness eccentricities, were subjected to extensive nonlinear incremental dynamic analyses (IDA) utilizing Ibarra-Krawinkler deterioration models. Fragility assessment was implemented for different configurations of braces to investigate the losses in buildings with center of resisting (CR) eccentricities.

Keywords: Ibarra Krawinkler, fragility assessment, flexible and stiff side, center of resisting.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1536
282 Study and Enhancement of Flash Evaporation Desalination Utilizing the Ocean Thermocline and Discharged heat

Authors: Sami Mutair, Yasuyuki Ikegami

Abstract:

This paper reports on the results of experimental investigations of flash evaporation from superheated jet issues vertically upward from a round straight nozzle of 81.3 mm diameter. For the investigated range of jet superheat degree and velocity, it was shown that flash evaporation enhances with initial temperature increase. Due to the increase of jet inertia and subsequently the delay of jet shattering, increase of jet velocity was found to result in increase of evaporation "delay period". An empirical equation predicts the jet evaporation completion height was developed, this equation is thought to be useful in designing the flash evaporation chamber. In attempts for enhancement of flash evaporation, use of steel wire mesh located at short distance downstream was found effective with no consequent pressure drop.

Keywords: Enhancement; Flash Evaporation; OTEC; superheated jet

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 3047
281 Graphene/ZnO/Polymer Nanocomposite Thin Film for Separation of Oil-Water Mixture

Authors: Suboohi Shervani, Jingjing Ling, Jiabin Liu, Tahir Husain

Abstract:

Offshore oil-spill has become the most emerging problem in the world. In the current paper, a graphene/ZnO/polymer nanocomposite thin film is coated on stainless steel mesh via layer by layer deposition method. The structural characterization of materials is determined by Scanning Electron Microscopy (SEM) and X-ray diffraction (XRD). The total petroleum hydrocarbons (TPHs) and separation efficiency have been measured via gas chromatography – flame ionization detector (GC-FID). TPHs are reduced to 2 ppm and separation efficiency of the nanocomposite coated mesh is reached ≥ 99% for the final sample. The nanocomposite coated mesh acts as a promising candidate for the separation of oil- water mixture.

Keywords: Oil-spill, graphene, oil-water separation, nanocomposite.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 848
280 Alloying Effect on Hot Workability of M42 High Speed Steel

Authors: Jung-Ho Moon, Tae Kwon Ha

Abstract:

In the present study, the effect of Si, Al, Ti, Zr, and Nb addition on the microstructure and hot workability of cast M42 tool steels, basically consisting of 1.0C, 0.2Mn, 3.8Cr, 1.5W, 8.5Co, 9.2Mo, and 1.0V in weight percent has been investigated. Tool steels containing Si of 0.25 and 0.5wt.%, Al of 0.06 and 0.12wt.%, Ti of 0.3wt.%, Zr of 0.3wt.%, and Nb of 0.3wt.% were cast into ingots of 140mm ´ 140mm ´ 330mm by vacuum induction melting. After solution treatment at 1150oC for 1.5hr followed by furnace cooling, hot rolling at 1180oC was conducted on the ingots. Addition of titanium, zirconium and niobium was found to retard the decomposition of the eutectic carbides and result in the deterioration of hot workability of the tool steels, while addition of aluminum and silicon showed relatively well decomposed carbide structure and resulted in sound hot rolled plates.

Keywords: High speed steels, alloying elements, eutectic carbides, microstructure, hot workability.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2631
279 Investigation of Heating Behaviour of E-textile Structures

Authors: H. Sezgin, S. Kursun Bahadır, Y. E. Boke, F. Kalaoğlu

Abstract:

By textile science incorporating with electronic industry, developed textile products start to take part in different areas such as industry, military, space, medical etc. for health, protection, defense, communication and automation. Electronic textiles (e-textiles) are fabrics that contain electronics and interconnections with them. In this study, two types of base yarns (cotton and acrylic) and three types of conductive steel yarns with different linear resistance values (14Ω/m, 30Ω/m, 70Ω/m) were used to investigate the effect of base yarn type and linear resistance of conductive yarns on thermal behavior of e-textile structures. Thermal behavior of samples was examined by thermal camera.

Keywords: Conductive yarn, e-textiles, smart textiles, thermal analysis.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2345
278 Influence of Titanium Addition on Wear Properties of AM60 Magnesium Alloy

Authors: H. Zengin, M. E. Turan, Y. Turen, H. Ahlatci, Y. Sun

Abstract:

This study aimed for improving wear resistance of AM60 magnesium alloy by Ti addition (0, 0.2, 0.5, 1wt%Ti). An electric resistance furnace was used to produce alloys. Pure Mg together with Al, Al-Ti and Al-Mn were melted at 750 0C in a stainless steel crucible under controlled Ar gas atmosphere and then poured into a metal mould preheated at 250 0C. Microstructure characterizations were performed by light optical (LOM) and scanning electron microscope (SEM) after the wear test. Wear rates and friction coefficients were measured with a pin-on-disk type UTS-10 Tribometer test device under a load of 20N. The results showed that Ti addition altered the morphology and the amount of b-Mg17Al12 phase in the microstructure of AM60 alloy. b-Mg17Al12 phases on the grain boundaries were refined with increasing amount of Ti. An improvement in wear resistance of AM60 alloy was observed due to the alteration in the microstructure by Ti addition.

Keywords: Magnesium alloy, titanium, SEM, wear.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1810
277 An Investigation on Ultrasonic Pulse Velocity of Hybrid Fiber Reinforced Concretes

Authors: Soner Guler, Demet Yavuz, Refik Burak Taymuş, Fuat Korkut

Abstract:

Because of the easy applying and not costing too much, ultrasonic pulse velocity (UPV) is one of the most used non-destructive techniques to determine concrete characteristics along with impact-echo, Schmidt rebound hammer (SRH) and pulse-echo. This article investigates the relationship between UPV and compressive strength of hybrid fiber reinforced concretes. Water/cement ratio (w/c) was kept at 0.4 for all concrete mixes. Compressive strength of concrete was targeted at 35 MPa. UPV testing and compressive strength tests were carried out at the curing age of 28 days. The UPV of concrete containing steel fibers has been found to be higher than plain concrete for all the testing groups. It is decided that there is not a certain relationship between fiber addition and strength.

Keywords: Ultrasonic pulse velocity, hybrid fiber, compressive strength, fiber.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1069
276 Experimental Design and Performance Analysis in Plasma Arc Surface Hardening

Authors: M.I.S. Ismail, Z. Taha

Abstract:

In this paper, the experimental design of using the Taguchi method is employed to optimize the processing parameters in the plasma arc surface hardening process. The processing parameters evaluated are arc current, scanning velocity and carbon content of steel. In addition, other significant effects such as the relation between processing parameters are also investigated. An orthogonal array, signal-to-noise (S/N) ratio and analysis of variance (ANOVA) are employed to investigate the effects of these processing parameters. Through this study, not only the hardened depth increased and surface roughness improved, but also the parameters that significantly affect the hardening performance are identified. Experimental results are provided to verify the effectiveness of this approach.

Keywords: Plasma arc, hardened depth, surface roughness, Taguchi method, optimization.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2363
275 A FEM Study of Explosive Welding of Double Layer Tubes

Authors: R. Alipour, F.Najarian

Abstract:

Explosive welding is a process which uses explosive detonation to move the flyer plate material into the base material to produce a solid state joint. Experimental tests have been carried out by other researchers; have been considered to explosively welded aluminium 7039 and steel 4340 tubes in one step. The tests have been done using various stand-off distances and explosive ratios. Various interface geometries have been obtained from these experiments. In this paper, all the experiments carried out were simulated using the finite element method. The flyer plate and collision velocities obtained from the analysis were validated by the pin-measurement experiments. The numerical results showed that very high localized plastic deformation produced at the bond interface. The Ls_dyna_971 FEM has been used for all simulation process.

Keywords: Explosive Welding, Johnson-Cook Equation, Finite Element, JWL Equation.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2037
274 Study of the Effect of Inclusion of TiO2 in Active Flux on Submerged Arc Welding of Low Carbon Mild Steel Plate and Parametric Optimization of the Process by Using DEA Based Bat Algorithm

Authors: Sheetal Kumar Parwar, J. Deb Barma, A. Majumder

Abstract:

Submerged arc welding is a very complex process. It is a very efficient and high performance welding process. In this present study an attempt have been done to reduce the welding distortion by increased amount of oxide flux through TiO2 in submerged arc welding process. Care has been taken to avoid the excessiveness of the adding agent for attainment of significant results. Data Envelopment Analysis (DEA) based BAT algorithm is used for the parametric optimization purpose in which DEA is used to convert multi response parameters into a single response parameter. The present study also helps to know the effectiveness of the addition of TiO2 in active flux during submerged arc welding process.

Keywords: BAT algorithm, design of experiment, optimization, submerged arc welding.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2010
273 Energy Efficient Recycling of in-Plant Fines

Authors: H. Ahmed, A. Persson, L. Sundqvist, B. Biorkman

Abstract:

Numerous amounts of metallurgical dusts and sludge containing iron as well as some other valuable elements such as Zn, Pb and C are annually produced in the steelmaking industry. These alternative iron ore resources (fines) with unsatisfying physical and metallurgical properties are difficult to recycle. However, agglomerating these fines to be further used as a feed stock for existing iron and steelmaking processes is practiced successfully at several plants but for limited extent.

In the present study, briquettes of integrated steelmaking industry waste materials (namely, BF-dust and sludge, BOF-dust and sludge) were used as feed stock to produce direct reduced iron (DRI). Physical and metallurgical properties of produced briquettes were investigated by means of TGA/DTA/QMS in combination with XRD. Swelling, softening and melting behavior were also studied using heating microscope.

Keywords: Iron and Steel Wastes, Recycling, Self-Reducing Briquettes, Thermogravimetry.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2398
272 Dynamics Analyses of Swing Structure Subject to Rotational Forces

Authors: Buntheng Chhorn, WooYoung Jung

Abstract:

Large-scale swing has been used in entertainment and performance, especially in circus, for a very long time. To increase the safety of this type of structure, a thorough analysis for displacement and bearing stress was performed for an extreme condition where a full cycle swing occurs. Different masses, ranging from 40 kg to 220 kg, and velocities were applied on the swing. Then, based on the solution of differential dynamics equation, swing velocity response to harmonic force was obtained. Moreover, the resistance capacity was estimated based on ACI steel structure design guide. Subsequently, numerical analysis was performed in ABAQUS to obtain the stress on each frame of the swing. Finally, the analysis shows that the expansion of swing structure frame section was required for mass bigger than 150kg.

Keywords: Swing structure, displacement, bearing stress, dynamic loads response, finite element analysis.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1268
271 Dynamic Load Modeling for KHUZESTAN Power System Voltage Stability Studies

Authors: M. Sedighizadeh, A. Rezazadeh

Abstract:

Based on the component approach, three kinds of dynamic load models, including a single –motor model, a two-motor model and composite load model have been developed for the stability studies of Khuzestan power system. The study results are presented in this paper. Voltage instability is a dynamic phenomenon and therefore requires dynamic representation of the power system components. Industrial loads contain a large fraction of induction machines. Several models of different complexity are available for the description investigations. This study evaluates the dynamic performances of several dynamic load models in combination with the dynamics of a load changing transformer. Case study is steel industrial substation in Khuzestan power systems.

Keywords: Dynamic load, modeling, Voltage Stability.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1861