Search results for: mechanical vibration
1085 Analysis of Failure Pressures of Composite Cylinders with a Polymer Liner of Type IV CNG Vessels
Authors: A. Hocine, A. Ghouaoula, F. Kara Achira, S.M. Medjdoub
Abstract:
The present study deals with the analysis of the cylindrical part of a CNG storage vessel, combining a plastic liner and an over wrapped filament wound composite. Three kind of polymer are used in the present analysis: High density Polyethylene HDPE, Light low density Polyethylene LLDPE and finally blend of LLDPE/HDPE. The effect of the mechanical properties on the behavior of type IV vessel may be then investigated. In the present paper, the effect of the order of the circumferential winding on the stacking sequence may be then investigated. Based on mechanical considerations, the present model provides an exact solution for stresses and deformations on the cylindrical section of the vessel under thermo-mechanical static loading. The result show a good behavior of HDPE liner compared to the other plastic materials. The presence of circumferential winding angle in the stacking improves the rigidity of vessel by improving the burst pressure.
Keywords: CNG, Cylindrical vessel, Filament winding, Liner, Polymer, LLDPE, HDPE, Burst pressure.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 37831084 A Study on the Effect of Mg and Ag Additions and Age Hardening Treatment on the Properties of As-Cast Al-Cu-Mg-Ag Alloys
Authors: Ahmed. S. Alasmari, M. S. Soliman, Magdy M. El-Rayes
Abstract:
This study focuses on the effect of the addition of magnesium (Mg) and silver (Ag) on the mechanical properties of aluminum based alloys. The alloying elements will be added at different levels using the factorial design of experiments of 22; the two factors are Mg and Ag at two levels of concentration. The superior mechanical properties of the produced Al-Cu-Mg-Ag alloys after aging will be resulted from a unique type of precipitation named as Ω-phase. The formed precipitate enhanced the tensile strength and thermal stability. This paper further investigated the microstructure and mechanical properties of as cast Al–Cu–Mg–Ag alloys after being complete homogenized treatment at 520 °C for 8 hours followed by isothermally age hardening process at 190 °C for different periods of time. The homogenization at 520 °C for 8 hours was selected based on homogenization study at various temperatures and times. The alloys’ microstructures were studied by using optical microscopy (OM). In addition to that, the fracture surface investigation was performed using a scanning electronic microscope (SEM). Studying the microstructure of aged Al-Cu-Mg-Ag alloys reveal that the grains are equiaxed with an average grain size of about 50 µm. A detailed fractography study for fractured surface of the aged alloys exhibited a mixed fracture whereby the random fracture suggested crack propagation along the grain boundaries while the dimples indicated that the fracture was ductile. The present result has shown that alloy 5 has the highest hardness values and the best mechanical behaviors.
Keywords: Precipitation hardening, aluminum alloys, aging, design of experiments, analysis of variance, heat treatments.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 11821083 Finite Element Prediction and Experimental Verification of the Failure Pattern of Proximal Femur using Quantitative Computed Tomography Images
Authors: Majid Mirzaei, Saeid Samiezadeh , Abbas Khodadadi, Mohammad R. Ghazavi
Abstract:
This paper presents a novel method for prediction of the mechanical behavior of proximal femur using the general framework of the quantitative computed tomography (QCT)-based finite element Analysis (FEA). A systematic imaging and modeling procedure was developed for reliable correspondence between the QCT-based FEA and the in-vitro mechanical testing. A speciallydesigned holding frame was used to define and maintain a unique geometrical reference system during the analysis and testing. The QCT images were directly converted into voxel-based 3D finite element models for linear and nonlinear analyses. The equivalent plastic strain and the strain energy density measures were used to identify the critical elements and predict the failure patterns. The samples were destructively tested using a specially-designed gripping fixture (with five degrees of freedom) mounted within a universal mechanical testing machine. Very good agreements were found between the experimental and the predicted failure patterns and the associated load levels.Keywords: Bone, Osteoporosis, Noninvasive methods, Failure Analysis
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 20971082 Studies on Microstructure and Mechanical Properties of Simulated Heat Affected Zone in a Micro Alloyed Steel
Authors: Sanjeev Kumar, S. K. Nath
Abstract:
Proper selection of welding parameters for getting excellent weld is a challenge. HAZ simulation helps in identifying suitable welding parameters like heating rate, cooling rate, peak temperature, and energy input. In this study, the influence of weld thermal cycle of heat affected zone (HAZ) is simulated for Submerged Arc Welding (SAW) using Gleeble ® 3800 thermomechanical simulator. A (Micro-alloyed) MA steel plate of thickness 18 mm having yield strength 450MPa is used for making test specimens. Determination of the mechanical properties of weld simulated specimens including Charpy V-notch toughness and hardness is performed. Peak temperatures of 1300°C, 1150°C, 1000°C, 900°C, 800°C, heat energy input of 22KJ/cm and preheat temperatures of 30°C have been used with Rykalin-3D simulation model. It is found that the impact toughness (75J) is the best for the simulated HAZ specimen at the peak temperature 900ºC. For parent steel, impact toughness value is 26.8J at -50°C in transverse direction.Keywords: HAZ Simulation, Mechanical Properties, Peak Temperature, Ship hull steel, and Weldability.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 16771081 Stability of Electrical Drives Supplied by a Three Level Inverter
Authors: M. S. Kelaiaia, H. Labar, S. Kelaiaia, T. Mesbah
Abstract:
The development of the power electronics has allowed increasing the precision and reliability of the electrical devices, thanks to the adjustable inverters, as the Pulse Wide Modulation (PWM) applied to the three level inverters, which is the object of this study. The authors treat the relation between the law order adopted for a given system and the oscillations of the electrical and mechanical parameters of which the tolerance depends on the process with which they are integrated (paper factory, lifting of the heavy loads, etc.).Thus, the best choice of the regulation indexes allows us to achieve stability and safety training without investment (management of existing equipment). The optimal behavior of any electric device can be achieved by the minimization of the stored electrical and mechanical energy.Keywords: Multi level inverter, PWM, Harmonics, oscillation, control.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 13721080 Utilization of Nanoclay to Reinforce Flax Fabric-Geopolymer Composites
Authors: H. Assaedi, F. U. A. Shaikh, I. M. Low
Abstract:
Geopolymer composites reinforced with flax fabrics and nanoclay are fabricated and studied for physical and mechanical properties using X-Ray Diffraction (XRD), Fourier Transform Infrared Spectroscopy (FTIR), and Scanning Electron Microscope (SEM). Nanoclay platelets at a weight of 1.0%, 2.0%, and 3.0% were added to geopolymer pastes. Nanoclay at 2.0 wt.% was found to improve density and decrease porosity while improving flexural strength and post-peak toughness. A microstructural analysis indicated that nanoclay behaves as filler and as an activator supporting geopolymeric reaction while producing a higher content geopolymer gel improving the microstructure of binders. The process enhances adhesion between the geopolymer matrix and flax fibres.Keywords: Flax fibres, geopolymer, mechanical properties, nanoclay.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 18381079 Influence of Ti, B, and Sr on Microstructure, Mechanical and Tribological Properties of as Cast, Cast Aged, and Forge Aged A356 Alloy – A Comparative Study
Authors: R. V. Kurahatti, D. G. Mallapur, K. Rajendra Udupa
Abstract:
In the present work, a comparative study on the microstructure and mechanical properties of as cast, cast aged and forged aged A356 alloy has been investigated. The study reveals that mechanical properties of A356 alloy are highly influenced by melt treatment and solid state processing. Cast aged alloys achieve highest strength and hardness compared to as cast and forge aged ones. Ones treated with combined addition of grain refiners and modifiers achieve maximum strength and hardness. Cast aged A356 alloy possesses higher wear resistance compared to as cast and forge aged ones. Forging improves both strength and ductility of alloys over as cast ones. However, the improvement in ductility is perceptible only for properly grain refined and modified alloys. Ones refined with 0.65% Al-3Ti shows highest improvement in ductility while ones treated with 0.20% Al-10Sr exhibits less improvement in ductility.Keywords: Forged A356 alloy, Grain refinement, Modification, Wear
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 26821078 Study of Biocomposites Based of Poly(Lactic Acid) and Olive Husk Flour
Authors: Samra Isadounene, Amar Boukerrou, Dalila Hammiche
Abstract:
In this work, the composites were prepared with poly(lactic acid) (PLA) and olive husk flour (OHF) with different percentages (10, 20 and 30%) using extrusion method followed by injection molding. The morphological, mechanical properties and thermal behavior of composites were investigated. Tensile strength and elongation at break of composites showed a decreasing trend with increasing fiber content. On the other hand, Young modulus and storage modulus were increased. The addition of OHF resulted in a decrease in thermal stability of composites. The presence of OHF led to an increase in percentage of crystallinity (Xc) of PLA matrix.Keywords: Biopolymers, composites, mechanical properties, poly(lactic acid).
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 10021077 Ni-B Coating Production on Magnesium Alloy by Electroless Deposition
Authors: Ferhat Bülbül
Abstract:
The use of magnesium alloys is limited due to their susceptibility to corrosion although they have many attractive physical and mechanical properties. To increase mechanical and corrosion properties of these alloys, many deposition method and coating types are used. Electroless Ni–B coatings have received considerable interest recently due to its unique properties such as cost-effectiveness, thickness uniformity, good wear resistance, lubricity, good ductility and corrosion resistance, excellent solderability and electrical properties and antibacterial property. In this study, electroless Ni-B coating could been deposited on AZ91 magnesium alloy. The obtained coating exhibited a harder and rougher structure than the substrate.Keywords: Amorphous, electroless Ni–B, magnesium, X-ray diffraction.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 22701076 Compressive Properties of a Synthetic Bone Substitute for Vertebral Cancellous Bone
Authors: H. N. Mehmanparast, J.M. Mac-Thiong., Y. Petit
Abstract:
Transpedicular screw fixation in spinal fractures, degenerative changes, or deformities is a well-established procedure. However, important rate of fixation failure due to screw bending, loosening, or pullout are still reported particularly in weak bone stock in osteoporosis. To overcome the problem, mechanism of failure has to be fully investigated in vitro. Post-mortem human subjects are less accessible and animal cadavers comprise limitations due to different geometry and mechanical properties. Therefore, the development of a synthetic model mimicking the realistic human vertebra is highly demanded. A bone surrogate, composed of Polyurethane (PU) foam analogous to cancellous bone porous structure, was tested for 3 different densities in this study. The mechanical properties were investigated under uniaxial compression test by minimizing the end artifacts on specimens. The results indicated that PU foam of 0.32 g.cm-3 density has comparable mechanical properties to human cancellous bone in terms of young-s modulus and yield strength. Therefore, the obtained information can be considered as primary step for developing a realistic cancellous bone of human vertebral body. Further evaluations are also recommended for other density groups.Keywords: Cancellous bone, Pedicle screw, Polyurethane foam, Synthetic bone
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 30571075 Effect of Gating Sprue Height on Mechanical Properties of Thin Wall Ductile Iron
Authors: E. F. Ochulor, S. O. Adeosun, S. A. Balogun
Abstract:
Effect of sprue/metal head height on mould filling, microstructure and mechanical properties of TWDI casting is studied. Results show that metal/sprue height of 50 mm is not sufficient to push the melt through the gating channel, but as it is increased from 100-350 mm, proper mould filling is achieved. However at higher heights between 200 mm and 350 mm, defects associated with incomplete solidification, carbide precipitation and turbulent flow are evident. This research shows that superior UTS, hardness, nodularity and nodule count are obtained at 100 mm sprue height.Keywords: Melt pressure and velocity, nodularity, nodule count, sprue height.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 29011074 The Influence of RHA on the Mechanical Properties of Mortar Heated Up To High Temperature
Authors: Md. Harunur Rashid, S. M. Kamal Uddin, Sobura khatun
Abstract:
The performance of mortar subjected to high temperature and cooled in normal ambient temperature was examined in the laboratory to comply with the situation of burning & cooling of a structure. Four series of cubical (5 X 5 X 5 cm) mortar specimens were made from OPC, and partial replacement (10, 15, 20, 25 & 30%) of OPC by Rice Husk Ash (RHA) produced in the uncontrolled environment. These specimens were heated in electric furnace to 200, 300, 400, 500 and 7000C. The specimens were kept in normal room temperature for cooling. They were then tested for mechanical properties and the results shows that particular 20% RHA mixed mortar shows better fire performance.Keywords: Fire performance, Rice Husk
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 15621073 A Numerical Study on Micromechanical Aspects in Short Fiber Composites
Authors: I. Ioannou, I. M. Gitman
Abstract:
This study focused on the contribution of micro-mechanical parameters on the macro-mechanical response of short fiber composites, namely polypropylene matrix reinforced by glass fibers. In the framework of this paper, an attention has been given to the glass fibers length, as micromechanical parameter influences the overall macroscopic material’s behavior. Three dimensional numerical models were developed and analyzed through the concept of a Representative Volume Element (RVE). Results of the RVE-based approach were compared with analytical Halpin-Tsai’s model.
Keywords: Effective properties, representative volume element, short fiber reinforced composites.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 13861072 Material Flow Modeling in Friction Stir Welding of AA6061-T6 Alloy and Study of the Effect of Process Parameters
Authors: B. Saha Roy, T. Medhi, S. C. Saha
Abstract:
To understand the friction stir welding process, it is very important to know the nature of the material flow in and around the tool. The process is a combination of both thermal as well as mechanical work i.e. it is a coupled thermo-mechanical process. Numerical simulations are very much essential in order to obtain a complete knowledge of the process as well as the physics underlying it. In the present work a model based approach is adopted in order to study material flow. A thermo-mechanical based CFD model is developed using a Finite Element package, Comsol Multiphysics. The fluid flow analysis is done. The model simultaneously predicts shear strain fields, shear strain rates and shear stress over the entire workpiece for the given conditions. The flow fields generated by the streamline plot give an idea of the material flow. The variation of dynamic viscosity, velocity field and shear strain fields with various welding parameters is studied. Finally the result obtained from the above mentioned conditions is discussed elaborately and concluded.Keywords: AA6061-T6, friction stir welding, material flow, CFD modelling.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 25771071 Observation and Experience of Using Mechanically Activated Fly Ash in Concrete
Authors: R. Hela, L. Bodnarova
Abstract:
Paper focuses on experimental testing of possibilities of mechanical activation of fly ash and observation of influence of specific surface and granulometry on final properties of fresh and hardened concrete. Mechanical grinding prepared various fineness of fly ash, which was classed by specific surface in accordance with Blain and their granulometry was determined by means of laser granulometer. Then, sets of testing specimens were made from mix designs of identical composition with 25% or Portland cement CEM I 42.5 R replaced with fly ash with various specific surface and granulometry. Mix design with only Portland cement was used as reference. Mix designs were tested on consistency of fresh concrete and compressive strength after 7, 28, 60 and 90 days.
Keywords: Concrete, fly ash, latent hydraulicity, mechanically activated fly ash.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 19701070 Studying the Effect of Nanoclays on the Mechanical Properties of Polypropylene/Polyamide Nanocomposites
Authors: Benalia Kouini, Aicha Serier
Abstract:
Nanocomposites based on polypropylene/polyamide 66 (PP/PA66) nanoblends containing organophilic montmorillonite (OMMT) and maleic anhydride grafted polypropylene (PP-g-MAH) were prepared by melt compounding method followed by injection molding. Two different types of nanoclays were used in this work. DELLITE LVF is the untreated nanoclay and DELLITE 67G is the treated one. The morphology of the nanocomposites was studied using the XR diffraction (XRD). The results indicate that the incorporation of treated nanoclay has a significant effect on the impact strength of PP/PA66 nanocomposites. Furthermore, it was found that XRD results revealed the intercalation, exfoliation of nanaclays of nanocomposites.Keywords: Nanoclay, nanocomposites, polypropylene, polyamide, melt processing, mechanical properties.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 12671069 Molecular Dynamics Study on Mechanical Responses of Circular Graphene Nanoflake under Nanoindentation
Authors: Jeong-Won Kang
Abstract:
Graphene, a single-atom sheet, has been considered as the most promising material for making future nanoelectromechanical systems as well as purely electrical switching with graphene transistors. Graphene-based devices have advantages in scaled-up device fabrication due to the recent progress in large area graphene growth and lithographic patterning of graphene nanostructures. Here we investigated its mechanical responses of circular graphene nanoflake under the nanoindentation using classical molecular dynamics simulations. A correlation between the load and the indentation depth was constructed. The nanoindented force in this work was applied to the center point of the circular graphene nanoflake and then, the resonance frequency could be tuned by a nanoindented depth. We found the hardening or the softening of the graphene nanoflake during its nanoindented-deflections, and such properties were recognized by the shift of the resonance frequency. The calculated mechanical parameters in the force-vs-deflection plot were in good agreement with previous experimental and theoretical works. This proposed schematics can detect the pressure via the deflection change or/and the resonance frequency shift, and also have great potential for versatile applications in nanoelectromechanical systems.Keywords: Graphene, pressure sensor, circular graphene nanoflake, molecular dynamics.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 17161068 Effect of Amine-Functionalized Carbon Nanotubes on the Properties of CNT-PAN Composite Nanofibers
Authors: O. Eren, N. Ucar, A. Onen, N. Kızıldag, O. F. Vurur, N. Demirsoy, I. Karacan
Abstract:
PAN nanofibers reinforced with amine functionalized carbon nanotubes. The effect of amine functionalization and the effect of concentration of CNT on the conductivity and mechanical and morphological properties of composite nanofibers were examined. 1%CNT-NH2 loaded PAN/CNT nanofiber showed the best mechanical properties. Conductivity increased with the incorporation of carbon nanotubes. While an increase of concentration of CNT increases the diameter of nanofiber, the use of functionalized CNT results to decrease of diameter of nanofiber.
Keywords: Amine functionalized carbon nanotube, electrospinning, nanofiber, polyacrylonitrile.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 41801067 Symmetry Breaking and the Emergence of Branching Structures in Morphogenesis: Minimal Conditions and Mechanical Interactions between Cells
Authors: M. Margarida Costa, Jorge Simão
Abstract:
The minimal condition for symmetry breaking in morphogenesis of cellular population was investigated using cellular automata based on reaction-diffusion dynamics. In particular, the study looked for the possibility of the emergence of branching structures due to mechanical interactions. The model used two types of cells an external gradient. The results showed that the external gradient influenced movement of cell type-I, also revealed that clusters formed by cells type-II worked as barrier to movement of cells type-I.
Keywords: Morphogenesis, branching structures, symmetrybreaking.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 12421066 Mechanical Behavior of Geosynthetics vs. the Combining Effect of Aging, Temperature, and Internal Structure
Authors: Jaime Carpio-García, Elena Blanco-Fernández, Jorge Rodríguez-Hernández, Daniel Castro-Fresno
Abstract:
Geosynthetic mechanical behavior vs temperature or vs aging has been widely studied independently during the last years, both in laboratory and in outdoor conditions. This paper studies this behavior deeper, considering that geosynthetics have to perform adequately at different outdoor temperatures once they have been subjected to a certain degree of aging, and also considering the different geosynthetic structures made of the same material. This combining effect has been not considered so far and it is important to ensure the performance of geosynthetics, especially where high temperatures are expected. In order to fill this gap six commercial geosynthetics with different internal structures made of polypropylene (PP), high density polyethylene (HDPE), bitumen and polyvinyl chloride (PVC), or even a combination of some of them, have been mechanically tested at mild temperature (20 ºC or 23 ºC) and at warm temperature (45 ºC) before and after specific exposition to air at standardized high temperature in order to simulate 25 years of aging due to oxidation. Besides, for 45 ºC tests, a heating system during test for high deformable specimens is proposed. The influence of the combining effect of aging, structure and temperature in the product behavior has been analyzed and discussed, concluding that internal structure is more influential than aging in the mechanical behavior of a geosynthetic versus temperature.
Keywords: Aging, geosynthetics, internal structure, temperature.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 391065 Local Mechanical Analysis of Arch Foot of Space Y-Beam Arch Bridge
Authors: Cao Ziyuan, Luo Xuan
Abstract:
To study the local force characteristics of a spatial Y-arch bridge, a medium-bearing spatial Y-arch bridge is used as the object of study, and the finite element software FEA is used to establish a spatial finite element model and analyze the force conditions of the arch legs under different most unfavorable loading conditions. It is found that the forces on the arch foot under different conditions are mainly in the longitudinal direction and transverse direction, which should be considered for strengthening. The research results can provide reference for the design and construction of the same type of bridge.
Keywords: Bridge engineering, special-shaped arch bridge, mechanical properties, local analysis.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 4401064 Failure Analysis of a 304 Stainless Steel Flange Crack at Pipeline Transportation of Ethylene
Authors: Parisa Hasanpour, Bahram Borooghani, Vahid Asadi
Abstract:
In the current research, a catastrophic failure of a 304 stainless steel flange at pipeline transportation of ethylene in a petrochemical refinery was studied. Cracking was found in the flange after about 78840h service. Through the chemical analysis and tensile tests, in addition to microstructural analysis such as optical microscopy and Scanning Electron Microscopy (SEM) on the failed part, it found that the fatigue was responsible for the fracture of the flange, which originated from bumps and depressions on the outer surface and propagated by vibration caused by the working condition.
Keywords: Failure analysis, 304 stainless steel, fatigue, flange, petrochemical refinery.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2911063 Static Modeling of the Delamination of a Composite Material Laminate in Mode II
Authors: Y. Madani, H. Achache, B. Boutabout
Abstract:
The purpose of this paper is to analyze numerically by the three-dimensional finite element method, using ABAQUS calculation code, the mechanical behavior of a unidirectional and multidirectional delaminated stratified composite under mechanical loading in Mode II. This study consists of the determination of the energy release rate G in mode II as well as the distribution of equivalent von Mises stresses along the damaged zone by varying several parameters such as the applied load and the delamination length. It allowed us to deduce that the high energy release rate favors delamination at the free edges of a stratified plate subjected to bending.
Keywords: Delamination, energy release rate, finite element method, stratified composite.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 7081062 Dynamic Optimization of Industrial Servomechanisms using Motion Laws Based On Bezier Curves
Authors: Giovanni Incerti
Abstract:
The motion planning procedure described in this paper has been developed in order to eliminate or reduce the residual vibrations of electromechanical positioning systems, without augmenting the motion time (usually imposed by production requirements), nor introducing overtime for vibration damping. The proposed technique is based on a suitable choice of the motion law assigned to the servomotor that drives the mechanism. The reference profile is defined by a Bezier curve, whose shape can be easily changed by modifying some numerical parameters. By means of an optimization technique these parameters can be modified without altering the continuity conditions imposed on the displacement and on its time derivatives at the initial and final time instants.
Keywords: Servomechanism, residual vibrations, motion optimization.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 14121061 An Investigation of a Three-Dimensional Constitutive Model of Gas Diffusion Layers in Polymer Electrolyte Membrane Fuel Cells
Authors: Yanqin Chen, Chao Jiang, Chongdu Cho
Abstract:
This research presents the three-dimensional mechanical characteristics of a commercial gas diffusion layer by experiment and simulation results. Although the mechanical performance of gas diffusion layers has attracted much attention, its reliability and accuracy are still a major challenge. With the help of simulation analysis methods, it is beneficial to the gas diffusion layer’s extensive commercial development and the overall stress analysis of proton electrolyte membrane fuel cells during its pre-production design period. Therefore, in this paper, a three-dimensional constitutive model of a commercial gas diffusion layer, including its material stiffness matrix parameters, is developed and coded, in the user-defined material model of a commercial finite element method software for simulation. Then, the model is validated by comparing experimental results as well as simulation outcomes. As a result, both the experimental data and simulation results show a good agreement with each other, with high accuracy.
Keywords: Gas diffusion layer, proton electrolyte membrane fuel cell, stiffness matrix, three-dimensional mechanical characteristics, user-defined material model.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 9451060 Frequency Modulation in Vibro-Acoustic Modulation Method
Authors: D. Liu, D. M. Donskoy
Abstract:
The vibroacoustic modulation method is based on the modulation effect of high-frequency ultrasonic wave (carrier) by low-frequency vibration in the presence of various defects, primarily contact-type such as cracks, delamination, etc. The presence and severity of the defect are measured by the ratio of the spectral sidebands and the carrier in the spectrum of the modulated signal. This approach, however, does not differentiate between amplitude and frequency modulations, AM and FM, respectfully. This paper is an attempt to explain the generation mechanisms of FM and its correlation with the flaw properties. Here we proposed two possible mechanisms leading to FM modulation based on nonlinear local defect resonance and dynamic acoustoelastic models.
Keywords: Non-destructive testing, nonlinear acoustics, structural health monitoring, acoustoelasticity, local defect resonance.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 4971059 Green Building Materials: Hemp Oil Based Biocomposites
Authors: Nathan W. Manthey, Francisco Cardona, Gaston M. Francucci, Thiru Aravinthan
Abstract:
Novel acrylated epoxidized hemp oil (AEHO) based bioresins were successfully synthesised, characterized and applied to biocomposites reinforced with woven jute fibre. Characterisation of the synthesised AEHO consisted of acid number titrations and FTIR spectroscopy to assess the success of the acrylation reaction. Three different matrices were produced (vinylester (VE), 50/50 blend of AEHO/VE and 100% AEHO) and reinforced with jute fibre to form three different types of biocomposite samples. Mechanical properties in the form of flexural and interlaminar shear strength (ILSS) were investigated and compared for the different samples. Results from the mechanical tests showed that AEHO and 50/50 based neat bioresins displayed lower flexural properties compared with the VE samples. However when applied to biocomposites and compared with VE based samples, AEHO biocomposites demonstrated comparable flexural performance and improved ILSS. These results are attributed to improved fibre-matrix interfacial adhesion due to surface-chemical compatibility between the natural fibres and bioresin.Keywords: Biocomposite, hemp oil based bioresin, green building materials, mechanical properties.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 34711058 Thermal Effect on Wave Interaction in Composite Structures
Authors: R. K. Apalowo, D. Chronopoulos, V. Thierry
Abstract:
There exist a wide range of failure modes in composite structures due to the increased usage of the structures especially in aerospace industry. Moreover, temperature dependent wave response of composite and layered structures have been continuously studied, though still limited, in the last decade mainly due to the broad operating temperature range of aerospace structures. A wave finite element (WFE) and finite element (FE) based computational method is presented by which the temperature dependent wave dispersion characteristics and interaction phenomenon in composite structures can be predicted. Initially, the temperature dependent mechanical properties of the panel in the range of -100 ◦C to 150 ◦C are measured experimentally using the Thermal Mechanical Analysis (TMA). Temperature dependent wave dispersion characteristics of each waveguide of the structural system, which is discretized as a system of a number of waveguides coupled by a coupling element, is calculated using the WFE approach. The wave scattering properties, as a function of temperature, is determined by coupling the WFE wave characteristics models of the waveguides with the full FE modelling of the coupling element on which defect is included. Numerical case studies are exhibited for two waveguides coupled through a coupling element.Keywords: Temperature dependent mechanical characteristics, wave propagation properties, damage detection, wave finite element, composite structure.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 12081057 Development of New Cooling System using Nacelle Duct
Authors: Minho Ha, SeungHeo, Cheolung Cheong, Park K. Y.
Abstract:
In this paper, a new cooling system using a nacelle duct is proposed for the mechanical room in the household refrigerator. The conventional mechanical room consists of a condenser, a compressor and an axial fan. The axial fan is mainly responsible for cooling the condenser and the compressor. The new cooling system is developed by replacing the axial fan with the nacelle duct including the small centrifugal fan. The parametric study is carried out to find the optimum designs of the nacelle duct in terms of performance and efficiency. Through this study, it is revealed that the new system can reduce the space, electrical power and noise compared with the conventional systemKeywords: Centrifugal Fan, Cooling Fan, Nacelle Duct, Refrigerator
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 19171056 Development and Characterization of Bio-Tribological, Nano-Multilayer Coatings for Medical Tools Application
Authors: L. Major, J. M. Lackner, M. Dyner, B. Major
Abstract:
Development of new generation bio-tribological, multilayer coatings opens an avenue for fabrication of future hightech functional surfaces. In the presented work, nano-composite, Cr/CrN+[Cr/ a-C:H implanted by metallic nanocrystals] multilayer coatings have been developed for surface protection of medical tools. Thin films were fabricated by a hybrid Pulsed Laser Deposition technique. Complex microstructure analysis of nanomultilayer coatings, subjected to mechanical and biological tests, were performed by means of transmission electron microscopy (TEM). Microstructure characterization revealed the layered arrangement of Cr23C6 nanoparticles in multilayer structure. Influence of deposition conditions on bio-tribological properties of the coatings was studied. The bio-tests were used as a screening tool for the analyzed nanomultilayer coatings before they could be deposited on medical tools. Bio-medical tests were done using fibroblasts. The mechanical properties of the coatings were investigated by means of a ball-ondisc mechanical test. The micro hardness was done using Berkovich indenter. The scratch adhesion test was done using Rockwell indenter. From the bio-tribological point of view, the optimal properties had the C106_1 material.Keywords: Bio-tribological coatings, cell-material interaction, hybrid PLD, tribology.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1995