Search results for: Optimal distribution.
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 3331

Search results for: Optimal distribution.

2821 Optimal Design of Two-Channel Recursive Parallelogram Quadrature Mirror Filter Banks

Authors: Ju-Hong Lee, Yi-Lin Shieh

Abstract:

This paper deals with the optimal design of two-channel recursive parallelogram quadrature mirror filter (PQMF) banks. The analysis and synthesis filters of the PQMF bank are composed of two-dimensional (2-D) recursive digital all-pass filters (DAFs) with nonsymmetric half-plane (NSHP) support region. The design problem can be facilitated by using the 2-D doubly complementary half-band (DC-HB) property possessed by the analysis and synthesis filters. For finding the coefficients of the 2-D recursive NSHP DAFs, we appropriately formulate the design problem to result in an optimization problem that can be solved by using a weighted least-squares (WLS) algorithm in the minimax (L) optimal sense. The designed 2-D recursive PQMF bank achieves perfect magnitude response and possesses satisfactory phase response without requiring extra phase equalizer. Simulation results are also provided for illustration and comparison.

Keywords: Parallelogram Quadrature Mirror Filter Bank, Doubly Complementary Filter, Nonsymmetric Half-Plane Filter, Weighted Least Squares Algorithm, Digital All-Pass Filter.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1510
2820 Optimal Operation of a Photovoltaic Induction Motor Drive Water Pumping System

Authors: Nelson K. Lujara

Abstract:

The performance characteristics of a photovoltaic induction motor drive water pumping system with and without maximum power tracker is analyzed and presented. The analysis is done through determination and assessment of critical loss components in the system using computer aided design (CAD) tools for optimal operation of the system. The results can be used to formulate a well-calibrated computer aided design package of photovoltaic water pumping systems based on the induction motor drive. The results allow the design engineer to pre-determine the flow rate and efficiency of the system to suit particular application.

Keywords: Photovoltaic, water pumping, losses, induction motor.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1722
2819 Optimization of Communication Protocols by stochastic Delay Mechanisms

Authors: J. Levendovszky, I. Koncz, P. Boros

Abstract:

The paper is concerned with developing stochastic delay mechanisms for efficient multicast protocols and for smooth mobile handover processes which are capable of preserving a given Quality of Service (QoS). In both applications the participating entities (receiver nodes or subscribers) sample a stochastic timer and generate load after a random delay. In this way, the load on the networking resources is evenly distributed which helps to maintain QoS communication. The optimal timer distributions have been sought in different p.d.f. families (e.g. exponential, power law and radial basis function) and the optimal parameter have been found in a recursive manner. Detailed simulations have demonstrated the improvement in performance both in the case of multicast and mobile handover applications.

Keywords: Multicast communication, stochactic delay mechanisms.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1527
2818 An Exact Solution of Axi-symmetric Conductive Heat Transfer in Cylindrical Composite Laminate under the General Boundary Condition

Authors: M.kayhani, M.Nourouzi, A. Amiri Delooei

Abstract:

This study presents an exact general solution for steady-state conductive heat transfer in cylindrical composite laminates. Appropriate Fourier transformation has been obtained using Sturm-Liouville theorem. Series coefficients are achieved by solving a set of equations that related to thermal boundary conditions at inner and outer of the cylinder, also related to temperature continuity and heat flux continuity between each layer. The solution of this set of equations are obtained using Thomas algorithm. In this paper, the effect of fibers- angle on temperature distribution of composite laminate is investigated under general boundary conditions. Here, we show that the temperature distribution for any composite laminates is between temperature distribution for laminates with θ = 0° and θ = 90° .

Keywords: exact solution, composite laminate, heat conduction, cylinder, Fourier transformation.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2419
2817 Energy Deposited by Secondary Electrons Generated by Swift Proton Beams through Polymethylmethacrylate

Authors: Maurizio Dapor, Isabel Abril, Pablo de Vera, Rafael Garcia-Molina

Abstract:

The ionization yield of ion tracks in polymers and bio-molecular systems reaches a maximum, known as the Bragg peak, close to the end of the ion trajectories. Along the path of the ions through the materials, many electrons are generated, which produce a cascade of further ionizations and, consequently, a shower of secondary electrons. Among these, very low energy secondary electrons can produce damage in the biomolecules by dissociative electron attachment. This work deals with the calculation of the energy distribution of electrons produced by protons in a sample of polymethylmethacrylate (PMMA), a material that is used as a phantom for living tissues in hadron therapy. PMMA is also of relevance for microelectronics in CMOS technologies and as a photoresist mask in electron beam lithography. We present a Monte Carlo code that, starting from a realistic description of the energy distribution of the electrons ejected by protons moving through PMMA, simulates the entire cascade of generated secondary electrons. By following in detail the motion of all these electrons, we find the radial distribution of the energy that they deposit in PMMA for several initial proton energies characteristic of the Bragg peak.

Keywords: Monte Carlo method, secondary electrons, energetic ions, ion-beam cancer therapy, ionization cross section, polymethylmethacrylate, proton beams, secondary electrons, radial energy distribution.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1536
2816 CFD Modeling of a Radiator Axial Fan for Air Flow Distribution

Authors: S. Jain, Y. Deshpande

Abstract:

The fluid mechanics principle is used extensively in designing axial flow fans and their associated equipment. This paper presents a computational fluid dynamics (CFD) modeling of air flow distribution from a radiator axial flow fan used in an acid pump truck Tier4 (APT T4) Repower. This axial flow fan augments the transfer of heat from the engine mounted on the APT T4. CFD analysis was performed for an area weighted average static pressure difference at the inlet and outlet of the fan. Pressure contours, velocity vectors, and path lines were plotted for detailing the flow characteristics for different orientations of the fan blade. The results were then compared and verified against known theoretical observations and actual experimental data. This study shows that a CFD simulation can be very useful for predicting and understanding the flow distribution from a radiator fan for further research work.

Keywords: Computational fluid dynamics (CFD), acid pump truck (APT) Tier4 Repower, axial flow fan, area weighted average static pressure difference, and contour plots.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 8459
2815 A Case Study of Limited Dynamic Voltage Frequency Scaling in Low-Power Processors

Authors: Hwan Su Jung, Ahn Jun Gil, Jong Tae Kim

Abstract:

Power management techniques are necessary to save power in the microprocessor. By changing the frequency and/or operating voltage of processor, DVFS can control power consumption. In this paper, we perform a case study to find optimal power state transition for DVFS. We propose the equation to find the optimal ratio between executions of states while taking into account the deadline of processing time and the power state transition delay overhead. The experiment is performed on the Cortex-M4 processor, and average 6.5% power saving is observed when DVFS is applied under the deadline condition.

Keywords: Deadline, Dynamic Voltage Frequency Scaling, Power State Transition.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 936
2814 Stochastic Model Predictive Control for Linear Discrete-Time Systems with Random Dither Quantization

Authors: Tomoaki Hashimoto

Abstract:

Recently, feedback control systems using random dither quantizers have been proposed for linear discrete-time systems. However, the constraints imposed on state and control variables have not yet been taken into account for the design of feedback control systems with random dither quantization. Model predictive control is a kind of optimal feedback control in which control performance over a finite future is optimized with a performance index that has a moving initial and terminal time. An important advantage of model predictive control is its ability to handle constraints imposed on state and control variables. Based on the model predictive control approach, the objective of this paper is to present a control method that satisfies probabilistic state constraints for linear discrete-time feedback control systems with random dither quantization. In other words, this paper provides a method for solving the optimal control problems subject to probabilistic state constraints for linear discrete-time feedback control systems with random dither quantization.

Keywords: Optimal control, stochastic systems, discrete-time systems, probabilistic constraints, random dither quantization.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1124
2813 Steady State Creep Behavior of Functionally Graded Thick Cylinder

Authors: Tejeet Singh, Harmanjit Singh

Abstract:

Creep behavior of thick-walled functionally graded cylinder consisting of AlSiC and subjected to internal pressure and high temperature has been analyzed. The functional relationship between strain rate with stress can be described by the well known threshold stress based creep law with a stress exponent of five. The effect of imposing non-linear particle gradient on the distribution of creep stresses in the thick-walled functionally graded composite cylinder has been investigated. The study revealed that for the assumed non-linear particle distribution, the radial stress decreases throughout the cylinder, whereas the tangential, axial and effective stresses have averaging effect. The strain rates in the functionally graded composite cylinder could be reduced to significant extent by employing non-linear gradient in the distribution of reinforcement.

Keywords: Functionally Graded Material, Pressure, Steady State Creep, Thick-Cylinder.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1949
2812 Performance of an Electrocoagulation Process in Treating Direct Dye: Batch and Continuous Upflow Processes

Authors: C. Phalakornkule, S. Polgumhang, W. Tongdaung

Abstract:

This study presents an investigation of electrochemical variables and an application of the optimal parameters in operating a continuous upflow electrocoagulation reactor in removing dye. Direct red 23, which is azo-based, was used as a representative of direct dyes. First, a batch mode was employed to optimize the design parameters: electrode type, electrode distance, current density and electrocoagulation time. The optimal parameters were found to be iron anode, distance between electrodes of 8 mm and current density of 30 A·m-2 with contact time of 5 min. The performance of the continuous upflow reactor with these parameters was satisfactory, with >95% color removal and energy consumption in the order of 0.6-0.7 kWh·m-3.

Keywords: Decolorization, Direct Dye, Electrocoagulation, Textile Wastewater, Upflow Reactor.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 3007
2811 A Search Algorithm for Solving the Economic Lot Scheduling Problem with Reworks under the Basic Period Approach

Authors: Yu-Jen Chang, Shih-Chieh Chen, Yu-Wei Kuo

Abstract:

In this study, we are interested in the economic lot scheduling problem (ELSP) that considers manufacturing of the serviceable products and remanufacturing of the reworked products. In this paper, we formulate a mathematical model for the ELSP with reworks using the basic period approach. In order to solve this problem, we propose a search algorithm to find the cyclic multiplier ki of each product that can be cyclically produced for every ki basic periods. This research also uses two heuristics to search for the optimal production sequence of all lots and the optimal time length of the basic period so as to minimize the average total cost. This research uses a numerical example to show the effectiveness of our approach.

Keywords: Economic lot, reworks, inventory, basic period.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1487
2810 Improving Lubrication Efficiency at High Sliding Speeds by Plasma Surface Texturing

Authors: Wei Zha, Jingzeng Zhang, Chen Zhao, Ran Cai, Xueyuan Nie

Abstract:

Cathodic plasma electrolysis (CPE) is used to create surface textures on cast iron samples for improving the tribological properties. Micro craters with confined size distribution were successfully formed by CPE process. These craters can generate extra hydrodynamic pressure that separates two sliding surfaces, increase the oil film thickness and accelerate the transition from boundary to mixed lubrication. It was found that the optimal crater size was 1.7 μm, at which the maximum lubrication efficiency was achieved. The Taguchi method was used to optimize the process parameters (voltage and roughness) for CPE surface texturing. The orthogonal array and the signal-to-noise ratio were employed to study the effect of each process parameter on the coefficient of friction. The results showed that with higher voltage and lower roughness, the lower friction coefficient can be obtained, and thus the lubrication can be more efficiently used for friction reduction.

Keywords: Cathodic plasma electrolysis, friction, lubrication, plasma surface texturing.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 656
2809 Optimization of the Input Layer Structure for Feed-Forward Narx Neural Networks

Authors: Zongyan Li, Matt Best

Abstract:

This paper presents an optimization method for reducing the number of input channels and the complexity of the feed-forward NARX neural network (NN) without compromising the accuracy of the NN model. By utilizing the correlation analysis method, the most significant regressors are selected to form the input layer of the NN structure. An application of vehicle dynamic model identification is also presented in this paper to demonstrate the optimization technique and the optimal input layer structure and the optimal number of neurons for the neural network is investigated.

Keywords: Correlation analysis, F-ratio, Levenberg-Marquardt, MSE, NARX, neural network, optimisation.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2168
2808 Ultrasound Mechanical Index as a Parameter Affecting of the Ability of Proliferation of Cells

Authors: Z. Hormozi Moghaddam, M. Mokhtari-Dizaji, M. Movahedin, M. E. Ravari

Abstract:

Mechanical index (MI) is used for quantifying acoustic cavitation and the relationship between acoustic pressure and the frequency. In this study, modeling of the MI was applied to provide treatment protocol and to understand the effective physical processes on reproducibility of stem cells. The acoustic pressure and MI equations are modeled and solved to estimate optimal MI for 28, 40, 150 kHz and 1 MHz frequencies. Radial and axial acoustic pressure distribution was extracted. To validate the results of the modeling, the acoustic pressure in the water and near field depth was measured by a piston hydrophone. Results of modeling and experiments show that the model is consistent well to experimental results with 0.91 and 0.90 correlation of coefficient (p<0.05) for 1 MHz and 40 kHz. Low intensity ultrasound with 0.40 MI is more effective on the proliferation rate of the spermatogonial stem cells during the seven days of culture, in contrast, high MI has a harmful effect on the spermatogonial stem cells. This model provides proper treatment planning in vitro and in vivo by estimating the cavitation phenomenon.

Keywords: Ultrasound, mechanical index, modeling, stem cell.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 933
2807 Unconditionally Secure Quantum Payment System

Authors: Essam Al-Daoud

Abstract:

A potentially serious problem with current payment systems is that their underlying hard problems from number theory may be solved by either a quantum computer or unanticipated future advances in algorithms and hardware. A new quantum payment system is proposed in this paper. The suggested system makes use of fundamental principles of quantum mechanics to ensure the unconditional security without prior arrangements between customers and vendors. More specifically, the new system uses Greenberger-Home-Zeilinger (GHZ) states and Quantum Key Distribution to authenticate the vendors and guarantee the transaction integrity.

Keywords: Bell state, GHZ state, Quantum key distribution, Quantum payment system.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1526
2806 Stackelberg Security Game for Optimizing Security of Federated Internet of Things Platform Instances

Authors: Violeta Damjanovic-Behrendt

Abstract:

This paper presents an approach for optimal cyber security decisions to protect instances of a federated Internet of Things (IoT) platform in the cloud. The presented solution implements the repeated Stackelberg Security Game (SSG) and a model called Stochastic Human behaviour model with AttRactiveness and Probability weighting (SHARP). SHARP employs the Subjective Utility Quantal Response (SUQR) for formulating a subjective utility function, which is based on the evaluations of alternative solutions during decision-making. We augment the repeated SSG (including SHARP and SUQR) with a reinforced learning algorithm called Naïve Q-Learning. Naïve Q-Learning belongs to the category of active and model-free Machine Learning (ML) techniques in which the agent (either the defender or the attacker) attempts to find an optimal security solution. In this way, we combine GT and ML algorithms for discovering optimal cyber security policies. The proposed security optimization components will be validated in a collaborative cloud platform that is based on the Industrial Internet Reference Architecture (IIRA) and its recently published security model.

Keywords: Security, internet of things, cloud computing, Stackelberg security game, machine learning, Naïve Q-learning.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1533
2805 Optimization of Artificial Ageing Time and Temperature on Evaluation of Hardness and Resistivity of Al-Si-Mg (Cu or/& Ni) Alloys

Authors: A. Hossain, A. S. W. Kurny

Abstract:

The factors necessary to obtain an optimal heat treatment that influence the hardness and resistivity of Al-6Si-0.5Mg casting alloys with Cu or/and Ni additions were investigated. The alloys were homogenised (24hr at 500oC), solutionized (2hr at 540oC) and artificially ageing at various times and temperatures. The alloys were aged isochronally for 60 minutes at temperatures up to 400oC and isothermally at 150, 175, 200, 225, 250 & 300oC for different periods in the range 15 to 360 minutes. The hardness and electrical resistivity of the alloys were measured for various artificial ageing times and temperatures. From the isochronal ageing treatment, hardness found maximum ageing at 225oC. And from the isothermal ageing treatment, hardness found maximum for 60 minutes at 225oC. So the optimal heat treatment consists of 60 minutes ageing at 225oC.

Keywords: Ageing, Al-Si-Mg alloy, hardness, resistivity.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 3010
2804 A Fuzzy Swarm Optimized Approach for Piece Selection in Bit Torrent Like Peer to Peer Network

Authors: M. Padmavathi, R. M. Suresh

Abstract:

Every machine plays roles of client and server simultaneously in a peer-to-peer (P2P) network. Though a P2P network has many advantages over traditional client-server models regarding efficiency and fault-tolerance, it also faces additional security threats. Users/IT administrators should be aware of risks from malicious code propagation, downloaded content legality, and P2P software’s vulnerabilities. Security and preventative measures are a must to protect networks from potential sensitive information leakage and security breaches. Bit Torrent is a popular and scalable P2P file distribution mechanism which successfully distributes large files quickly and efficiently without problems for origin server. Bit Torrent achieved excellent upload utilization according to measurement studies, but it also raised many questions as regards utilization in settings, than those measuring, fairness, and Bit Torrent’s mechanisms choice. This work proposed a block selection technique using Fuzzy ACO with optimal rules selected using ACO.

Keywords: Ant Colony Optimization (ACO), Bit Torrent, Download time, Peer-to-Peer (P2P) network, Performance.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2550
2803 Split-Pipe Design of Water Distribution Network Using Simulated Annealing

Authors: J. Tospornsampan, I. Kita, M. Ishii, Y. Kitamura

Abstract:

In this paper a procedure for the split-pipe design of looped water distribution network based on the use of simulated annealing is proposed. Simulated annealing is a heuristic-based search algorithm, motivated by an analogy of physical annealing in solids. It is capable for solving the combinatorial optimization problem. In contrast to the split-pipe design that is derived from a continuous diameter design that has been implemented in conventional optimization techniques, the split-pipe design proposed in this paper is derived from a discrete diameter design where a set of pipe diameters is chosen directly from a specified set of commercial pipes. The optimality and feasibility of the solutions are found to be guaranteed by using the proposed method. The performance of the proposed procedure is demonstrated through solving the three well-known problems of water distribution network taken from the literature. Simulated annealing provides very promising solutions and the lowest-cost solutions are found for all of these test problems. The results obtained from these applications show that simulated annealing is able to handle a combinatorial optimization problem of the least cost design of water distribution network. The technique can be considered as an alternative tool for similar areas of research. Further applications and improvements of the technique are expected as well.

Keywords: Combinatorial problem, Heuristics, Least-cost design, Looped network, Pipe network, Optimization

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2652
2802 The Estimation Method of Stress Distribution for Beam Structures Using the Terrestrial Laser Scanning

Authors: Sang Wook Park, Jun Su Park, Byung Kwan Oh, Yousok Kim, Hyo Seon Park

Abstract:

This study suggests the estimation method of stress distribution for the beam structures based on TLS (Terrestrial Laser Scanning). The main components of method are the creation of the lattices of raw data from TLS to satisfy the suitable condition and application of CSSI (Cubic Smoothing Spline Interpolation) for estimating stress distribution. Estimation of stress distribution for the structural member or the whole structure is one of the important factors for safety evaluation of the structure. Existing sensors which include ESG (Electric strain gauge) and LVDT (Linear Variable Differential Transformer) can be categorized as contact type sensor which should be installed on the structural members and also there are various limitations such as the need of separate space where the network cables are installed and the difficulty of access for sensor installation in real buildings. To overcome these problems inherent in the contact type sensors, TLS system of LiDAR (light detection and ranging), which can measure the displacement of a target in a long range without the influence of surrounding environment and also get the whole shape of the structure, has been applied to the field of structural health monitoring. The important characteristic of TLS measuring is a formation of point clouds which has many points including the local coordinate. Point clouds are not linear distribution but dispersed shape. Thus, to analyze point clouds, the interpolation is needed vitally. Through formation of averaged lattices and CSSI for the raw data, the method which can estimate the displacement of simple beam was developed. Also, the developed method can be extended to calculate the strain and finally applicable to estimate a stress distribution of a structural member. To verify the validity of the method, the loading test on a simple beam was conducted and TLS measured it. Through a comparison of the estimated stress and reference stress, the validity of the method is confirmed.

Keywords: Structural health monitoring, terrestrial laser scanning, estimation of stress distribution, coordinate transformation, cubic smoothing spline interpolation.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2710
2801 Fuzzy PID based PSS Design Using Genetic Algorithm

Authors: Ermanu A. Hakim, Adi Soeprijanto, Mauridhi H.P

Abstract:

This paper presents PSS (Power system stabilizer) design based on optimal fuzzy PID (OFPID). OFPID based PSS design is considered for single-machine power systems. The main motivation for this design is to stabilize or to control low-frequency oscillation on power systems. Firstly, describing the linear PID control then to combine this PID control with fuzzy logic control mechanism. Finally, Fuzzy PID parameters (Kp. Kd, KI, Kupd, Kui) are tuned by Genetic Algorthm (GA) to reach optimal global stability. The effectiveness of the proposed PSS in increasing the damping of system electromechanical oscillation is demonstrated in a one-machine-infinite-bus system

Keywords: Fuzzy PID, Genetic Algorithm, power system stabilizer.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1715
2800 Isotropic Stress Distribution in Cu/(001) Fe Two Sheets

Authors: A. Derardja, L. Baroura, M. Brioua

Abstract:

The nanotechnology based on epitaxial systems includes single or arranged misfit dislocations. In general, whatever is the type of dislocation or the geometry of the array formed by the dislocations; it is important for experimental studies to know exactly the stress distribution for which there is no analytical expression [1, 2]. This work, using a numerical analysis, deals with relaxation of epitaxial layers having at their interface a periodic network of edge misfit dislocations. The stress distribution is estimated by using isotropic elasticity. The results show that the thickness of the two sheets is a crucial parameter in the stress distributions and then in the profile of the two sheets. A comparative study between the case of single dislocation and the case of parallel network shows that the layers relaxed better when the interface is covered by a parallel arrangement of misfit. Consequently, a single dislocation at the interface produces an important stress field which can be reduced by inserting a parallel network of dislocations with suitable periodicity.

Keywords: Parallel array of misfit, interface, isotropic elasticity, single crystalline substrates, coherent interface

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1548
2799 Optimal Classifying and Extracting Fuzzy Relationship from Query Using Text Mining Techniques

Authors: Faisal Alshuwaier, Ali Areshey

Abstract:

Text mining techniques are generally applied for classifying the text, finding fuzzy relations and structures in data sets. This research provides plenty text mining capabilities. One common application is text classification and event extraction, which encompass deducing specific knowledge concerning incidents referred to in texts. The main contribution of this paper is the clarification of a concept graph generation mechanism, which is based on a text classification and optimal fuzzy relationship extraction. Furthermore, the work presented in this paper explains the application of fuzzy relationship extraction and branch and bound (BB) method to simplify the texts.

Keywords: Extraction, Max-Prod, Fuzzy Relations, Text Mining, Memberships, Classification.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2152
2798 Inference of Stress-Strength Model for a Lomax Distribution

Authors: H. Panahi, S. Asadi

Abstract:

In this paper, the estimation of the stress-strength parameter R = P(Y < X), when X and Y are independent and both are Lomax distributions with the common scale parameters but different shape parameters is studied. The maximum likelihood estimator of R is derived. Assuming that the common scale parameter is known, the bayes estimator and exact confidence interval of R are discussed. Simulation study to investigate performance of the different proposed methods has been carried out.

Keywords: Stress-Strength model; maximum likelihoodestimator; Bayes estimator; Lomax distribution

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1767
2797 Optimal Planning of Ground Grid Based on Particle Swam Algorithm

Authors: Chun-Yao Lee, Yi-Xing Shen

Abstract:

This paper presents an application of particle swarm optimization (PSO) to the grounding grid planning which compares to the application of genetic algorithm (GA). Firstly, based on IEEE Std.80, the cost function of the grounding grid and the constraints of ground potential rise, step voltage and touch voltage are constructed for formulating the optimization problem of grounding grid planning. Secondly, GA and PSO algorithms for obtaining optimal solution of grounding grid are developed. Finally, a case of grounding grid planning is shown the superiority and availability of the PSO algorithm and proposal planning results of grounding grid in cost and computational time.

Keywords: Genetic algorithm, particle swarm optimization, grounding grid.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2033
2796 Capacitor Placement in Radial Distribution System for Loss Reduction Using Artificial Bee Colony Algorithm

Authors: R. Srinivasa Rao

Abstract:

This paper presents a new method which applies an artificial bee colony algorithm (ABC) for capacitor placement in distribution systems with an objective of improving the voltage profile and reduction of power loss. The ABC algorithm is a new population based meta heuristic approach inspired by intelligent foraging behavior of honeybee swarm. The advantage of ABC algorithm is that it does not require external parameters such as cross over rate and mutation rate as in case of genetic algorithm and differential evolution and it is hard to determine these parameters in prior. The other advantage is that the global search ability in the algorithm is implemented by introducing neighborhood source production mechanism which is a similar to mutation process. To demonstrate the validity of the proposed algorithm, computer simulations are carried out on 69-bus system and compared the results with the other approach available in the literature. The proposed method has outperformed the other methods in terms of the quality of solution and computational efficiency.

Keywords: Distribution system, Capacitor Placement, Loss reduction, Artificial Bee Colony Algorithm.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2787
2795 Image Mapping with Cumulative Distribution Function for Quick Convergence of Counter Propagation Neural Networks in Image Compression

Authors: S. Anna Durai, E. Anna Saro

Abstract:

In general the images used for compression are of different types like dark image, high intensity image etc. When these images are compressed using Counter Propagation Neural Network, it takes longer time to converge. The reason for this is that the given image may contain a number of distinct gray levels with narrow difference with their neighborhood pixels. If the gray levels of the pixels in an image and their neighbors are mapped in such a way that the difference in the gray levels of the neighbor with the pixel is minimum, then compression ratio as well as the convergence of the network can be improved. To achieve this, a Cumulative Distribution Function is estimated for the image and it is used to map the image pixels. When the mapped image pixels are used the Counter Propagation Neural Network yield high compression ratio as well as it converges quickly.

Keywords: Correlation, Counter Propagation Neural Networks, Cummulative Distribution Function, Image compression.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1645
2794 Nodal Load Profiles Estimation for Time Series Load Flow Using Independent Component Analysis

Authors: Mashitah Mohd Hussain, Salleh Serwan, Zuhaina Hj Zakaria

Abstract:

This paper presents a method to estimate load profile in a multiple power flow solutions for every minutes in 24 hours per day. A method to calculate multiple solutions of non linear profile is introduced. The Power System Simulation/Engineering (PSS®E) and python has been used to solve the load power flow. The result of this power flow solutions has been used to estimate the load profiles for each load at buses using Independent Component Analysis (ICA) without any knowledge of parameter and network topology of the systems. The proposed algorithm is tested with IEEE 69 test bus system represents for distribution part and the method of ICA has been programmed in MATLAB R2012b version. Simulation results and errors of estimations are discussed in this paper.

Keywords: Electrical Distribution System, Power Flow Solution, Distribution Network, Independent Component Analysis, Newton Raphson, Power System Simulation for Engineering.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2886
2793 Optimal Tuning of Linear Quadratic Regulator Controller Using a Particle Swarm Optimization for Two-Rotor Aerodynamical System

Authors: Ayad Al-Mahturi, Herman Wahid

Abstract:

This paper presents an optimal state feedback controller based on Linear Quadratic Regulator (LQR) for a two-rotor aero-dynamical system (TRAS). TRAS is a highly nonlinear multi-input multi-output (MIMO) system with two degrees of freedom and cross coupling. There are two parameters that define the behavior of LQR controller: state weighting matrix and control weighting matrix. The two parameters influence the performance of LQR. Particle Swarm Optimization (PSO) is proposed to optimally tune weighting matrices of LQR. The major concern of using LQR controller is to stabilize the TRAS by making the beam move quickly and accurately for tracking a trajectory or to reach a desired altitude. The simulation results were carried out in MATLAB/Simulink. The system is decoupled into two single-input single-output (SISO) systems. Comparing the performance of the optimized proportional, integral and derivative (PID) controller provided by INTECO, results depict that LQR controller gives a better performance in terms of both transient and steady state responses when PSO is performed.

Keywords: Linear quadratic regulator, LQR controller, optimal control, particle swarm optimization, PSO, two-rotor aero-dynamical system, TRAS.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2099
2792 Genetic Algorithm Based Optimal Control for a 6-DOF Non Redundant Stewart Manipulator

Authors: A. Omran, G. El-Bayiumi, M. Bayoumi, A. Kassem

Abstract:

Applicability of tuning the controller gains for Stewart manipulator using genetic algorithm as an efficient search technique is investigated. Kinematics and dynamics models were introduced in detail for simulation purpose. A PD task space control scheme was used. For demonstrating technique feasibility, a Stewart manipulator numerical-model was built. A genetic algorithm was then employed to search for optimal controller gains. The controller was tested onsite a generic circular mission. The simulation results show that the technique is highly convergent with superior performance operating for different payloads.

Keywords: Stewart kinematics, Stewart dynamics, task space control, genetic algorithm.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1864