Search results for: textural features
1094 A Fuzzy-Rough Feature Selection Based on Binary Shuffled Frog Leaping Algorithm
Authors: Javad Rahimipour Anaraki, Saeed Samet, Mahdi Eftekhari, Chang Wook Ahn
Abstract:
Feature selection and attribute reduction are crucial problems, and widely used techniques in the field of machine learning, data mining and pattern recognition to overcome the well-known phenomenon of the Curse of Dimensionality. This paper presents a feature selection method that efficiently carries out attribute reduction, thereby selecting the most informative features of a dataset. It consists of two components: 1) a measure for feature subset evaluation, and 2) a search strategy. For the evaluation measure, we have employed the fuzzy-rough dependency degree (FRFDD) of the lower approximation-based fuzzy-rough feature selection (L-FRFS) due to its effectiveness in feature selection. As for the search strategy, a modified version of a binary shuffled frog leaping algorithm is proposed (B-SFLA). The proposed feature selection method is obtained by hybridizing the B-SFLA with the FRDD. Nine classifiers have been employed to compare the proposed approach with several existing methods over twenty two datasets, including nine high dimensional and large ones, from the UCI repository. The experimental results demonstrate that the B-SFLA approach significantly outperforms other metaheuristic methods in terms of the number of selected features and the classification accuracy.Keywords: Binary shuffled frog leaping algorithm, feature selection, fuzzy-rough set, minimal reduct.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 7311093 ParkedGuard: An Efficient and Accurate Parked Domain Detection System Using Graphical Locality Analysis and Coarse-To-Fine Strategy
Authors: Chia-Min Lai, Wan-Ching Lin, Hahn-Ming Lee, Ching-Hao Mao
Abstract:
As world wild internet has non-stop developments, making profit by lending registered domain names emerges as a new business in recent years. Unfortunately, the larger the market scale of domain lending service becomes, the riskier that there exist malicious behaviors or malwares hiding behind parked domains will be. Also, previous work for differentiating parked domain suffers two main defects: 1) too much data-collecting effort and CPU latency needed for features engineering and 2) ineffectiveness when detecting parked domains containing external links that are usually abused by hackers, e.g., drive-by download attack. Aiming for alleviating above defects without sacrificing practical usability, this paper proposes ParkedGuard as an efficient and accurate parked domain detector. Several scripting behavioral features were analyzed, while those with special statistical significance are adopted in ParkedGuard to make feature engineering much more cost-efficient. On the other hand, finding memberships between external links and parked domains was modeled as a graph mining problem, and a coarse-to-fine strategy was elaborately designed by leverage the graphical locality such that ParkedGuard outperforms the state-of-the-art in terms of both recall and precision rates.Keywords: Coarse-to-fine strategy, domain parking service, graphical locality analysis, parked domain.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 12501092 A Psychophysiological Evaluation of an Effective Recognition Technique Using Interactive Dynamic Virtual Environments
Authors: Mohammadhossein Moghimi, Robert Stone, Pia Rotshtein
Abstract:
Recording psychological and physiological correlates of human performance within virtual environments and interpreting their impacts on human engagement, ‘immersion’ and related emotional or ‘effective’ states is both academically and technologically challenging. By exposing participants to an effective, real-time (game-like) virtual environment, designed and evaluated in an earlier study, a psychophysiological database containing the EEG, GSR and Heart Rate of 30 male and female gamers, exposed to 10 games, was constructed. Some 174 features were subsequently identified and extracted from a number of windows, with 28 different timing lengths (e.g. 2, 3, 5, etc. seconds). After reducing the number of features to 30, using a feature selection technique, K-Nearest Neighbour (KNN) and Support Vector Machine (SVM) methods were subsequently employed for the classification process. The classifiers categorised the psychophysiological database into four effective clusters (defined based on a 3-dimensional space – valence, arousal and dominance) and eight emotion labels (relaxed, content, happy, excited, angry, afraid, sad, and bored). The KNN and SVM classifiers achieved average cross-validation accuracies of 97.01% (±1.3%) and 92.84% (±3.67%), respectively. However, no significant differences were found in the classification process based on effective clusters or emotion labels.
Keywords: Virtual Reality, effective computing, effective VR, emotion-based effective physiological database.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 9941091 Movie Genre Preference Prediction Using Machine Learning for Customer-Based Information
Authors: Haifeng Wang, Haili Zhang
Abstract:
Most movie recommendation systems have been developed for customers to find items of interest. This work introduces a predictive model usable by small and medium-sized enterprises (SMEs) who are in need of a data-based and analytical approach to stock proper movies for local audiences and retain more customers. We used classification models to extract features from thousands of customers’ demographic, behavioral and social information to predict their movie genre preference. In the implementation, a Gaussian kernel support vector machine (SVM) classification model and a logistic regression model were established to extract features from sample data and their test error-in-sample were compared. Comparison of error-out-sample was also made under different Vapnik–Chervonenkis (VC) dimensions in the machine learning algorithm to find and prevent overfitting. Gaussian kernel SVM prediction model can correctly predict movie genre preferences in 85% of positive cases. The accuracy of the algorithm increased to 93% with a smaller VC dimension and less overfitting. These findings advance our understanding of how to use machine learning approach to predict customers’ preferences with a small data set and design prediction tools for these enterprises.Keywords: Computational social science, movie preference, machine learning, SVM.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 16491090 The Research Approaches on Crisis and its Management
Authors: M. Mikušová, P. Horváthová
Abstract:
The paper structures research approaches to the crisis and its management. It focuses on approaches – psychological, sociological, economic, ethical and technological. Furthermore, it describes the basic features of models chosen according to those approaches. By their comparison it shows how the crisis influences organizations and individuals, and their mutual interaction.Keywords: approaches, crisis, model.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 13141089 Object Identification with Color, Texture, and Object-Correlation in CBIR System
Authors: Awais Adnan, Muhammad Nawaz, Sajid Anwar, Tamleek Ali, Muhammad Ali
Abstract:
Needs of an efficient information retrieval in recent years in increased more then ever because of the frequent use of digital information in our life. We see a lot of work in the area of textual information but in multimedia information, we cannot find much progress. In text based information, new technology of data mining and data marts are now in working that were started from the basic concept of database some where in 1960. In image search and especially in image identification, computerized system at very initial stages. Even in the area of image search we cannot see much progress as in the case of text based search techniques. One main reason for this is the wide spread roots of image search where many area like artificial intelligence, statistics, image processing, pattern recognition play their role. Even human psychology and perception and cultural diversity also have their share for the design of a good and efficient image recognition and retrieval system. A new object based search technique is presented in this paper where object in the image are identified on the basis of their geometrical shapes and other features like color and texture where object-co-relation augments this search process. To be more focused on objects identification, simple images are selected for the work to reduce the role of segmentation in overall process however same technique can also be applied for other images.Keywords: Object correlation, Geometrical shape, Color, texture, features, contents.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 20281088 A Text Mining Technique Using Association Rules Extraction
Authors: Hany Mahgoub, Dietmar Rösner, Nabil Ismail, Fawzy Torkey
Abstract:
This paper describes text mining technique for automatically extracting association rules from collections of textual documents. The technique called, Extracting Association Rules from Text (EART). It depends on keyword features for discover association rules amongst keywords labeling the documents. In this work, the EART system ignores the order in which the words occur, but instead focusing on the words and their statistical distributions in documents. The main contributions of the technique are that it integrates XML technology with Information Retrieval scheme (TFIDF) (for keyword/feature selection that automatically selects the most discriminative keywords for use in association rules generation) and use Data Mining technique for association rules discovery. It consists of three phases: Text Preprocessing phase (transformation, filtration, stemming and indexing of the documents), Association Rule Mining (ARM) phase (applying our designed algorithm for Generating Association Rules based on Weighting scheme GARW) and Visualization phase (visualization of results). Experiments applied on WebPages news documents related to the outbreak of the bird flu disease. The extracted association rules contain important features and describe the informative news included in the documents collection. The performance of the EART system compared with another system that uses the Apriori algorithm throughout the execution time and evaluating extracted association rules.
Keywords: Text mining, data mining, association rule mining
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 44371087 A Corpus-Based Analysis on Code-Mixing Features in Mandarin-English Bilingual Children in Singapore
Authors: Xunan Huang, Caicai Zhang
Abstract:
This paper investigated the code-mixing features in Mandarin-English bilingual children in Singapore. First, it examined whether the code-mixing rate was different in Mandarin Chinese and English contexts. Second, it explored the syntactic categories of code-mixing in Singapore bilingual children. Moreover, this study investigated whether morphological information was preserved when inserting syntactic components into the matrix language. Data are derived from the Singapore Bilingual Corpus, in which the recordings and transcriptions of sixty English-Mandarin 5-to-6-year-old children were preserved for analysis. Results indicated that the rate of code-mixing was asymmetrical in the two language contexts, with the rate being significantly higher in the Mandarin context than that in the English context. The asymmetry is related to language dominance in that children are more likely to code-mix when using their nondominant language. Concerning the syntactic categories of code-mixing words in the Singaporean bilingual children, we found that noun-mixing, verb-mixing, and adjective-mixing are the three most frequently used categories in code-mixing in the Mandarin context. This pattern mirrors the syntactic categories of code-mixing in the Cantonese context in Cantonese-English bilingual children, and the general trend observed in lexical borrowing. Third, our results also indicated that English vocabularies that carry morphological information are embedded in bare forms in the Mandarin context. These findings shed light upon how bilingual children take advantage of the two languages in mixed utterances in a bilingual environment.
Keywords: Code-mixing, Mandarin Chinese, English, bilingual children.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 11211086 A Simple Chemical Precipitation Method of Titanium Dioxide Nanoparticles Using Polyvinyl Pyrrolidone as a Capping Agent and Their Characterization
Authors: V. P. Muhamed Shajudheen, K. Viswanathan, K. Anitha Rani, A. Uma Maheswari, S. Saravana Kumar
Abstract:
In this paper, a simple chemical precipitation route for the preparation of titanium dioxide nanoparticles, synthesized by using titanium tetra isopropoxide as a precursor and polyvinyl pyrrolidone (PVP) as a capping agent, is reported. The Differential Scanning Calorimetry (DSC) and Thermo Gravimetric Analysis (TGA) of the samples were recorded and the phase transformation temperature of titanium hydroxide, Ti(OH)4 to titanium oxide, TiO2 was investigated. The as-prepared Ti(OH)4 precipitate was annealed at 800°C to obtain TiO2 nanoparticles. The thermal, structural, morphological and textural characterizations of the TiO2 nanoparticle samples were carried out by different techniques such as DSC-TGA, X-Ray Diffraction (XRD), Fourier Transform Infra-Red spectroscopy (FTIR), Micro Raman spectroscopy, UV-Visible absorption spectroscopy (UV-Vis), Photoluminescence spectroscopy (PL) and Field Effect Scanning Electron Microscopy (FESEM) techniques. The as-prepared precipitate was characterized using DSC-TGA and confirmed the mass loss of around 30%. XRD results exhibited no diffraction peaks attributable to anatase phase, for the reaction products, after the solvent removal. The results indicate that the product is purely rutile. The vibrational frequencies of two main absorption bands of prepared samples are discussed from the results of the FTIR analysis. The formation of nanosphere of diameter of the order of 10 nm, has been confirmed by FESEM. The optical band gap was found by using UV-Visible spectrum. From photoluminescence spectra, a strong emission was observed. The obtained results suggest that this method provides a simple, efficient and versatile technique for preparing TiO2 nanoparticles and it has the potential to be applied to other systems for photocatalytic activity.
Keywords: TiO2 nanoparticles, chemical precipitation route, phase transition, Fourier Transform Infra-Red spectroscopy, micro Raman spectroscopy, UV-Visible absorption spectroscopy, Photoluminescence spectroscopy, Field Effect Scanning Electron Microscopy.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 42781085 Analysis of the Internal Mechanical Conditions in the Lower Limb Due to External Loads
Authors: Kent Salomonsson, Xuefang Zhao, Sara Kallin
Abstract:
Human soft tissue is loaded and deformed by any activity, an effect known as a stress-strain relationship, and is often described by a load and tissue elongation curve. Several advances have been made in the fields of biology and mechanics of soft human tissue. However, there is limited information available on in vivo tissue mechanical characteristics and behavior. Confident mechanical properties of human soft tissue cannot be extrapolated from e.g. animal testing. Thus, there is need for non invasive methods to analyze mechanical characteristics of soft human tissue. In the present study, the internal mechanical conditions of the lower limb, which is subject to an external load, is studied by use of the finite element method. A detailed finite element model of the lower limb is made possible by use of MRI scans. Skin, fat, bones, fascia and muscles are represented separately and the material properties for them are obtained from literature. Previous studies have been shown to address macroscopic deformation features, e.g. indentation depth, to a large extent. However, the detail in which the internal anatomical features have been modeled does not reveal the critical internal strains that may induce hypoxia and/or eventual tissue damage. The results of the present study reveals that lumped material models, i.e. averaging of the material properties for the different constituents, does not capture regions of critical strains in contrast to more detailed models.Keywords: FEM, human soft tissue, indentation, properties.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 12861084 Hybrid Approach for Software Defect Prediction Using Machine Learning with Optimization Technique
Authors: C. Manjula, Lilly Florence
Abstract:
Software technology is developing rapidly which leads to the growth of various industries. Now-a-days, software-based applications have been adopted widely for business purposes. For any software industry, development of reliable software is becoming a challenging task because a faulty software module may be harmful for the growth of industry and business. Hence there is a need to develop techniques which can be used for early prediction of software defects. Due to complexities in manual prediction, automated software defect prediction techniques have been introduced. These techniques are based on the pattern learning from the previous software versions and finding the defects in the current version. These techniques have attracted researchers due to their significant impact on industrial growth by identifying the bugs in software. Based on this, several researches have been carried out but achieving desirable defect prediction performance is still a challenging task. To address this issue, here we present a machine learning based hybrid technique for software defect prediction. First of all, Genetic Algorithm (GA) is presented where an improved fitness function is used for better optimization of features in data sets. Later, these features are processed through Decision Tree (DT) classification model. Finally, an experimental study is presented where results from the proposed GA-DT based hybrid approach is compared with those from the DT classification technique. The results show that the proposed hybrid approach achieves better classification accuracy.
Keywords: Decision tree, genetic algorithm, machine learning, software defect prediction.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 14651083 A Spanning Tree for Enhanced Cluster Based Routing in Wireless Sensor Network
Authors: M. Saravanan, M. Madheswaran
Abstract:
Wireless Sensor Network (WSN) clustering architecture enables features like network scalability, communication overhead reduction, and fault tolerance. After clustering, aggregated data is transferred to data sink and reducing unnecessary, redundant data transfer. It reduces nodes transmitting, and so saves energy consumption. Also, it allows scalability for many nodes, reduces communication overhead, and allows efficient use of WSN resources. Clustering based routing methods manage network energy consumption efficiently. Building spanning trees for data collection rooted at a sink node is a fundamental data aggregation method in sensor networks. The problem of determining Cluster Head (CH) optimal number is an NP-Hard problem. In this paper, we combine cluster based routing features for cluster formation and CH selection and use Minimum Spanning Tree (MST) for intra-cluster communication. The proposed method is based on optimizing MST using Simulated Annealing (SA). In this work, normalized values of mobility, delay, and remaining energy are considered for finding optimal MST. Simulation results demonstrate the effectiveness of the proposed method in improving the packet delivery ratio and reducing the end to end delay.
Keywords: Wireless sensor network, clustering, minimum spanning tree, genetic algorithm, low energy adaptive clustering hierarchy, simulated annealing.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 17861082 Technological Advancement in Fashion Online Retailing: A Comparative Study of Pakistan and UK Fashion E-Commerce
Authors: Sadia Idrees, Gianpaolo Vignali, Simeon Gill
Abstract:
The study aims to establish the virtual size and fit technology features to enhance fashion online retailing platforms, utilising digital human measurements to provide customised style and function to consumers. A few firms in the UK have launched advanced interactive fashion shopping domains for personalised shopping globally, aided by the latest internet technology. Virtual size and fit interfaces have a great potential to provide a personalised better-fitted garment to promote mass customisation globally. Made-to-measure clothing, consuming unstitched fabric is a common practice offered by fashion brands in Pakistan. This product is regarded as economical and sustainable to be utilised by consumers in Pakistan. Although the manual sizing system is practiced to sell garments online, virtual size and fit visualisation and recommendation technologies are uncommon in Pakistani fashion interfaces. A comparative assessment of Pakistani fashion brand websites and UK technology-driven fashion interfaces was conducted to highlight the vast potential of the virtual size and fit technology. The results indicated that web 2.0 technology adopted by Pakistani apparel brands has limited features, whereas companies practicing web 3.0 technology provide interactive online real-store shopping experience leading to enhanced customer satisfaction and globalisation of brands.
Keywords: E-commerce, mass customization, virtual size and fit, web 3.0 technology.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 11511081 The Sustainable Strategies Research for Renewal of “Villages in City”: A Case Study of Liuzhou in Southwestern China
Authors: Kai Zhang
Abstract:
Transformation under the reconfiguration of urban-rural relation in Liuzhou city has never been as radical and visible as it has been since the tremendous turn of the last century in China. Huanjiang village is located in Linhuashan Scenic Area in the middle east of Liuzhou city, with spectacular landscape and traditional features. Nowadays Huanjiang village has become a so-called "village in city", which is considered full of great potential for development because of the economic value of regional advantages during the urban sprawl. Communities of village found it difficult to acclimatize with the dramatic changes, which later led to numerous problems including ecological damage, unemployment of landless farmers and loss of traditional culture. Government has started up a series of renewal planings to resolve the problems, which are based on advanced technology and conform to sustainable and integrated strategies of city planning considering the original context and historical culture, superseding the traditional arrangements based on the guide of extensive economic growth. This paper aims to elaborate the context of Liuzhou city and Huanjiang village offered to both the traditional and sustainable planning approaches, in order to understand challenges and solutions of the rebuilding process. Through the analysis of the place relevant to architecture, society and culture, it will establish the corresponding systematic strategies. Considering the local features, it concludes with a comprehensive perspective on organic renewal in the case of Huanjiang village.
Keywords: China, Liuzhou, sustainable strategy, urban renewal, village in city.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 7931080 Reduction of False Positives in Head-Shoulder Detection Based on Multi-Part Color Segmentation
Authors: Lae-Jeong Park
Abstract:
The paper presents a method that utilizes figure-ground color segmentation to extract effective global feature in terms of false positive reduction in the head-shoulder detection. Conventional detectors that rely on local features such as HOG due to real-time operation suffer from false positives. Color cue in an input image provides salient information on a global characteristic which is necessary to alleviate the false positives of the local feature based detectors. An effective approach that uses figure-ground color segmentation has been presented in an effort to reduce the false positives in object detection. In this paper, an extended version of the approach is presented that adopts separate multipart foregrounds instead of a single prior foreground and performs the figure-ground color segmentation with each of the foregrounds. The multipart foregrounds include the parts of the head-shoulder shape and additional auxiliary foregrounds being optimized by a search algorithm. A classifier is constructed with the feature that consists of a set of the multiple resulting segmentations. Experimental results show that the presented method can discriminate more false positive than the single prior shape-based classifier as well as detectors with the local features. The improvement is possible because the presented approach can reduce the false positives that have the same colors in the head and shoulder foregrounds.
Keywords: Pedestrian detection, color segmentation, false positives, feature extraction.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 11441079 Development of a Biomaterial from Naturally Occurring Chloroapatite Mineral for Biomedical Applications
Authors: H. K. G. K. D. K. Hapuhinna, R. D. Gunaratne, H. M. J. C. Pitawala
Abstract:
Hydroxyapatite is a bioceramic which can be used for applications in orthopedics and dentistry due to its structural similarity with the mineral phase of mammalian bones and teeth. In this study, it was synthesized, chemically changing natural Eppawala chloroapatite mineral as a value-added product. Sol-gel approach and solid state sintering were used to synthesize products using diluted nitric acid, ethanol and calcium hydroxide under different conditions. Synthesized Eppawala hydroxyapatite powder was characterized using X-ray Fluorescence (XRF), X-ray Powder Diffraction (XRD), Fourier-transform Infrared Spectroscopy (FTIR), Scanning Electron Microscopy (SEM), Thermogravimetric Analysis (TGA) and Differential Scanning Calorimetry (DSC) in order to find out its composition, crystallinity, presence of functional groups, bonding type, surface morphology, microstructural features, and thermal dependence and stability, respectively. The XRD results reflected the formation of a hexagonal crystal structure of hydroxyapatite. Elementary composition and microstructural features of products were discussed based on the XRF and SEM results of the synthesized hydroxyapatite powder. TGA and DSC results of synthesized products showed high thermal stability and good material stability in nature. Also, FTIR spectroscopy results confirmed the formation of hydroxyapatite from apatite via the presence of hydroxyl groups. Those results coincided with the FTIR results of mammalian bones including human bones. The study concludes that there is a possibility of producing hydroxyapatite using commercially available Eppawala chloroapatite in Sri Lanka.
Keywords: Dentistry, eppawala chloroapatite, hydroxyapatite, orthopedics.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 8171078 Social Aggravations during the Period of Medieval Wars in Europe
Authors: Nurmukhambetov Ardak
Abstract:
This article makes and attempt to disclose the dynamics of development of social interactions in an aggravated environment in relation to the distinctive features of religious wars and their negative impact to the society. Crisis situations that took place in all spheres of social life are described, on the grounds of which the author comes to specific conclusions.Keywords: War, medieval period, social relations, nation, Europe.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 14191077 Digital Manufacturing: Evolution and a Process Oriented Approach to Align with Business Strategy
Authors: Abhimanyu Pati, Prabir K. Bandyopadhyay
Abstract:
The paper intends to highlight the significance of Digital Manufacturing (DM) strategy in support and achievement of business strategy and goals of any manufacturing organization. Towards this end, DM initiatives have been given a process perspective, while not undermining its technological significance, with a view to link its benefits directly with fulfilment of customer needs and expectations in a responsive and cost-effective manner. A digital process model has been proposed to categorize digitally enabled organizational processes with a view to create synergistic groups, which adopt and use digital tools having similar characteristics and functionalities. This will throw future opportunities for researchers and developers to create a unified technology environment for integration and orchestration of processes. Secondly, an effort has been made to apply “what” and “how” features of Quality Function Deployment (QFD) framework to establish the relationship between customers’ needs – both for external and internal customers, and the features of various digital processes, which support for the achievement of these customer expectations. The paper finally concludes that in the present highly competitive environment, business organizations cannot thrive to sustain unless they understand the significance of digital strategy and integrate it with their business strategy with a clearly defined implementation roadmap. A process-oriented approach to DM strategy will help business executives and leaders to appreciate its value propositions and its direct link to organization’s competitiveness.
Keywords: Digital manufacturing, digital process model, quality function deployment, business strategy.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 13161076 Applications of Support Vector Machines on Smart Phone Systems for Emotional Speech Recognition
Authors: Wernhuar Tarng, Yuan-Yuan Chen, Chien-Lung Li, Kun-Rong Hsie, Mingteh Chen
Abstract:
An emotional speech recognition system for the applications on smart phones was proposed in this study to combine with 3G mobile communications and social networks to provide users and their groups with more interaction and care. This study developed a mechanism using the support vector machines (SVM) to recognize the emotions of speech such as happiness, anger, sadness and normal. The mechanism uses a hierarchical classifier to adjust the weights of acoustic features and divides various parameters into the categories of energy and frequency for training. In this study, 28 commonly used acoustic features including pitch and volume were proposed for training. In addition, a time-frequency parameter obtained by continuous wavelet transforms was also used to identify the accent and intonation in a sentence during the recognition process. The Berlin Database of Emotional Speech was used by dividing the speech into male and female data sets for training. According to the experimental results, the accuracies of male and female test sets were increased by 4.6% and 5.2% respectively after using the time-frequency parameter for classifying happy and angry emotions. For the classification of all emotions, the average accuracy, including male and female data, was 63.5% for the test set and 90.9% for the whole data set.Keywords: Smart phones, emotional speech recognition, socialnetworks, support vector machines, time-frequency parameter, Mel-scale frequency cepstral coefficients (MFCC).
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 18421075 Localizing and Recognizing Integral Pitches of Cheque Document Images
Authors: Bremananth R., Veerabadran C. S., Andy W. H. Khong
Abstract:
Automatic reading of handwritten cheque is a computationally complex process and it plays an important role in financial risk management. Machine vision and learning provide a viable solution to this problem. Research effort has mostly been focused on recognizing diverse pitches of cheques and demand drafts with an identical outline. However most of these methods employ templatematching to localize the pitches and such schemes could potentially fail when applied to different types of outline maintained by the bank. In this paper, the so-called outline problem is resolved by a cheque information tree (CIT), which generalizes the localizing method to extract active-region-of-entities. In addition, the weight based density plot (WBDP) is performed to isolate text entities and read complete pitches. Recognition is based on texture features using neural classifiers. Legal amount is subsequently recognized by both texture and perceptual features. A post-processing phase is invoked to detect the incorrect readings by Type-2 grammar using the Turing machine. The performance of the proposed system was evaluated using cheque and demand drafts of 22 different banks. The test data consists of a collection of 1540 leafs obtained from 10 different account holders from each bank. Results show that this approach can easily be deployed without significant design amendments.Keywords: Cheque reading, Connectivity checking, Text localization, Texture analysis, Turing machine, Signature verification.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 16571074 Intelligent Assistive Methods for Diagnosis of Rheumatoid Arthritis Using Histogram Smoothing and Feature Extraction of Bone Images
Authors: SP. Chokkalingam, K. Komathy
Abstract:
Advances in the field of image processing envision a new era of evaluation techniques and application of procedures in various different fields. One such field being considered is the biomedical field for prognosis as well as diagnosis of diseases. This plethora of methods though provides a wide range of options to select from, it also proves confusion in selecting the apt process and also in finding which one is more suitable. Our objective is to use a series of techniques on bone scans, so as to detect the occurrence of rheumatoid arthritis (RA) as accurately as possible. Amongst other techniques existing in the field our proposed system tends to be more effective as it depends on new methodologies that have been proved to be better and more consistent than others. Computer aided diagnosis will provide more accurate and infallible rate of consistency that will help to improve the efficiency of the system. The image first undergoes histogram smoothing and specification, morphing operation, boundary detection by edge following algorithm and finally image subtraction to determine the presence of rheumatoid arthritis in a more efficient and effective way. Using preprocessing noises are removed from images and using segmentation, region of interest is found and Histogram smoothing is applied for a specific portion of the images. Gray level co-occurrence matrix (GLCM) features like Mean, Median, Energy, Correlation, Bone Mineral Density (BMD) and etc. After finding all the features it stores in the database. This dataset is trained with inflamed and noninflamed values and with the help of neural network all the new images are checked properly for their status and Rough set is implemented for further reduction.
Keywords: Computer Aided Diagnosis, Edge Detection, Histogram Smoothing, Rheumatoid Arthritis.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 24791073 Intelligent Solutions for Umbrella Systems in Telecommunication Supervision Systems
Authors: K. P. Csányi, L. T. Kóczy, D. Tikk
Abstract:
This paper indicate the importance of telecommunications supervision systems (TSS), integrating heterogeneous TSS into single system thru umbrella systems, introduces the structure, features, requirements of TSS and TSS related intelligent solutions.Keywords: Telecommunication, telecommunication supervisionsystems, umbrella systems
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 15991072 A Hybrid Ontology Based Approach for Ranking Documents
Authors: Sarah Motiee, Azadeh Nematzadeh, Mehrnoush Shamsfard
Abstract:
Increasing growth of information volume in the internet causes an increasing need to develop new (semi)automatic methods for retrieval of documents and ranking them according to their relevance to the user query. In this paper, after a brief review on ranking models, a new ontology based approach for ranking HTML documents is proposed and evaluated in various circumstances. Our approach is a combination of conceptual, statistical and linguistic methods. This combination reserves the precision of ranking without loosing the speed. Our approach exploits natural language processing techniques to extract phrases from documents and the query and doing stemming on words. Then an ontology based conceptual method will be used to annotate documents and expand the query. To expand a query the spread activation algorithm is improved so that the expansion can be done flexible and in various aspects. The annotated documents and the expanded query will be processed to compute the relevance degree exploiting statistical methods. The outstanding features of our approach are (1) combining conceptual, statistical and linguistic features of documents, (2) expanding the query with its related concepts before comparing to documents, (3) extracting and using both words and phrases to compute relevance degree, (4) improving the spread activation algorithm to do the expansion based on weighted combination of different conceptual relationships and (5) allowing variable document vector dimensions. A ranking system called ORank is developed to implement and test the proposed model. The test results will be included at the end of the paper.Keywords: Document ranking, Ontology, Spread activation algorithm, Annotation.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 16301071 ORank: An Ontology Based System for Ranking Documents
Authors: Mehrnoush Shamsfard, Azadeh Nematzadeh, Sarah Motiee
Abstract:
Increasing growth of information volume in the internet causes an increasing need to develop new (semi)automatic methods for retrieval of documents and ranking them according to their relevance to the user query. In this paper, after a brief review on ranking models, a new ontology based approach for ranking HTML documents is proposed and evaluated in various circumstances. Our approach is a combination of conceptual, statistical and linguistic methods. This combination reserves the precision of ranking without loosing the speed. Our approach exploits natural language processing techniques for extracting phrases and stemming words. Then an ontology based conceptual method will be used to annotate documents and expand the query. To expand a query the spread activation algorithm is improved so that the expansion can be done in various aspects. The annotated documents and the expanded query will be processed to compute the relevance degree exploiting statistical methods. The outstanding features of our approach are (1) combining conceptual, statistical and linguistic features of documents, (2) expanding the query with its related concepts before comparing to documents, (3) extracting and using both words and phrases to compute relevance degree, (4) improving the spread activation algorithm to do the expansion based on weighted combination of different conceptual relationships and (5) allowing variable document vector dimensions. A ranking system called ORank is developed to implement and test the proposed model. The test results will be included at the end of the paper.Keywords: Document ranking, Ontology, Spread activation algorithm, Annotation.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 18881070 Failure Analysis of a Fractured Control Pressure Tube from an Aircraft Engine
Authors: M. P. Valles-González, A. González Meije, A. Pastor Muro, M. García-Martínez, B. González Caballero
Abstract:
This paper studies a failure case of a fuel pressure supply tube from an aircraft engine. Multiple fracture cases of the fuel pressure control tube from aircraft engines have been reported. The studied set was composed by the mentioned tube, a welded connecting pipe, where the fracture has been produced, and a union nut. The fracture has been produced in one of the most critical zones of the tube, in a region next to the supporting body of the union nut to the connector. The tube material was X6CrNiTi18-10, an austenitic stainless steel. Chemical composition was determined using an X-Ray fluorescence spectrometer (XRF) and combustion equipment. Furthermore, the material was characterized mechanically, by a hardness test, and microstructurally using a stereo microscope and an optical microscope. The results confirmed that the material was within specifications. To determine the macrofractographic features, a visual examination and an observation using a stereo microscope of the tube fracture surface were carried out. The results revealed a tube plastic macrodeformation, surface damaged and signs of a possible corrosion process. Fracture surface was also inspected by scanning electron microscopy (FE-SEM), equipped with an energy-dispersive X-ray microanalysis system (EDX), to determine the microfractographic features in order to find out the failure mechanism involved in the fracture. Fatigue striations, which are typical from a progressive fracture by a fatigue mechanism, were observed. The origin of the fracture was placed in defects located on the outer wall of the tube, leading to a final overload fracture.
Keywords: Aircraft Engine, microstructure, fatigue, FE-SEM, fractography, fracture, fuel tube, stainless steel.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 5621069 Scatterer Density in Edge and Coherence Enhancing Nonlinear Anisotropic Diffusion for Medical Ultrasound Speckle Reduction
Authors: Ahmed Badawi, J. Michael Johnson, Mohamed Mahfouz
Abstract:
This paper proposes new enhancement models to the methods of nonlinear anisotropic diffusion to greatly reduce speckle and preserve image features in medical ultrasound images. By incorporating local physical characteristics of the image, in this case scatterer density, in addition to the gradient, into existing tensorbased image diffusion methods, we were able to greatly improve the performance of the existing filtering methods, namely edge enhancing (EE) and coherence enhancing (CE) diffusion. The new enhancement methods were tested using various ultrasound images, including phantom and some clinical images, to determine the amount of speckle reduction, edge, and coherence enhancements. Scatterer density weighted nonlinear anisotropic diffusion (SDWNAD) for ultrasound images consistently outperformed its traditional tensor-based counterparts that use gradient only to weight the diffusivity function. SDWNAD is shown to greatly reduce speckle noise while preserving image features as edges, orientation coherence, and scatterer density. SDWNAD superior performances over nonlinear coherent diffusion (NCD), speckle reducing anisotropic diffusion (SRAD), adaptive weighted median filter (AWMF), wavelet shrinkage (WS), and wavelet shrinkage with contrast enhancement (WSCE), make these methods ideal preprocessing steps for automatic segmentation in ultrasound imaging.Keywords: Nonlinear anisotropic diffusion, ultrasound imaging, speckle reduction, scatterer density estimation, edge based enhancement, coherence enhancement.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 19061068 A Simple Deterministic Model for the Spread of Leptospirosis in Thailand
Authors: W. Triampo, D. Baowan, I.M. Tang, N. Nuttavut, J. Wong-Ekkabut, G. Doungchawee
Abstract:
In this work, we consider a deterministic model for the transmission of leptospirosis which is currently spreading in the Thai population. The SIR model which incorporates the features of this disease is applied to the epidemiological data in Thailand. It is seen that the numerical solutions of the SIR equations are in good agreement with real empirical data. Further improvements are discussed.Keywords: Leptospirosis, SIR Model, Deterministic model, Thailand.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 19861067 The Formation of Mutual Understanding in Conversation: An Embodied Approach
Authors: Haruo Okabayashi
Abstract:
The mutual understanding in conversation is very important for human relations. This study investigates the mental function of the formation of mutual understanding between two people in conversation using the embodied approach. Forty people participated in this study. They are divided into pairs randomly. Four conversation situations between two (make/listen to fun or pleasant talk, make/listen to regrettable talk) are set for four minutes each, and the finger plethysmogram (200 Hz) of each participant is measured. As a result, the attractors of the participants who reported “I did not understand my partner” show the collapsed shape, which means the fluctuation of their rhythm is too small to match their partner’s rhythm, and their cross correlation is low. The autonomic balance of both persons tends to resonate during conversation, and both LLEs tend to resonate, too. In human history, in order for human beings as weak mammals to live, they may have been with others; that is, they have brought about resonating characteristics, which is called self-organization. However, the resonant feature sometimes collapses, depending on the lifestyle that the person was formed by himself after birth. It is difficult for people who do not have a lifestyle of mutual gaze to resonate their biological signal waves with others’. These people have features such as anxiety, fatigue, and confusion tendency. Mutual understanding is thought to be formed as a result of cooperation between the features of self-organization of the persons who are talking and the lifestyle indicated by mutual gaze. Such an entanglement phenomenon is called a nonlinear relation. By this research, it is found that the formation of mutual understanding is expressed by the rhythm of a biological signal showing a nonlinear relationship.
Keywords: Embodied approach, finger plethysmogram, mutual understanding, nonlinear phenomenon.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 12981066 Automatic Removal of Ocular Artifacts using JADE Algorithm and Neural Network
Authors: V Krishnaveni, S Jayaraman, A Gunasekaran, K Ramadoss
Abstract:
The ElectroEncephaloGram (EEG) is useful for clinical diagnosis and biomedical research. EEG signals often contain strong ElectroOculoGram (EOG) artifacts produced by eye movements and eye blinks especially in EEG recorded from frontal channels. These artifacts obscure the underlying brain activity, making its visual or automated inspection difficult. The goal of ocular artifact removal is to remove ocular artifacts from the recorded EEG, leaving the underlying background signals due to brain activity. In recent times, Independent Component Analysis (ICA) algorithms have demonstrated superior potential in obtaining the least dependent source components. In this paper, the independent components are obtained by using the JADE algorithm (best separating algorithm) and are classified into either artifact component or neural component. Neural Network is used for the classification of the obtained independent components. Neural Network requires input features that exactly represent the true character of the input signals so that the neural network could classify the signals based on those key characters that differentiate between various signals. In this work, Auto Regressive (AR) coefficients are used as the input features for classification. Two neural network approaches are used to learn classification rules from EEG data. First, a Polynomial Neural Network (PNN) trained by GMDH (Group Method of Data Handling) algorithm is used and secondly, feed-forward neural network classifier trained by a standard back-propagation algorithm is used for classification and the results show that JADE-FNN performs better than JADEPNN.Keywords: Auto Regressive (AR) Coefficients, Feed Forward Neural Network (FNN), Joint Approximation Diagonalisation of Eigen matrices (JADE) Algorithm, Polynomial Neural Network (PNN).
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 18891065 A Data Hiding Model with High Security Features Combining Finite State Machines and PMM method
Authors: Souvik Bhattacharyya, Gautam Sanyal
Abstract:
Recent years have witnessed the rapid development of the Internet and telecommunication techniques. Information security is becoming more and more important. Applications such as covert communication, copyright protection, etc, stimulate the research of information hiding techniques. Traditionally, encryption is used to realize the communication security. However, important information is not protected once decoded. Steganography is the art and science of communicating in a way which hides the existence of the communication. Important information is firstly hidden in a host data, such as digital image, video or audio, etc, and then transmitted secretly to the receiver.In this paper a data hiding model with high security features combining both cryptography using finite state sequential machine and image based steganography technique for communicating information more securely between two locations is proposed. The authors incorporated the idea of secret key for authentication at both ends in order to achieve high level of security. Before the embedding operation the secret information has been encrypted with the help of finite-state sequential machine and segmented in different parts. The cover image is also segmented in different objects through normalized cut.Each part of the encoded secret information has been embedded with the help of a novel image steganographic method (PMM) on different cuts of the cover image to form different stego objects. Finally stego image is formed by combining different stego objects and transmit to the receiver side. At the receiving end different opposite processes should run to get the back the original secret message.Keywords: Cover Image, Finite state sequential machine, Melaymachine, Pixel Mapping Method (PMM), Stego Image, NCUT.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2261