Search results for: numerical computation
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 2736

Search results for: numerical computation

2256 Spline Collocation for Solving System of Fredholm and Volterra Integral Equations

Authors: N. Ebrahimi, J. Rashidinia

Abstract:

In this paper, numerical solution of system of Fredholm and Volterra integral equations by means of the Spline collocation method is considered. This approximation reduces the system of integral equations to an explicit system of algebraic equations. The solution is collocated by cubic B-spline and the integrand is approximated by the Newton-Cotes formula. The error analysis of proposed numerical method is studied theoretically. The results are compared with the results obtained by other methods to illustrate the accuracy and the implementation of our method.

Keywords: Convergence analysis, Cubic B-spline, Newton- Cotes formula, System of Fredholm and Volterra integral equations.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2200
2255 Numerical Simulation and Analysis of Axially Restrained Steel Cellular Beams in Fire

Authors: Asal Pournaghshband

Abstract:

This paper presents the development of a finite element model to study the large deflection behaviour of restrained stainless steel cellular beams at elevated temperature. Cellular beams are widely used for efficient utilization of raw materials to facilitate long spans with faster construction resulting sustainable design solution that can enhance the performance and merit of any construction project. However, their load carrying capacity is less than the equivalent beams without opening due to developing shear-moment interaction at the openings. In structural frames due to elements continuity, such beams are restrained by their adjoining members which has a substantial effect on beams behaviour in fire. Stainless steel has also become integral part of the build environment due to its excellent corrosion resistance, whole life-cycle costs, and sustainability. This paper reports the numerical investigations into the effect of structural continuity on the thermo-mechanical performance of restrained steel beams with circle and elongated circle shapes of web opening in fire. The numerical model is firstly validated using existing numerical results from the literature, and then employed to perform a parametric study. Parametric studies to explore the influence of variation in i) axial restraint stiffness, ii) steel grades, iii) shape and size of web openings, and iv) load level were described. Hence, the structural continuity is evaluated through the application of different levels of axial restraints on the response of carbon steel and stainless steel cellular beam in fire. The transit temperature for stainless steel cellular beam is shown to be less affected by the level of axial stiffness than the equivalent carbon steel cellular beam. Overall, it was established that whereas stainless steel cellular beams show similar stages of behaviour of carbon steel cellular beams in fire, they are capable of withstanding higher temperatures prior to the onset of catenary action in large deflection, despite the higher thermal expansion of stainless steel material.

Keywords: Axial restraint, catenary action, cellular beam, fire, numerical modelling, stainless steel, transit temperature.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 77
2254 Limit State of Heterogeneous Smart Structures under Unknown Cyclic Loading

Authors: M. Chen, S-Q. Zhang, X. Wang, D. Tate

Abstract:

This paper presents a numerical solution, namely limit and shakedown analysis, to predict the safety state of smart structures made of heterogeneous materials under unknown cyclic loadings, for instance, the flexure hinge in the micro-positioning stage driven by piezoelectric actuator. In combination of homogenization theory and finite-element method (FEM), the safety evaluation problem is converted to a large-scale nonlinear optimization programming for an acceptable bounded loading as the design reference. Furthermore, a general numerical scheme integrated with the FEM and interior-point-algorithm based optimization tool is developed, which makes the practical application possible.

Keywords: Limit state, shakedown analysis, homogenization, heterogeneous structure.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 850
2253 Comparison of Finite-Element and IEC Methods for Cable Thermal Analysis under Various Operating Environments

Authors: M. S. Baazzim, M. S. Al-Saud, M. A. El-Kady

Abstract:

In this paper, steady-state ampacity (current carrying capacity) evaluation of underground power cable system by using analytical and numerical methods for different conditions (depth of cable, spacing between phases, soil thermal resistivity, ambient temperature, wind speed), for two system voltage level were used 132 and 380 kV. The analytical method or traditional method that was used is based on the thermal analysis method developed by Neher-McGrath and further enhanced by International Electrotechnical Commission (IEC) and published in standard IEC 60287. The numerical method that was used is finite element method and it was recourse commercial software based on finite element method. 

Keywords: Cable ampacity, Finite element method, underground cable, thermal rating.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 5861
2252 Numerical Study of Flow Separation Control over a NACA2415 Airfoil

Authors: M. Tahar Bouzaher

Abstract:

This study involves numerical simulation of the flow around a NACA2415 airfoil, with a 18° angle of attack, and flow separation control using a rod, It involves putting a cylindrical rod - upstream of the leading edge- in vertical translation movement in order to accelerate the transition of the boundary layer by interaction between the rod wake and the boundary layer. The viscous, nonstationary flow is simulated using ANSYS FLUENT 13. The rod movement is reproduced using the dynamic mesh technique and an in-house developed UDF (User Define Function). The frequency varies from 75 to 450 Hz and the considered amplitudes are 2%, and 3% of the foil chord. The frequency chosen closed to the frequency of separation. Our results showed a substantial modification in the flow behavior and a maximum drag reduction of 61%.

Keywords: CFD, Flow separation, Active control, Boundary layer, rod, NACA 2415.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2999
2251 Application of Functional Network to Solving Classification Problems

Authors: Yong-Quan Zhou, Deng-Xu He, Zheng Nong

Abstract:

In this paper two models using a functional network were employed to solving classification problem. Functional networks are generalized neural networks, which permit the specification of their initial topology using knowledge about the problem at hand. In this case, and after analyzing the available data and their relations, we systematically discuss a numerical analysis method used for functional network, and apply two functional network models to solving XOR problem. The XOR problem that cannot be solved with two-layered neural network can be solved by two-layered functional network, which reveals a potent computational power of functional networks, and the performance of the proposed model was validated using classification problems.

Keywords: Functional network, neural network, XOR problem, classification, numerical analysis method.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1310
2250 Unsteady Flow between Two Concentric Rotating Spheres along with Uniform Transpiration

Authors: O. Mahian, A. B. Rahimi, A. Kianifar, A. Jabari Moghadam

Abstract:

In this study, the numerical solution of unsteady flow between two concentric rotating spheres with suction and blowing at their boundaries is presented. The spheres are rotating about a common axis of rotation while their angular velocities are constant. The Navier-Stokes equations are solved by employing the finite difference method and implicit scheme. The resulting flow patterns are presented for various values of the flow parameters including rotational Reynolds number Re , and a blowing/suction Reynolds number Rew . Viscous torques at the inner and the outer spheres are calculated, too. It is seen that increasing the amount of suction and blowing decrease the size of eddies generated in the annulus.

Keywords: Concentric spheres, numerical study, suction andblowing, unsteady flow, viscous torque.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1766
2249 Flow Characteristics Impeller Change of an Axial Turbo Fan

Authors: Young-Kyun Kim, Tae-Gu Lee, Jin-Huek Hur, Sung-Jae Moon, Jae-Heon Lee

Abstract:

In this paper, three dimensional flow characteristic was presented by a revision of an impeller of an axial turbo fan for improving the airflow rate and the static pressure. TO consider an incompressible steady three-dimensional flow, the RANS equations are used as the governing equations, and the standard k-ε turbulence model is chosen. The pitch angles of 44°, 54°, 59°, and 64° are implemented for the numerical model. The numerical results show that airflow rates of each pitch angle are 1,175 CMH, 1,270 CMH, 1,340 CMH, and 800 CMH, respectively. The difference of the static pressure at impeller inlet and outlet are 120 Pa, 214 Pa, 242 Pa, and 60 Pa according to respective pitch angles. It means that the 59° of the impeller pitch angle is optimal to improve the airflow rate and the static pressure.

Keywords: Axial turbo fan, Impeller, Blade, Pitch angle.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2695
2248 A Transform-Free HOC Scheme for Incompressible Viscous Flow past a Rotationally Oscillating Circular Cylinder

Authors: Rajendra K. Ray, H. V. R. Mittal

Abstract:

A numerical study is made of laminar, unsteady flow behind a rotationally oscillating circular cylinder using a recently developed higher order compact (HOC) scheme. The stream function vorticity formulation of Navier-Stokes (N-S) equations in cylindrical polar coordinates are considered as the governing equations. The temporal behaviour of vortex formation and relevant streamline patterns of the flow are scrutinized over broad ranges of two externally specified parameters namely dimensionless forced oscillating frequency Sf and dimensionless peak rotation rate αm for the Reynolds-s number Re = 200. Excellent agreements are found both qualitatively and quantitatively with the existing experimental and standard numerical results.

Keywords: HOC, Navier-Stokes, non-uniform polar grids, rotationally oscillating cylinder.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1630
2247 Numerical Modeling and Computer Simulation of Ground Movement above Underground Mine

Authors: A. Nuric, S. Nuric, L. Kricak, I. Lapandic, R. Husagic

Abstract:

This paper describes topic of computer simulation with regard to the ground movement above an underground mine. Simulation made with software package ADINA for nonlinear elastic-plastic analysis with finite elements method. The one of representative profiles from Mine 'Stara Jama' in Zenica has been investigated. A collection and selection of both geo-mechanical data and geometric parameters of the mine was necessary for performing these simulations. Results of estimation have been compared with measured values (vertical displacement of surface), and then simulation performed with assumed dynamic and dimensions of excavation, over a period of time. Results are presented with bitmaps and charts.

Keywords: Computer, finite element method, mine, nonlinear analysis, numerical modeling, simulation, subsidence.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2833
2246 Evaluating the Capability of the Flux-Limiter Schemes in Capturing the Turbulence Structures in a Fully Developed Channel Flow

Authors: Mohamed Elghorab, Vendra C. Madhav Rao, Jennifer X. Wen

Abstract:

Turbulence modelling is still evolving, and efforts are on to improve and develop numerical methods to simulate the real turbulence structures by using the empirical and experimental information. The monotonically integrated large eddy simulation (MILES) is an attractive approach for modelling turbulence in high Re flows, which is based on the solving of the unfiltered flow equations with no explicit sub-grid scale (SGS) model. In the current work, this approach has been used, and the action of the SGS model has been included implicitly by intrinsic nonlinear high-frequency filters built into the convection discretization schemes. The MILES solver is developed using the opensource CFD OpenFOAM libraries. The role of flux limiters schemes namely, Gamma, superBee, van-Albada and van-Leer, is studied in predicting turbulent statistical quantities for a fully developed channel flow with a friction Reynolds number, ReT = 180, and compared the numerical predictions with the well-established Direct Numerical Simulation (DNS) results for studying the wall generated turbulence. It is inferred from the numerical predictions that Gamma, van-Leer and van-Albada limiters produced more diffusion and overpredicted the velocity profiles, while superBee scheme reproduced velocity profiles and turbulence statistical quantities in good agreement with the reference DNS data in the streamwise direction although it deviated slightly in the spanwise and normal to the wall directions. The simulation results are further discussed in terms of the turbulence intensities and Reynolds stresses averaged in time and space to draw conclusion on the flux limiter schemes performance in OpenFOAM context.

Keywords: Flux limiters, MILES, OpenFOAM, turbulence structures, TVD schemes.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1125
2245 Influence of Turbulence Model, Grid Resolution and Free-Stream Turbulence Intensity on the Numerical Simulation of the Flow Field around an Inclined Flat Plate

Authors: M. Raciti Castelli, P. Cioppa, E. Benini

Abstract:

The flow field around a flat plate of infinite span has been investigated for several values of the angle of attack. Numerical predictions have been compared to experimental measurements, in order to examine the effect of turbulence model and grid resolution on the resultant aerodynamic forces acting on the plate. Also the influence of the free-stream turbulence intensity, at the entrance of the computational domain, has been investigated. A full campaign of simulations has been conducted for three inclination angles (9°, 15° and 30°), in order to obtain some practical guidelines to be used for the simulation of the flow field around inclined plates and discs.

Keywords: CFD, lift, drag, flat plate

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1583
2244 A Case Study on the Numerical-Probability Approach for Deep Excavation Analysis

Authors: Komeil Valipourian

Abstract:

Urban advances and the growing need for developing infrastructures has increased the importance of deep excavations. In this study, after the introducing probability analysis as an important issue, an attempt has been made to apply it for the deep excavation project of Bangkok’s Metro as a case study. For this, the numerical probability model has been developed based on the Finite Difference Method and Monte Carlo sampling approach. The results indicate that disregarding the issue of probability in this project will result in an inappropriate design of the retaining structure. Therefore, probabilistic redesign of the support is proposed and carried out as one of the applications of probability analysis. A 50% reduction in the flexural strength of the structure increases the failure probability just by 8% in the allowable range and helps improve economic conditions, while maintaining mechanical efficiency. With regard to the lack of efficient design in most deep excavations, by considering geometrical and geotechnical variability, an attempt was made to develop an optimum practical design standard for deep excavations based on failure probability. On this basis, a practical relationship is presented for estimating the maximum allowable horizontal displacement, which can help improve design conditions without developing the probability analysis.

Keywords: Numerical probability modeling, deep excavation, allowable maximum displacement, finite difference method, FDM.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 692
2243 Numerical Investigation of the Effect of Flow and Heat Transfer of a Semi-Cylindrical Obstacle Located in a Channel

Authors: Omer F. Can, Nevin Celik

Abstract:

In this study, a semi-cylinder obstacle placed in a channel is handled to determine the effect of flow and heat transfer around the obstacle. Both faces of the semi-cylinder are used in the numerical analysis. First, the front face of the semi-cylinder is stated perpendicular to flow, than the rear face is placed. The study is carried out numerically, by using commercial software ANSYS 11.0. The well-known κ-ε model is applied as the turbulence model. Reynolds number is in the range of 104 to 105 and air is assumed as the flowing fluid. The results showed that, heat transfer increased approximately 15 % in the front faze case, while it enhanced up to 28 % in the rear face case.

Keywords: External flow, semi-cylinder obstacle, heat transfer, friction.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 3182
2242 A Numerical Study on Heat Transfer in Laminar Pulsed Slot Jets Impinging on a Surface

Authors: D. Kim

Abstract:

Numerical simulations are performed for laminar continuous and pulsed jets impinging on a surface in order to investigate the effects of pulsing frequency on the heat transfer characteristics. The time-averaged Nusselt number of pulsed jets is larger in the impinging jet region as compared to the continuous jet, while it is smaller in the outer wall jet region. At the stagnation point, the mean and RMS Nusselt numbers become larger and smaller, respectively, as the pulsing frequency increases. Unsteady behaviors of vortical fluid motions and temperature field are also investigated to understand the underlying mechanisms of heat transfer enhancement.

Keywords: Pulsed slot jet, impingement, pulsing frequency, heat transfer enhancement.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1731
2241 A Numerical Modeling of Piping Phenomenon in Earth Dams

Authors: N. Zaki Alamdari, M. Banihashemi, A. Mirghasemi

Abstract:

To estimate the risks of dam failure phenomenon, it is necessary to understand this phenomenon and the involved governing factors. Overtopping and piping are the two main reasons of earthdam failures. In the piping context, the piping is determined as a phenomenon which is occurred between two phases, the water liquid and the solid soil. In this investigation, the onset of piping and its development, as well as the movement of water in soil, are numerically approached. In this regard, a one-dimensional numerical model based on the mass-conserving finite-volume method is developed and applied in order to simulate the piping phenomenon in a continuous circular tunnel of given initial length and radius, located between upstream and downstream. The simulation result includes the time-variations of radius along the tunnel until the radius value reaches its critical and the piping phenomenon converts to overtopping.

Keywords: Earth dam, dam break, piping, internal erosion

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2782
2240 Determination of Adequate Fuzzy Inequalities for their Usage in Fuzzy Query Languages

Authors: Marcel Shirvanian, Wolfram Lippe

Abstract:

Although the usefulness of fuzzy databases has been pointed out in several works, they are not fully developed in numerous domains. A task that is mostly disregarded and which is the topic of this paper is the determination of suitable inequalities for fuzzy sets in fuzzy query languages. This paper examines which kinds of fuzzy inequalities exist at all. Afterwards, different procedures are presented that appear theoretically appropriate. By being applied to various examples, their strengths and weaknesses are revealed. Furthermore, an algorithm for an efficient computation of the selected fuzzy inequality is shown.

Keywords: Fuzzy Databases, Fuzzy Inequalities, Fuzzy QueryLanguages, Fuzzy Ranking.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1362
2239 Parametric and Analysis Study of the Melting in Slabs Heated by a Laminar Heat Transfer Fluid in Downward and Upward Flows

Authors: Radouane Elbahjaoui, Hamid El Qarnia

Abstract:

The present work aims to investigate numerically the thermal and flow characteristics of a rectangular latent heat storage unit (LHSU) during the melting process of a phase change material (PCM). The LHSU consists of a number of vertical and identical plates of PCM separated by rectangular channels. The melting process is initiated when the LHSU is heated by a heat transfer fluid (HTF: water) flowing in channels in a downward or upward direction. The proposed study is motivated by the need to optimize the thermal performance of the LHSU by accelerating the charging process. A mathematical model is developed and a fixed-grid enthalpy formulation is adopted for modeling the melting process coupling with convection-conduction heat transfer. The finite volume method was used for discretization. The obtained numerical results are compared with experimental, analytical and numerical ones found in the literature and reasonable agreement is obtained. Thereafter, the numerical investigations were carried out to highlight the effects of the HTF flow direction and the aspect ratio of the PCM slabs on the heat transfer characteristics and thermal performance enhancement of the LHSU.

Keywords: Phase change material, thermal energy storage, latent heat storage unit, melting.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 907
2238 The Experimental and Numerical Analysis of Trip Steel Wire Drawing Processes Drawn with Different Partial Reductions

Authors: Sylwia Wiewiorowska, Zbigniew Muskalski

Abstract:

The strain intensity and redundant strains, dependent in multistage TRIP wire drawing processes from values used single partial reductions, should influence on the intensity of transformation the retained austenite into martensite and thereby on mechanical properties of drawn wires. The numerical analysis of drawing processes with use of Drawing 2D programme, for steel wires made from TRIP steel with 0,29% has been shown in the work. The change of strain intensity εc and the values of redundant strain εxy, has been determined for particular draws in dependence of used single partial reductions.

Keywords: Steel wire, TRIP steel, drawing processes, fem modelling.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1534
2237 Numerical Evaluation of the Contribution of Inertial and Aerodynamic Forces on VAWT Blade Loading

Authors: Marco Raciti Castelli, Stefano De Betta, Ernesto Benini

Abstract:

A two-dimensional numerical simulation of the contribution of both inertial and aerodynamic forces on the blade loads of a Vertical-Axis Wind Turbine (VAWT) is presented. After describing the computational model and the relative validation procedure, a complete campaign of simulations - based on full RANS unsteady calculations - is proposed for a three-bladed rotor architecture characterized by a NACA 0021 airfoil. For each analyzed angular velocity, the combined effect of pressure and viscous forces acting on every rotor blade are compared to the corresponding centrifugal forces, due to the revolution of the turbine, thus achieving a preliminary estimation of the correlation between overall rotor efficiency and structural blade loads.

Keywords: CFD, VAWT, NACA 0021, aerodynamic forces, inertial loadings.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2291
2236 Dual Construction of Stern-based Signature Scheme

Authors: Pierre-Louis Cayrel, Sidi Mohamed El Yousfi Alaoui

Abstract:

In this paper, we propose a dual version of the first threshold ring signature scheme based on error-correcting code proposed by Aguilar et. al in [1]. Our scheme uses an improvement of Véron zero-knowledge identification scheme, which provide smaller public and private key sizes and better computation complexity than the Stern one. This scheme is secure in the random oracle model.

Keywords: Stern algorithm, Véron algorithm, threshold ring signature, post-quantum cryptography.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1800
2235 Numerical Investigation of the Flow Characteristics inside the Scrubber Unit

Authors: Kumaresh Selvakumar, Man Young Kim

Abstract:

Wet scrubbers have found widespread use in cleaning contaminated gas streams because of their ability to remove particulates and based on the applications of scrubbing of marine engine exhaust gases by spraying sea-water. In order to examine the flow characteristics inside the scrubber, the model is designated with flow properties of hot air and water sprayer. The flow dynamics of evaporation of hot air by the injection of water droplets is the key factor considered in this paper. The flow behavior inside the scrubber was investigated from the previous works and to sum up the evaporation rate with respect to the concentration of water droplets are predicted to bring out the competent modelling. The numerical analysis using CFD facilitates in understanding the problem better and empathies the behavior of the model over its entire operating envelope.

Keywords: Concentration of water droplets, Evaporation rate, Scrubber, Water sprayer.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 3296
2234 Numerical Study on the Response of Reinforced Concrete Wall Resisting the Impact Loading

Authors: DucKien Thai, Seung EockKim

Abstract:

A numerical analysis of a reinforced concrete (RC) wall under missile impact loading is presented in this study. The model created by Technical Research Center of Finland was used. The commercial finite element code, LS-DYNA was used to analyze. The structural components of the reinforced concrete wall, missile and their contacts are fully modeled. The material nonlinearity with strain rate effects considering damage and failure is included in the analysis. The results of analysis were verified with other research results. The case-studies with different reinforcement ratios were conducted to investigate the influence of reinforcement on the punching behavior of walls under missile impact.

Keywords: Missile Impact, Reinforced Concrete Walls, LSDYNA, Dynamic Analysis, Punching Behavior.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2557
2233 Cloud Computing: Changing Cogitation about Computing

Authors: Mehrdad Mahdavi Boroujerdi, Soheil Nazem

Abstract:

Cloud Computing is a new technology that helps us to use the Cloud for compliance our computation needs. Cloud refers to a scalable network of computers that work together like Internet. An important element in Cloud Computing is that we shift processing, managing, storing and implementing our data from, locality into the Cloud; So it helps us to improve the efficiency. Because of it is new technology, it has both advantages and disadvantages that are scrutinized in this article. Then some vanguards of this technology are studied. Afterwards we find out that Cloud Computing will have important roles in our tomorrow life!

Keywords: Cloud Computing, Grid Computing, Internet as a Platform, On-demand Computing, Software as a Service.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1633
2232 Optimized Algorithm for Particle Swarm Optimization

Authors: Fuzhang Zhao

Abstract:

Particle swarm optimization (PSO) is becoming one of the most important swarm intelligent paradigms for solving global optimization problems. Although some progress has been made to improve PSO algorithms over the last two decades, additional work is still needed to balance parameters to achieve better numerical properties of accuracy, efficiency, and stability. In the optimal PSO algorithm, the optimal weightings of (√ 5 − 1)/2 and (3 − √5)/2 are used for the cognitive factor and the social factor, respectively. By the same token, the same optimal weightings have been applied for intensification searches and diversification searches, respectively. Perturbation and constriction effects are optimally balanced. Simulations of the de Jong, the Rosenbrock, and the Griewank functions show that the optimal PSO algorithm indeed achieves better numerical properties and outperforms the canonical PSO algorithm.

Keywords: Diversification search, intensification search, optimal weighting, particle swarm optimization.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1868
2231 Static and Dynamical Analysis on Clutch Discs on Different Material and Geometries

Authors: Jairo Aparecido Martins, Estaner Claro Romão

Abstract:

This paper presents the static and cyclic stresses in combination with fatigue analysis resultant of loads applied on the friction discs usually utilized on industrial clutches. The material chosen to simulate the friction discs under load is aluminum. The numerical simulation was done by software COMSOLTM Multiphysics. The results obtained for static loads showed enough stiffness for both geometries and the material utilized. On the other hand, in the fatigue standpoint, failure is clearly verified, what demonstrates the importance of both approaches, mainly dynamical analysis. The results and the conclusion are based on the stresses on disc, counted stress cycles, and fatigue usage factor.

Keywords: Aluminum, industrial clutch, static and dynamic loading, numerical simulation.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 950
2230 Behavior of the Foundation of Bridge Reinforced by Rigid and Flexible Inclusions

Authors: T. Karech A. Noui, T. Bouzid

Abstract:

This article presents a comparative study by numerical analysis of the behavior of reinforcements of clayey soils by flexible columns (stone columns) and rigid columns (piles). The numerical simulation was carried out in 3D for an assembly of foundation, columns and a pile of a bridge. Particular attention has been paid to take into account the installation of the columns. Indeed, in practice, due to the compaction of the column, the soil around it sustains a lateral expansion and the horizontal stresses are increased. This lateral expansion of the column can be simulated numerically. This work represents a comparative study of the interaction between the soil on one side, and the two types of reinforcement on the other side, and their influence on the behavior of the soil and of the pile of a bridge.

Keywords: Piles, stone columns, interaction, foundation, settlement, consolidation.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1062
2229 Improving Power Plant Efficiency using Water Droplet Injection in Air Condensers

Authors: Mohammad Javadi, A. Golshani, Amir Mahdi Ghasemi, Morteza Anbarsooz, M. Moghiman

Abstract:

Observations show that power plant efficiency decreases in hot summer days. Water droplet injection in air condensers is suggested in order to decrease the inlet air temperature. Nozzle arrangement, injected water flow rate and droplets diameter effects on evaporation rate and the resulting air temperature are investigated using numerical simulation. Decreasing the diameter of injected droplets and increasing the number of injecting nozzles, decreases the outlet air temperature. Also a more uniform air temperature can be obtained using more injecting nozzles. Numerical results are in good agreement with analytical results.

Keywords: Power, air condenser, evaporation, droplet injection.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1885
2228 An Overview of Some High Order and Multi-Level Finite Difference Schemes in Computational Aeroacoustics

Authors: Appanah Rao Appadu, Muhammad Zaid Dauhoo

Abstract:

In this paper, we have combined some spatial derivatives with the optimised time derivative proposed by Tam and Webb in order to approximate the linear advection equation which is given by = 0. Ôêé Ôêé + Ôêé Ôêé x f t u These spatial derivatives are as follows: a standard 7-point 6 th -order central difference scheme (ST7), a standard 9-point 8 th -order central difference scheme (ST9) and optimised schemes designed by Tam and Webb, Lockard et al., Zingg et al., Zhuang and Chen, Bogey and Bailly. Thus, these seven different spatial derivatives have been coupled with the optimised time derivative to obtain seven different finite-difference schemes to approximate the linear advection equation. We have analysed the variation of the modified wavenumber and group velocity, both with respect to the exact wavenumber for each spatial derivative. The problems considered are the 1-D propagation of a Boxcar function, propagation of an initial disturbance consisting of a sine and Gaussian function and the propagation of a Gaussian profile. It is known that the choice of the cfl number affects the quality of results in terms of dissipation and dispersion characteristics. Based on the numerical experiments solved and numerical methods used to approximate the linear advection equation, it is observed in this work, that the quality of results is dependent on the choice of the cfl number, even for optimised numerical methods. The errors from the numerical results have been quantified into dispersion and dissipation using a technique devised by Takacs. Also, the quantity, Exponential Error for Low Dispersion and Low Dissipation, eeldld has been computed from the numerical results. Moreover, based on this work, it has been found that when the quantity, eeldld can be used as a measure of the total error. In particular, the total error is a minimum when the eeldld is a minimum.

Keywords: Optimised time derivative, dissipation, dispersion, cfl number, Nomenclature: k : time step, h : spatial step, β :advection velocity, r: cfl/Courant number, hkrβ= , w =θ, h : exact wave number, n :time level, RPE : Relative phase error per unit time step, AFM :modulus of amplification factor

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1637
2227 Computation of D8 Flow Line at Ron Phibun Area, Nakhon Si Thammarat, Thailand

Authors: O. Boonklong, M. Jaroensutasinee, K. Jaroensutasinee

Abstract:

A flow line computational technique based on the D8 method using Mathematica was developed. The technique was applied to Ron Phibun area, Nakhon Si Thammarat Province. This area is highly contaminated with arsenic 3 and 5. It was found that the technique using Mathematica can produce similar results to those obtained from GRASS v 5.0.2.

Keywords: Arsenic contamination, flow line, D8 method, Ron Phibun.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1957