Search results for: housing material
1624 Synthesis of Vic-Dioxime Palladium (II) Complex: Precursor for Deposition on SBA-15 in ScCO2
Authors: Asım Egitmen, Aysen Demir, Burcu Darendeli, Fatma Ulusal, Bilgehan Güzel
Abstract:
Synthesizing supercritical carbon dioxide (scCO2) soluble precursors would be helpful for many processes of material syntheses based on scCO2. Ligand (amphi-(1Z, 2Z)-N-(2-fluoro-3-(trifluoromethyl) phenyl)-N'-hydroxy-2-(hydroxyimino) were synthesized from chloro glyoxime and flourus aniline and Pd(II) complex (precursor) prepared. For scCO2 deposition method, organometallic precursor was dissolved in scCO2 and impregnated onto the SBA-15 at 90 °C and 3000 psi. Then the organometallic precursor was reduced with H2 in the CO2 mixture (150 psi H2 + 2850 psi CO2). Pd deposited support material was characterized by ICP-OES, XRD, FE-SEM, TEM and EDX analyses. The Pd loading of the prepared catalyst, measured by ICP-OES showed a value of about 1.64% mol/g Pd of catalyst. Average particle size was found 5.3 nm. The catalytic activity of prepared catalyst was investigated over Suzuki-Miyaura C-C coupling reaction in different solvent with K2CO3 at 50 oC. The conversion ratio was determined by gas chromatography.
Keywords: Nanoparticle, nanotube, oximes, precursor, supercritical CO2.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 11911623 Product Ecodesign Approaches in ISO 14001 Certified Companies
Authors: Gregor Radonjič, Aleksandra P. Korda, Damijan Krajnc
Abstract:
The aim of the study was to investigate whether there is the promotion of product ecodesign measures as a result of adopting ISO 14001 certification in manufacturing companies in the Republic of Slovenia. Companies gave the most of their product development attention to waste and energy reduction during manufacturing process and reduction of material consumption per unit of product. Regarding the importance of different ecodesign criteria reduction of material consumption per unit of product was reported as the most important criterion. Less attention is paid to endof- life issues considering recycling or packaging. Most manufacturing enterprises considered ISO 14001 standard as a very useful tool or at least a useful tool helping them to accelerate and establish product ecodesign activities. Two most frequently considered ecodesign drivers are increased competitive advantage and legal requirements and two most important barriers are high development costs and insufficient market demand.Keywords: ecodesign, environmental management system, ISO 14001, products
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 15301622 Properties of SMA Mixtures Containing Waste Polyethylene Terephthalate
Authors: Taher Baghaee Moghaddam, Mohamed Rehan Karim
Abstract:
Utilization of waste material in asphalt pavement would be beneficial in order to find an alternative solution to increase service life of asphalt pavement and reduce environmental pollution as well. One of these waste materials is Polyethylene Terephthalate (PET) which is a type of polyester material and is produced in a large extent. This research program is investigating the effects of adding waste PET particles into the asphalt mixture with a maximum size of 2.36 mm. Different percentages of PET were added into the mixture during dry process. Gap-graded mixture (SMA 14) and PG 80-100 asphalt binder have been used for this study. To evaluate PET reinforced asphalt mixture different laboratory investigations have been conducted on specimens. Marshall Stability test was carried out. Besides, stiffness modulus test and indirect tensile fatigue test were conducted on specimens at optimum asphalt content. It was observed that in many cases PET reinforced SMA mixture had better mechanical properties in comparison with control mixture.Keywords: Asphalt mixture, Environment, Mix properties, Polyethylene terephthalate
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 21001621 Wear and Friction Analysis of Sintered Metal Powder Self Lubricating Bush Bearing
Authors: J. K. Khare, Abhay Kumar Sharma, Ajay Tiwari, Amol A. Talankar
Abstract:
Powder metallurgy (P/M) is the only economic way to produce porous parts/products. P/M can produce near net shape parts hence reduces wastage of raw material and energy, avoids various machining operations. The most vital use of P/M is in production of metallic filters and self lubricating bush bearings and siding surfaces. The porosity of the part can be controlled by varying compaction pressure, sintering temperature and composition of metal powder mix. The present work is aimed for experimental analysis of friction and wear properties of self lubricating copper and tin bush bearing. Experimental results confirm that wear rate of sintered component is lesser for components having 10% tin by weight percentage. Wear rate increases for high tin percentage (experimented for 20% tin and 30% tin) at same sintering temperature. Experimental results also confirms that wear rate of sintered component is also dependent on sintering temperature, soaking period, composition of the preform, compacting pressure, powder particle shape and size. Interfacial friction between die and punch, between inter powder particles, between die face and powder particle depends on compaction pressure, powder particle size and shape, size and shape of component which decides size & shape of die & punch, material of die & punch and material of powder particles.
Keywords: Interfacial friction, porous bronze bearing, sintering temperature, wear rate.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 39741620 Finite Element Modeling for Clamping Stresses Developed in Hot-Driven Steel Structural Riveted Connections
Authors: Jackeline Kafie-Martinez, Peter B. Keating
Abstract:
A three-dimensional finite element model is developed to capture the stress field generated in connected plates during the installation of hot-driven rivets. Clamping stress is generated when a steel rivet heated to approximately 1000 °C comes in contact with the material to be fastened at ambient temperature. As the rivet cools, thermal contraction subjects the rivet into tensile stress, while the material being fastened is subjected to compressive stress. Model characteristics and assumptions, as well as steel properties variation with respect to temperature are discussed. The thermal stresses developed around the rivet hole are assessed and reported. Results from the analysis are utilized to detect possible regions for fatigue crack propagation under cyclic loads.
Keywords: Jackeline Kafie-Martinez, Peter B. Keating.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 12781619 Reaction to the Fire of a Composite Material the Base of Scrapes of Tires End Latex for Thermal Isolation
Authors: E. T. L. Cöuras Ford, V. A. C. Vale, J. U. L. Mendes, R. M. Nascimento
Abstract:
The great majority of the applications of thermal isolation in the strip of drops and averages temperatures (up to 200ºC), it is made of materials aggressive nature, such an as glass wool, rock wool, polystyrene, EPS among others. Such materials, in spite of the effectiveness in the retention of the flow of heat, possess considerable cost and when discarded they are long years to be to decompose. In that context, trying to adapt the world politics the about of the preservation of the environment, a study began with intention of developing a material composite, with properties of thermal, originating from insulating industrial residues. In this research, the behavior of the composite was analyzed, as submitted the fire. For this, the reaction rehearsals were accomplished to the fire for the composites 2:1; 1:1; 1:2 and for the Latex, based in the "con" experiment in agreement with the norm ASTM - E 1334 - 90. As consequence, in function of the answers of the system was possible to be observed to the acting of each mixture proportion.Keywords: Composite, Latex, Reaction to the fire.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 10351618 Towards Finite Element Modeling of the Accoustics of Human Head
Authors: Maciej Paszynski, Leszek Demkowicz, Jason Kurtz
Abstract:
In this paper, a new formulation for acoustics coupled with linear elasticity is presented. The primary objective of the work is to develop a three dimensional hp adaptive finite element method code destinated for modeling of acoustics of human head. The code will have numerous applications e.g. in designing hearing protection devices for individuals working in high noise environments. The presented work is in the preliminary stage. The variational formulation has been implemented and tested on a sequence of meshes with concentric multi-layer spheres, with material data representing the tissue (the brain), skull and the air. Thus, an efficient solver for coupled elasticity/acoustics problems has been developed, and tested on high contrast material data representing the human head.
Keywords: finite element method, acoustics, coupled problems, biomechanics
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 19771617 Methods for Material and Process Monitoring by Characterization of (Second and Third Order) Elastic Properties with Lamb Waves
Abstract:
In accordance with the industry 4.0 concept, manufacturing process steps as well as the materials themselves are going to be more and more digitalized within the next years. The “digital twin” representing the simulated and measured dataset of the (semi-finished) product can be used to control and optimize the individual processing steps and help to reduce costs and expenditure of time in product development, manufacturing, and recycling. In the present work, two material characterization methods based on Lamb waves were evaluated and compared. For demonstration purpose, both methods were shown at a standard industrial product - copper ribbons, often used in photovoltaic modules as well as in high-current microelectronic devices. By numerical approximation of the Rayleigh-Lamb dispersion model on measured phase velocities second order elastic constants (Young’s modulus, Poisson’s ratio) were determined. Furthermore, the effective third order elastic constants were evaluated by applying elastic, “non-destructive”, mechanical stress on the samples. In this way, small microstructural variations due to mechanical preconditioning could be detected for the first time. Both methods were compared with respect to precision and inline application capabilities. Microstructure of the samples was systematically varied by mechanical loading and annealing. Changes in the elastic ultrasound transport properties were correlated with results from microstructural analysis and mechanical testing. In summary, monitoring the elastic material properties of plate-like structures using Lamb waves is valuable for inline and non-destructive material characterization and manufacturing process control. Second order elastic constants analysis is robust over wide environmental and sample conditions, whereas the effective third order elastic constants highly increase the sensitivity with respect to small microstructural changes. Both Lamb wave based characterization methods are fitting perfectly into the industry 4.0 concept.
Keywords: Lamb waves, industry 4.0, process control, elasticity, acoustoelasticity.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 10981616 Hybrid Living: Emerging Out of the Crises and Divisions
Authors: Yiorgos Hadjichristou
Abstract:
The paper will focus on the hybrid living typologies which are brought about due to the Global Crisis. Mixing of the generations and the groups of people, mingling the functions of living with working and socializing, merging the act of living in synergy with the urban realm and its constituent elements will be the springboard of proposing an essential sustainable housing approach and the respective urban development. The thematic will be based on methodologies developed both on the academic, educational environment including participation of students’ research and on the practical aspect of architecture including case studies executed by the author in the island of Cyprus. Both paths of the research will deal with the explorative understanding of the hybrid ways of living, testing the limits of its autonomy. The evolution of the living typologies into substantial hybrid entities, will deal with the understanding of new ways of living which include among others: re-introduction of natural phenomena, accommodation of the activity of work and services in the living realm, interchange of public and private, injections of communal events into the individual living territories. The issues and the binary questions raised by what is natural and artificial, what is private and what public, what is ephemeral and what permanent and all the in-between conditions are eloquently traced in the everyday life in the island. Additionally, given the situation of Cyprus with the eminent scar of the dividing ‘Green line’ and the waiting of the ‘ghost city’ of Famagusta to be resurrected, the conventional way of understanding the limits and the definitions of the properties is irreversibly shaken. The situation is further aggravated by the unprecedented phenomenon of the crisis on the island. All these observations set the premises of reexamining the urban development and the respective sustainable housing in a synergy where their characteristics start exchanging positions, merge into each other, contemporarily emerge and vanish, changing from permanent to ephemeral. This fluidity of conditions will attempt to render a future of the built- and unbuilt realm where the main focusing point will be redirected to the human and the social. Weather and social ritual scenographies together with ‘spontaneous urban landscapes’ of ‘momentary relationships’ will suggest a recipe for emerging urban environments and sustainable living. Thus, the paper will aim at opening a discourse on the future of the sustainable living merged in a sustainable urban development in relation to the imminent solution of the division of island, where the issue of property became the main obstacle to be overcome. At the same time, it will attempt to link this approach to the global need for a sustainable evolution of the urban and living realms.
Keywords: Social ritual scenographies, spontaneous urban landscapes, substantial hybrid entities, re-introduction of natural phenomena.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 10781615 Structural Rehabilitation, Retrofitting and Strengthening of Reinforced Concrete Structures
Authors: Manish Kumar
Abstract:
Reinforced cement concrete is getting extensively used for construction of different type of structures for the last one century. During this period, we have constructed many structures like buildings, bridges, industrial structures, pavement, water tanks etc. using this construction material. These structures have been created with huge investment of resources. It is essential to maintain those structures in functional condition. Since deterioration in RCC Structures is a common and natural phenomenon it is required to have a detailed plan, methodology for structural repair and rehabilitation shall be in place for dealing such issues. It is important to know exact reason of distress, type of distress and correct method of repair concrete structures. The different methods of repair are described in paper according to distress category which can be refereed for repair. Major finding of the study is that to protect our structure we need to have maintenance frequency and correct material to be chosen for repair. Also workmanship during repair needs to be taken utmost care for quality repair.Keywords: Deterioration, functional condition, reinforced cement concrete, resources.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 46951614 Material Concepts and Processing Methods for Electrical Insulation
Authors: R. Sekula
Abstract:
Epoxy composites are broadly used as an electrical insulation for the high voltage applications since only such materials can fulfill particular mechanical, thermal, and dielectric requirements. However, properties of the final product are strongly dependent on proper manufacturing process with minimized material failures, as too large shrinkage, voids and cracks. Therefore, application of proper materials (epoxy, hardener, and filler) and process parameters (mold temperature, filling time, filling velocity, initial temperature of internal parts, gelation time), as well as design and geometric parameters are essential features for final quality of the produced components. In this paper, an approach for three-dimensional modeling of all molding stages, namely filling, curing and post-curing is presented. The reactive molding simulation tool is based on a commercial CFD package, and include dedicated models describing viscosity and reaction kinetics that have been successfully implemented to simulate the reactive nature of the system with exothermic effect. Also a dedicated simulation procedure for stress and shrinkage calculations, as well as simulation results are presented in the paper. Second part of the paper is dedicated to recent developments on formulations of functional composites for electrical insulation applications, focusing on thermally conductive materials. Concepts based on filler modifications for epoxy electrical composites have been presented, including the results of the obtained properties. Finally, having in mind tough environmental regulations, in addition to current process and design aspects, an approach for product re-design has been presented focusing on replacement of epoxy material with the thermoplastic one. Such “design-for-recycling” method is one of new directions associated with development of new material and processing concepts of electrical products and brings a lot of additional research challenges. For that, one of the successful products has been presented to illustrate the presented methodology.
Keywords: Curing, epoxy insulation, numerical simulations, recycling.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 16361613 Numerical Calculation of Coils Filled With Bianisotropic Media
Authors: Nebojsa B. Raicevic, Teodoros S. Prokic, Vladan Golubovic
Abstract:
Recently, bianisotropic media again received increasing importance in electromagnetic theory because of advances in material science which enable the manufacturing of complex bianisotropic materials. By using Maxwell's equations and corresponding boundary conditions, the electromagnetic field distribution in bianisotropic solenoid coils is determined and the influence of the bianisotropic behaviour of coil to the impedance and Q-factor is considered. Bianisotropic media are the largest class of linear media which is able to describe the macroscopic material properties of artificial dielectrics, artificial magnetics, artificial chiral materials, left-handed materials, metamaterials, and other composite materials. Several special cases of coils, filled with complex substance, have been analyzed. Results obtained by using the analytical approach are compared with values calculated by numerical methods, especially by our new hybrid EEM/BEM method and FEM.Keywords: Bianisotropic media, impedance and Q-factor, Maxwell`s equations, hybrid EEM/BEM method.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 18341612 Wear Mechanisms in High Speed Steel Gear Cutting Tools
Authors: M. Jalali Azizpour, H. Mohammadi majd
Abstract:
In this paper, the wear of high speed steel hobs during hobbing has been studied. The wear mechanisms are strongly influenced by the choice of cutting speed. At moderate and high cutting speeds three major wear mechanisms were identified: abrasion, mild adhesive and severe adhesive. The microstructure and wear behavior of two high speed steel grades (M2 and ASP30) has been compared. In contrast, a variation in chemical composition or microstructure of HSS tool material generally did not change the dominant wear mechanism. However, the tool material properties determine the resistance against the operating wear mechanism and consequently the tool life. The metallographic analysis and wear measurement at the tip of hob teeth included scanning electron microscopy and stereoscope microscopy. Roughness profilometery is used for measuring the gear surface roughness.Keywords: abrasion, adhesion, cutting speed, hobbing, wear mechanism
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 32961611 Investigation of Tool Temperature and Surface Quality in Hot Machining of Hard-to-Cut Materials
Authors: M.Davami, M.Zadshakoyan
Abstract:
Production of hard-to-cut materials with uncoated carbide cutting tools in turning, not only cause tool life reduction but also, impairs the product surface roughness. In this paper, influence of hot machining method were studied and presented in two cases. Case1-Workpiece surface roughness quality with constant cutting parameter and 300 ºC initial workpiece surface temperature. Case 2- Tool temperature variation when cutting with two speeds 78.5 (m/min) and 51 (m/min). The workpiece material and tool used in this study were AISI 1060 steel (45HRC) and uncoated carbide TNNM 120408-SP10(SANDVIK Coromant) respectively. A gas flam heating source was used to preheating of the workpiece surface up to 300 ºC, causing reduction of yield stress about 15%. Results obtained experimentally, show that the method used can considerably improved surface quality of the workpiece.
Keywords: Hard-to-cut material, Hot machining, Surfaceroughness, Tool Temperature
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 22031610 Finite Element Study of a DfD Beam-Column Connection
Authors: Zhi Sheng Lin, K. C. G. Ong, Lado Riannevo Chandra, Bee Hong Angeline Tan, Chat Tim Tam, Sze Dai Pang
Abstract:
Design for Disassembly (DfD) aims to reuse the structural components instead of demolition followed by recycling of the demolition debris. This concept preserves the invested embodied energy of materials, thus reducing inputs of new embodied energy during materials reprocessing or remanufacturing. Both analytical and experimental research on a proposed DfD beam-column connection for use in residential apartments is currently investigated at the National University of Singapore in collaboration with the Housing and Development Board of Singapore. The present study reports on the results of a numerical analysis of the proposed connection utilizing finite element analysis. The numerical model was calibrated and validated by comparison against experimental results. Results of a parametric study will also be presented and discussed.Keywords: Design for Disassembly (DfD), finite element analysis, parametric study.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 20621609 Crashworthiness Optimization of an Automotive Front Bumper in Composite Material
Authors: S. Boria
Abstract:
In the last years, the crashworthiness of an automotive body structure can be improved, since the beginning of the design stage, thanks to the development of specific optimization tools. It is well known how the finite element codes can help the designer to investigate the crashing performance of structures under dynamic impact. Therefore, by coupling nonlinear mathematical programming procedure and statistical techniques with FE simulations, it is possible to optimize the design with reduced number of analytical evaluations. In engineering applications, many optimization methods which are based on statistical techniques and utilize estimated models, called meta-models, are quickly spreading. A meta-model is an approximation of a detailed simulation model based on a dataset of input, identified by the design of experiments (DOE); the number of simulations needed to build it depends on the number of variables. Among the various types of meta-modeling techniques, Kriging method seems to be excellent in accuracy, robustness and efficiency compared to other ones when applied to crashworthiness optimization. Therefore the application of such meta-model was used in this work, in order to improve the structural optimization of a bumper for a racing car in composite material subjected to frontal impact. The specific energy absorption represents the objective function to maximize and the geometrical parameters subjected to some design constraints are the design variables. LS-DYNA codes were interfaced with LS-OPT tool in order to find the optimized solution, through the use of a domain reduction strategy. With the use of the Kriging meta-model the crashworthiness characteristic of the composite bumper was improved.
Keywords: Composite material, crashworthiness, finite element analysis, optimization.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 11291608 Analysis of Behaviour of Real Estate Rates in India- A Case Study of Pune City
Authors: Sayali Sandbhor, Ravindra Bapat, N. B. Chaphalkar
Abstract:
Decisions for investment, buying and selling of properties depend upon the market value of that property. Issues arise in arriving at the actual value of the property as well as computing the rate of returns from the estate. Addressing valuation related issues through an understanding of behavior of real property rates provide the means to explore the quality of past decisions and to make valid future decisions. Pune, an important city in India, has witnessed a high rate of growth in past few years. Increased demand for housing and investment in properties has led to increase in the rates of real estate. An attempt has been made to study the change and behavior of rates of real estate and factors influencing the same in Pune city.
Keywords: Real estate, valuation, property rates, trend analysis
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 91711607 Hardness Variations as Affected by Bar Diameter of AISI 4140 Steel
Authors: Hamad K. Al-Khalid, Ayman M. Alaskari, Samy E. Oraby
Abstract:
Hardness of the widely used structural steel is of vital importance since it may help in the determination of many mechanical properties of a material under loading situations. In order to obtain reliable information for design, properties homogeneity should be validated. In the current study the hardness variation over the different diameters of the same AISI 4140 bar is investigated. Measurements were taken on the two faces of the stock at equally spaced eight sectors and fifteen layers. Statistical and graphical analysis are performed to asses the distribution of hardness measurements over the specified area. Hardness measurements showed some degree of dispersion with about ± 10% of its nominal value provided by manufacturer. Hardness value is found to have a slight decrease trend as the diameter is reduced. However, an opposite behavior is noticed regarding the sequence of the sector indicating a nonuniform distribution over the same area either on the same face or considering the corresponding sector on the other face (cross section) of the same material bar.Keywords: Hardness; Hardness variation; AISI 4140 steel; Bardiameter; Statistical Analysis.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 29291606 Parametric Transition as a Spiral Curve and Its Application in Spur Gear Tooth with FEA
Authors: S. H. Yahaya, J. M. Ali, T.A. Abdullah
Abstract:
The exploration of this paper will focus on the Cshaped transition curve. This curve is designed by using the concept of circle to circle where one circle lies inside other. The degree of smoothness employed is curvature continuity. The function used in designing the C-curve is Bézier-like cubic function. This function has a low degree, flexible for the interactive design of curves and surfaces and has a shape parameter. The shape parameter is used to control the C-shape curve. Once the C-shaped curve design is completed, this curve will be applied to design spur gear tooth. After the tooth design procedure is finished, the design will be analyzed by using Finite Element Analysis (FEA). This analysis is used to find out the applicability of the tooth design and the gear material that chosen. In this research, Cast Iron 4.5 % Carbon, ASTM A-48 is selected as a gear material.Keywords: Bézier-like cubic function, Curvature continuity, Cshapedtransition curve, Spur gear tooth.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 23401605 Experimental and Numerical Analysis of a Historical Bell Tower
Authors: Milorad Pavlovic, Sebastiano Trevisani, Antonella Cecchi
Abstract:
In this paper, a procedure for the evaluation of seismic behavior of slender masonry structures (towers, bell towers, chimneys, minarets, etc.) is presented. The presented procedure is based on a full three-dimensional modal analyses and frequency measurements. As well-known, masonry is a composite material formed by bricks, or stone blocks, and mortar arranged more or less regularly and adopted for many centuries as structural material. Dynamic actions may represent the major risk of collapse of brickworks, and despite the progress achieved so far in science and mechanics; the assessment of their seismic performance remains a challenging task. Then, reliable physical and numerical models are worthy of recommendation. In this paper, attention is paid to the historical bell tower of the Basilica of Santa Maria Gloriosa dei Frari - usually called Frari - one of the greatest churches in Venice, Italy.Keywords: Bell tower, FEM, masonry, modal analysis, non-destructive testing.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 13391604 Influence of Deep Cold Rolling and Low Plasticity Burnishing on Surface Hardness and Surface Roughness of AISI 4140 Steel
Authors: P. R. Prabhu, S. M. Kulkarni, S. S. Sharma
Abstract:
Deep cold rolling (DCR) and low plasticity burnishing (LPB) process are cold working processes, which easily produce a smooth and work-hardened surface by plastic deformation of surface irregularities. The present study focuses on the surface roughness and surface hardness aspects of AISI 4140 work material, using fractional factorial design of experiments. The assessment of the surface integrity aspects on work material was done, in order to identify the predominant factors amongst the selected parameters. They were then categorized in order of significance followed by setting the levels of the factors for minimizing surface roughness and/or maximizing surface hardness. In the present work, the influence of main process parameters (force, feed rate, number of tool passes/overruns, initial roughness of the work piece, ball material, ball diameter and lubricant used) on the surface roughness and the hardness of AISI 4140 steel were studied for both LPB and DCR process and the results are compared. It was observed that by using LPB process surface hardness has been improved by 167% and in DCR process surface hardness has been improved by 442%. It was also found that the force, ball diameter, number of tool passes and initial roughness of the workpiece are the most pronounced parameters, which has a significant effect on the work piece-s surface during deep cold rolling and low plasticity burnishing process.
Keywords: Deep cold rolling, burnishing, surface roughness, surface hardness, design of experiments, AISI4140 steel.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 37961603 Hydro-Mechanical Behavior of a Tuff and Calcareous Sand Mixture for Use in Pavement in Arid Region
Authors: I. Goual, M. S. Goual, M. K. Gueddouda, Taïbi Saïd, Abou-Bekr Nabil, A. Ferhat
Abstract:
The aim of the paper is to study the hydro-mechanical behavior of a tuff and calcareous sand mixture. A first experimental phase was carried out in order to find the optimal mixture. This showed that the material composed of 80% tuff and 20% calcareous sand provides the maximum mechanical strength. The second experimental phase concerns the study of the drying-wetting behavior of the optimal mixture was carried out on slurry samples and compacted samples at the MPO. Experimental results let to deduce the parameters necessary for the prediction of the hydro-mechanical behavior of pavement formulated from tuff and calcareous sand mixtures, related to moisture. This optimal mixture satisfies the regulation rules and hence constitutes a good local eco-material, abundantly available, for the conception of pavements.Keywords: Tuff, sandy calcareous, road engineering, hydro mechanical behaviour, suction.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 15291602 Optical and Dielectric Properties of Self-Assembled 0D Hybrid Organic-Inorganic Insulator
Authors: S. Kassou, R. El Mrabet, A. Belaaraj, P. Guionneau, N. Hadi, T. Lamcharfi
Abstract:
The organic–inorganic hybrid perovskite-like [C6H5C2H4NH3]2ZnCl4 (PEA-ZnCl4) was synthesized by saturated solutions method. X-ray powder diffraction, Raman spectroscopy, UV-visible transmittance, and capacitance meter measurements have been used to characterize the structure, the functional groups, the optical parameters, and the dielectric constants of the material. The material has a layered structure. The optical transmittance (T %) was recorded and applied to deduce the absorption coefficient (α) and optical band gap (Eg). The hybrid shows an insulator character with a direct band gap about 4.46 eV, and presents high dielectric constants up to a frequency of about 105 Hz, which suggests a ferroelectric behavior. The reported optical and dielectric properties can help to understand the fundamental properties of perovskite materials and also to be used for optimizing or designing new devices.
Keywords: Dielectric constants, optical band gap (Eg), optical parameters, Raman spectroscopy, self-assembly organic inorganic hybrid.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 18741601 Vibration Characteristics of Functionally Graded Material Skew Plate in Thermal Environment
Authors: Gulshan Taj M. N. A., Anupam Chakrabarti, Vipul Prakash
Abstract:
In the present investigation, free vibration of functionally graded material (FGM) skew plates under thermal environment is studied. Kinematics equations are based on the Reddy’s higher order shear deformation theory and a nine noded isoparametric Lagrangian element is adopted to mesh the plate geometry. The issue of C1 continuity requirement related to the assumed displacement field has been circumvented effectively to develop C0 finite element formulation. Effective mechanical properties of the constituents of the plate are considered to be as position and temperature dependent and assumed to vary in the thickness direction according to a simple power law distribution. The displacement components of a rectangular plate are mapped into skew plate geometry by means of suitable transformation rule. One dimensional Fourier heat conduction equation is used to ascertain the temperature profile of the plate along thickness direction. Influence of different parameters such as volume fraction index, boundary condition, aspect ratio, thickness ratio and temperature field on frequency parameter of the FGM skew plate is demonstrated by performing various examples and the related findings are discussed briefly. New results are generated for vibration of the FGM skew plate under thermal environment, for the first time, which may be implemented in the future research involving similar kind of problems.
Keywords: Functionally graded material, finite element method, higher order shear deformation theory, skew plate, thermal vibration.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 36131600 Pig Husbandry and Solid Manures in a Commercial Pig Farm in Beijing, China
Authors: Roxana Mendoza Huaitalla, Eva Gallmann, Kun Zheng, Xuejun Liu, Eberhard Hartung
Abstract:
Porcine production in China represents approximately the 50% of the worldwide pig production. Information about pig husbandry characteristics in China and manure properties from sows to fatteners in intensive pig farms are not broadly available for scientific studies as it is a time consuming, expensive task and highly inaccessible. This study provides a report about solid pig manures (28% dry matter) in a commercial pig farm located in the peri-urban area of Beijing as well as a general overview of the current pig husbandry techniques including pig breeds, feeds, diseases, housing as well as pig manure and wastewater disposal. The main results are intended to serve as a literature source for young scientists in order to understand the main composition of pig manures as well as to identify the husbandry techniques applied in an intensive pig farm in Beijing.Keywords: China, heavy metals, intensive pig farming, manure, nutrients, pig growing stages.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 26011599 Vibration of Functionally Graded Cylindrical Shells under Effects Clamped-Clamped Boundary Conditions
Authors: M.R.Alinaghizadehand, M.R.Isvandzibaei
Abstract:
Study of the vibration cylindrical shells made of a functionally gradient material (FGM) composed of stainless steel and nickel is important. Material properties are graded in the thickness direction of the shell according to volume fraction power law distribution. The objective is to study the natural frequencies, the influence of constituent volume fractions and the effects of boundary conditions on the natural frequencies of the FG cylindrical shell. The study is carried out using third order shear deformation shell theory. The governing equations of motion of FG cylindrical shells are derived based on shear deformation theory. Results are presented on the frequency characteristics, influence of constituent volume fractions and the effects of clampedclamped boundary conditions.Keywords: Vibration, FGM, Cylindrical shell, Hamilton's principle.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 15331598 Study on the Use of Manganese-Containing Materials as a Micro Fertilizer Based on the Local Mineral Resources and Industrial Wastes in Hydroponic Systems
Authors: Marine Shavlakadze
Abstract:
Hydroponic greenhouses systems (production of the artificial substrate without soil) are becoming popular in the world. Mostly the system is used to grow vegetables and berries. Different countries are taking action to participate in the development of hydroponic technology and solutions such as EU members, Turkey, Australia, New Zealand, Israel, Scandinavian countries, etc. Many vegetables and berries are grown by hydroponics in Europe. As a result of our research, we have obtained material containing manganese and nitrogen. It became possible to produce this fertilizer by means of one-stage thermal processing, using industrial waste containing manganese (ores and sludges) and mineral substance (ammonium nitrate) that exist in Georgia. The received material is usable as a micro-fertilizer with economic efficiency. It became possible to turn practically water-insoluble manganese dioxide substance into the soluble condition from industrial waste in an indirect way. The ability to use the material as a fertilizer is predetermined by its chemical and phase composition, as the amount of the active component of the material in relation to manganese is 30%. At the same time, the active component elements presented non-ballast sustained action compounds. The studies implemented in Poland and in Georgia by us have shown that the manganese-containing micro-fertilizer- Mn(NO3)2 can provide the plant with nitrate nitrogen, which is a form that can be used for plants, providing the economy and simplicity of the application of fertilizers. Given the fact that the application of the manganese-containing micro-fertilizers significantly increases the productivity and improves the quality of the big number of agricultural products, it is necessary to mention that it is recommended to introduce the manganese containing fertilizers into the following cultures: sugar beet, corn, potato, vegetables, vine grape, fruit, berries, and other cultures. Also, as a result of the study, it was established that the material obtained is the predominant fertilizer for vegetable cultures in the soil. Based on the positive results of the research, we consider it expedient to conduct research in hydroponic systems, which will enable us to provide plants the required amount of manganese; we also introduce nitrogen in solution and regulate the solution of pH, which is one of the main problems in hydroponic production. The findings of our research will be used in hydroponic greenhouse farms to increase the fertility of vegetable crops and, consequently, to get bountiful and high-quality harvests, which will promote the development of hydroponic greenhouses in Georgia as well as abroad.
Keywords: Hydroponics, micro-fertilizers, manganese ore, chemical amelioration.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 7061597 Factors Affecting Weld Line Movement in Tailor Welded Blank
Authors: Shakil A. Kagzi, Sanjay Patil, Harit K. Raval
Abstract:
Tailor Welded Blanks (TWB) are utilized in automotive industries widely because of their advantage of weight and cost reduction and maintaining required strength and structural integrity. TWB consist of two or more sheet having dissimilar or similar material and thickness; welded together to form a single sheet before forming it to desired shape. Forming of the tailor welded blank is affected by ratio of thickness of blanks, ratio of their strength, etc. mainly due to in-homogeneity of material. In the present work the relative effect of these parameters on weld line movement is studied during deep drawing of TWB using FE simulation using HYPERWORKS. The simulation is validated with results from the literature. Simulations were than performed based on Taguchi orthogonal array followed by the ANOVA analysis to determine the significance of these parameters on forming of TWB.
Keywords: ANOVA, Deep drawing, Tailor Welded Blank, TWB, Weld line movement.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 27891596 Failure Analysis of a Fractured Control Pressure Tube from an Aircraft Engine
Authors: M. P. Valles-González, A. González Meije, A. Pastor Muro, M. García-Martínez, B. González Caballero
Abstract:
This paper studies a failure case of a fuel pressure supply tube from an aircraft engine. Multiple fracture cases of the fuel pressure control tube from aircraft engines have been reported. The studied set was composed by the mentioned tube, a welded connecting pipe, where the fracture has been produced, and a union nut. The fracture has been produced in one of the most critical zones of the tube, in a region next to the supporting body of the union nut to the connector. The tube material was X6CrNiTi18-10, an austenitic stainless steel. Chemical composition was determined using an X-Ray fluorescence spectrometer (XRF) and combustion equipment. Furthermore, the material was characterized mechanically, by a hardness test, and microstructurally using a stereo microscope and an optical microscope. The results confirmed that the material was within specifications. To determine the macrofractographic features, a visual examination and an observation using a stereo microscope of the tube fracture surface were carried out. The results revealed a tube plastic macrodeformation, surface damaged and signs of a possible corrosion process. Fracture surface was also inspected by scanning electron microscopy (FE-SEM), equipped with an energy-dispersive X-ray microanalysis system (EDX), to determine the microfractographic features in order to find out the failure mechanism involved in the fracture. Fatigue striations, which are typical from a progressive fracture by a fatigue mechanism, were observed. The origin of the fracture was placed in defects located on the outer wall of the tube, leading to a final overload fracture.
Keywords: Aircraft Engine, microstructure, fatigue, FE-SEM, fractography, fracture, fuel tube, stainless steel.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 5621595 Relations between Human Capital Investments and Business Excellence in Croatian Companies
Authors: Ivana Tadić, Željana Aljinović Barać, Nikolina Plazonić
Abstract:
Living today in turbulent business environment forces companies to distinguish from each other, securing sustainable competitive growth and competitive advantage. The best possible solution is to invest (effort and financial resources) within companies’ different practices of human resource management (HRM), more specifically in employees’ knowledge, skills and abilities. Applying this approach companies will create enviable level of human capital securing its economic growth. Employees become human capital for their employers at the moment when they contribute with their own knowledge and abilities in creating material and non-material value of the company. The main aim of this research is to explore the relations between human capital investments and business excellence of Croatian companies. Furthermore, the differences in the level of human capital investments with regard to several companies’ characteristics (e.g. size of the company, ownership and type of the industry) are investigated.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2676