Search results for: dual stator induction motor
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 865

Search results for: dual stator induction motor

385 A Brain Controlled Robotic Gait Trainer for Neurorehabilitation

Authors: Qazi Umer Jamil, Abubakr Siddique, Mubeen Ur Rehman, Nida Aziz, Mohsin I. Tiwana

Abstract:

This paper discusses a brain controlled robotic gait trainer for neurorehabilitation of Spinal Cord Injury (SCI) patients. Patients suffering from Spinal Cord Injuries (SCI) become unable to execute motion control of their lower proximities due to degeneration of spinal cord neurons. The presented approach can help SCI patients in neuro-rehabilitation training by directly translating patient motor imagery into walkers motion commands and thus bypassing spinal cord neurons completely. A non-invasive EEG based brain-computer interface is used for capturing patient neural activity. For signal processing and classification, an open source software (OpenVibe) is used. Classifiers categorize the patient motor imagery (MI) into a specific set of commands that are further translated into walker motion commands. The robotic walker also employs fall detection for ensuring safety of patient during gait training and can act as a support for SCI patients. The gait trainer is tested with subjects, and satisfactory results were achieved.

Keywords: Brain Computer Interface (BCI), gait trainer, Spinal Cord Injury (SCI), neurorehabilitation.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1218
384 Simulating the Dynamics of Distribution of Hazardous Substances Emitted by Motor Engines in a Residential Quarter

Authors: S. Grishin

Abstract:

This article is dedicated to development of mathematical models for determining the dynamics of concentration of hazardous substances in urban turbulent atmosphere. Development of the mathematical models implied taking into account the time-space variability of the fields of meteorological items and such turbulent atmosphere data as vortex nature, nonlinear nature, dissipativity and diffusivity. Knowing the turbulent airflow velocity is not assumed when developing the model. However, a simplified model implies that the turbulent and molecular diffusion ratio is a piecewise constant function that changes depending on vertical distance from the earth surface. Thereby an important assumption of vertical stratification of urban air due to atmospheric accumulation of hazardous substances emitted by motor vehicles is introduced into the mathematical model. The suggested simplified non-linear mathematical model of determining the sought exhaust concentration at a priori unknown turbulent flow velocity through non-degenerate transformation is reduced to the model which is subsequently solved analytically.

Keywords: Urban ecology, time-dependent mathematical model, exhaust concentration, turbulent and molecular diffusion, airflow velocity.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1384
383 Shape Optimization of Permanent Magnet Motors Using the Reduced Basis Technique

Authors: A. Jabbari, M. Shakeri, A. Nabavi

Abstract:

In this paper, a tooth shape optimization method for cogging torque reduction in Permanent Magnet (PM) motors is developed by using the Reduced Basis Technique (RBT) coupled by Finite Element Analysis (FEA) and Design of Experiments (DOE) methods. The primary objective of the method is to reduce the enormous number of design variables required to define the tooth shape. RBT is a weighted combination of several basis shapes. The aim of the method is to find the best combination using the weights for each tooth shape as the design variables. A multi-level design process is developed to find suitable basis shapes or trial shapes at each level that can be used in the reduced basis technique. Each level is treated as a separated optimization problem until the required objective – minimum cogging torque – is achieved. The process is started with geometrically simple basis shapes that are defined by their shape co-ordinates. The experimental design of Taguchi method is used to build the approximation model and to perform optimization. This method is demonstrated on the tooth shape optimization of a 8-poles/12-slots PM motor.

Keywords: PM motor, cogging torque, tooth shape optimization, RBT, FEA, DOE.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2468
382 Embodiment Design of an Azimuth-Altitude Solar Tracker

Authors: M. Culman, O. Lengerke

Abstract:

To provide an efficient solar generation system, the embodiment design of a two axis solar tracker for an array of photovoltaic (PV) panels destiny to supply the power demand on off-the-grid areas was developed. Photovoltaic cells have high costs in relation to t low efficiency; and while a lot of research and investment has been made to increases its efficiency a few points, there is a profitable solution that increases by 30-40% the annual power production: two axis solar trackers. A solar tracker is a device that supports a load in a perpendicular position toward the sun during daylight. Mounted on solar trackers, the solar panels remain perpendicular to the incoming sunlight at day and seasons so the maximum amount of energy is outputted. Through a preview research done it was justified why the generation of solar energy through photovoltaic panels mounted on dual axis structures is an attractive solution to bring electricity to remote off-the-grid areas. The work results are the embodiment design of an azimuth-altitude solar tracker to guide an array of photovoltaic panels based on a specific design methodology. The designed solar tracker is mounted on a pedestal that uses two slewing drives‚ with a nominal torque of 1950 Nm‚ to move a solar array that provides 3720 W from 12 PV panels.

Keywords: Azimuth-altitude sun tracker, dual-axis solar tracker, photovoltaic system, solar energy, stand-alone power system.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1754
381 Automatic Motion Trajectory Analysis for Dual Human Interaction Using Video Sequences

Authors: Yuan-Hsiang Chang, Pin-Chi Lin, Li-Der Jeng

Abstract:

Advance in techniques of image and video processing has enabled the development of intelligent video surveillance systems. This study was aimed to automatically detect moving human objects and to analyze events of dual human interaction in a surveillance scene. Our system was developed in four major steps: image preprocessing, human object detection, human object tracking, and motion trajectory analysis. The adaptive background subtraction and image processing techniques were used to detect and track moving human objects. To solve the occlusion problem during the interaction, the Kalman filter was used to retain a complete trajectory for each human object. Finally, the motion trajectory analysis was developed to distinguish between the interaction and non-interaction events based on derivatives of trajectories related to the speed of the moving objects. Using a database of 60 video sequences, our system could achieve the classification accuracy of 80% in interaction events and 95% in non-interaction events, respectively. In summary, we have explored the idea to investigate a system for the automatic classification of events for interaction and non-interaction events using surveillance cameras. Ultimately, this system could be incorporated in an intelligent surveillance system for the detection and/or classification of abnormal or criminal events (e.g., theft, snatch, fighting, etc.). 

Keywords: Motion detection, motion tracking, trajectory analysis, video surveillance.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1691
380 The Coexistence of Dual Form of Malnutrition among Portuguese Institutionalized Elderly People

Authors: C. Caçador, M. J. Reis Lima, J. Oliveira, M. J. Veiga, M. Teixeira Veríssimo, F. Ramos, M. C. Castilho, E. Teixeira-Lemos

Abstract:

In the present study we evaluated the nutritional status of 214 institutionalized elderly residents of both genders, aged 65 years and older of 11 care homes located in the district of Viseu (center of Portugal). The evaluation was based on anthropometric measurements and the Mini Nutritional Assessment (MNA) score.

The mean age of the subjects was 82.3 ± 6.1 years-old. Most of the elderly residents were female (72.0%). The majority had 4 years of formal education (51.9%) and was widowed (74.3%) or married (14.0%).

Men presented a mean age of 81.2±8.5 years-old, weight 69.3±14.5 kg and BMI 25.33±6.5 kg/m2. In women, the mean age was 84.5±8.2 years-old, weight 61.2±14.7 kg and BMI 27.43±5.6 kg/m2.

The evaluation of the nutritional status using the MNA score showed that 24.0% of the residents show a risk of undernutrition and 76.0% of them were well nourished.

There was a high prevalence of obese (24.8%) and overweight residents (33.2%) according to the BMI. 7.5% were considered underweight.

We also found that according to their waist circumference measurements 88.3% of the residents were at risk for cardiovascular disease (CVD) and 64.0% of them presented very high risk for CVD (WC≥88 cm for women and WC ≥102 cm for men).

The present study revealed the coexistence of a dual form of malnutrition (undernourished and overweight) among the institutionalized Portuguese concomitantly with an excess of abdominal adiposity. The high prevalence of residents at high risk for CVD should not be overlooked.

Given the vulnerability of the group of institutionalized elderly, our study highlights the importance of the classification of nutritional status based on both instruments: the BMI and the MNA.

Keywords: Nutritional status, MNA, BMI, elderly.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1923
379 Magneto-Thermo-Mechanical Analysis of Electromagnetic Devices Using the Finite Element Method

Authors: Michael G. Pantelyat

Abstract:

Fundamental basics of pure and applied research in the area of magneto-thermo-mechanical numerical analysis and design of innovative electromagnetic devices (modern induction heaters, novel thermoelastic actuators, rotating electrical machines, induction cookers, electrophysical devices) are elaborated. Thus, mathematical models of magneto-thermo-mechanical processes in electromagnetic devices taking into account main interactions of interrelated phenomena are developed. In addition, graphical representation of coupled (multiphysics) phenomena under consideration is proposed. Besides, numerical techniques for nonlinear problems solution are developed. On this base, effective numerical algorithms for solution of actual problems of practical interest are proposed, validated and implemented in applied 2D and 3D computer codes developed. Many applied problems of practical interest regarding modern electrical engineering devices are numerically solved. Investigations of the influences of various interrelated physical phenomena (temperature dependences of material properties, thermal radiation, conditions of convective heat transfer, contact phenomena, etc.) on the accuracy of the electromagnetic, thermal and structural analyses are conducted. Important practical recommendations on the choice of rational structures, materials and operation modes of electromagnetic devices under consideration are proposed and implemented in industry.

Keywords: Electromagnetic devices, multiphysics, numerical analysis, simulation and design.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1675
378 Mirror Neuron System Study on Elderly Using Dynamic Causal Modeling fMRI Analysis

Authors: R. Keerativittatayut, B. Kaewkamnerdpong, J. Laothamatas, W. Sungkarat

Abstract:

Dynamic Causal Modeling (DCM) functional Magnetic Resonance Imaging (fMRI) is a promising technique to study the connectivity among brain regions and effects of stimuli through modeling neuronal interactions from time-series neuroimaging. The aim of this study is to study characteristics of a mirror neuron system (MNS) in elderly group (age: 60-70 years old). Twenty volunteers were MRI scanned with visual stimuli to study a functional brain network. DCM was employed to determine the mechanism of mirror neuron effects. The results revealed major activated areas including precentral gyrus, inferior parietal lobule, inferior occipital gyrus, and supplementary motor area. When visual stimuli were presented, the feed-forward connectivity from visual area to conjunction area was increased and forwarded to motor area. Moreover, the connectivity from the conjunction areas to premotor area was also increased. Such findings can be useful for future diagnostic process for elderly with diseases such as Parkinson-s and Alzheimer-s.

Keywords: Mirror Neuron System (MNS), Dynamic Causal Modeling (DCM), Functional Magnetic Resonance Imaging (fMRI)

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1694
377 Robotic End-Effector Impedance Control without Expensive Torque/Force Sensor

Authors: Shiuh-Jer Huang, Yu-Chi Liu, Su-Hai Hsiang

Abstract:

A novel low-cost impedance control structure is proposed for monitoring the contact force between end-effector and environment without installing an expensive force/torque sensor. Theoretically, the end-effector contact force can be estimated from the superposition of each joint control torque. There have a nonlinear matrix mapping function between each joint motor control input and end-effector actuating force/torques vector. This new force control structure can be implemented based on this estimated mapping matrix. First, the robot end-effector is manipulated to specified positions, then the force controller is actuated based on the hall sensor current feedback of each joint motor. The model-free fuzzy sliding mode control (FSMC) strategy is employed to design the position and force controllers, respectively. All the hardware circuits and software control programs are designed on an Altera Nios II embedded development kit to constitute an embedded system structure for a retrofitted Mitsubishi 5 DOF robot. Experimental results show that PI and FSMC force control algorithms can achieve reasonable contact force monitoring objective based on this hardware control structure.

Keywords: Robot, impedance control, fuzzy sliding mode control, contact force estimator.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 3953
376 Design of Liquids Mixing Control System using Fuzzy Time Control Discrete Event Model for Industrial Applications

Authors: M.Saleem Khan, Khaled Benkrid

Abstract:

This paper presents a time control liquids mixing system in the tanks as an application of fuzzy time control discrete model. The system is designed for a wide range of industrial applications. The simulation design of control system has three inputs: volume, viscosity, and selection of product, along with the three external control adjustments for the system calibration or to take over the control of the system autonomously in local or distributed environment. There are four controlling elements: rotatory motor, grinding motor, heating and cooling units, and valves selection, each with time frame limit. The system consists of three controlled variables measurement through its sensing mechanism for feed back control. This design also facilitates the liquids mixing system to grind certain materials in tanks and mix with fluids under required temperature controlled environment to achieve certain viscous level. Design of: fuzzifier, inference engine, rule base, deffuzifiers, and discrete event control system, is discussed. Time control fuzzy rules are formulated, applied and tested using MATLAB simulation for the system.

Keywords: Fuzzy time control, industrial application and timecontrol systems, adjustment of Fuzzy system, liquids mixing system, design of fuzzy time control DEV system.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2500
375 Application of Staining Intensity Correlation Analysis to Visualize Protein Colocalizationat a Cellular Level

Authors: Permphan Dharmasaroja

Abstract:

Mutations of the telomeric copy of the survival motor neuron 1 (SMN1) gene cause spinal muscular atrophy. A deletion of the Eef1a2 gene leads to lower motor neuron degeneration in wasted mice. Indirect evidences have been shown that the eEF1A protein family may interact with SMN, and our previous study showed that abnormalities of neuromuscular junctions in wasted mice were similar to those of Smn mutant mice. To determine potential colocalization between SMN and tissue-specific translation elongation factor 1A2 (eEF1A2), an immunochemical analysis of HeLa cells transfected with the plasmid pcDNA3.1(+)C-hEEF1A2- myc and a new quantitative test of colocalization by intensity correlation analysis (ICA) was used to explore the association of SMN and eEF1A2. Here the results showed that eEF1A2 redistributed from the cytoplasm to the nucleus in response to serum and epidermal growth factor. In the cytoplasm, compelling evidence showed that staining for myc-tagged eEF1A2 varied in synchrony with that for SMN, consistent with the formation of a SMN-eEF1A2 complex in the cytoplasm of HeLa cells. These findings suggest that eEF1A2 may colocalize with SMN in the cytoplasm and may be a component of the SMN complex. However, the limitation of the ICA method is an inability to resolve colocalization in components of small organelles such as the nucleus.

Keywords: Intensity correlation analysis, intensity correlation quotient.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1473
374 The Contribution of the PCR-Enzymatic Digestion in the Positive Diagnosis of Proximal Spinal Muscular Atrophy in the Moroccan Population

Authors: H. Merhni, A. Sbiti, I. Ratbi, A. Sefiani

Abstract:

The proximal spinal muscular atrophy (SMA) is a group of neuromuscular disorders characterized by progressive muscle weakness due to the degeneration and loss of anterior motor neurons of the spinal cord. Depending on the age of onset of symptoms and their evolution, four types of SMA, varying in severity, result in a mutations of the SMN gene (survival of Motor neuron). We have analyzed the DNA of 295 patients referred to our genetic counseling; since January 1996 until October 2014; for suspected SMA. The homozygous deletion of exon 7 of the SMN gene was found in 133 patients; of which, 40.6% were born to consanguineous parents. In countries like Morocco, where the frequency of heterozygotes for SMA is high, genetic testing should be offered as first-line and, after careful clinical assessment, especially in newborns and infants with congenital hypotonia unexplained and prognosis compromise. The molecular diagnosis of SMA allows a quick and certainly diagnosis, provide adequate genetic counseling for families at risk and suggest, for couples who want prenatal diagnosis. The analysis of the SMN gene is a perfect example of genetic testing with an excellent cost/benefit ratio that can be of great interest in public health, especially in low-income countries. We emphasize in this work for the benefit of the generalization of molecular diagnosis of SMA by the technique of PCR-enzymatic digestion in other centers in Morocco.

Keywords: Exon7, PCR-digestion, SMA, SMN gene.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1082
373 Complex Wavelet Transform Based Image Denoising and Zooming Under the LMMSE Framework

Authors: T. P. Athira, Gibin Chacko George

Abstract:

This paper proposes a dual tree complex wavelet transform (DT-CWT) based directional interpolation scheme for noisy images. The problems of denoising and interpolation are modelled as to estimate the noiseless and missing samples under the same framework of optimal estimation. Initially, DT-CWT is used to decompose an input low-resolution noisy image into low and high frequency subbands. The high-frequency subband images are interpolated by linear minimum mean square estimation (LMMSE) based interpolation, which preserves the edges of the interpolated images. For each noisy LR image sample, we compute multiple estimates of it along different directions and then fuse those directional estimates for a more accurate denoised LR image. The estimation parameters calculated in the denoising processing can be readily used to interpolate the missing samples. The inverse DT-CWT is applied on the denoised input and interpolated high frequency subband images to obtain the high resolution image. Compared with the conventional schemes that perform denoising and interpolation in tandem, the proposed DT-CWT based noisy image interpolation method can reduce many noise-caused interpolation artifacts and preserve well the image edge structures. The visual and quantitative results show that the proposed technique outperforms many of the existing denoising and interpolation methods.

Keywords: Dual-tree complex wavelet transform (DT-CWT), denoising, interpolation, optimal estimation, super resolution.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2133
372 Prediction of Compressive Strength of Concrete from Early Age Test Result Using Design of Experiments (RSM)

Authors: Salem Alsanusi, Loubna Bentaher

Abstract:

Response Surface Methods (RSM) provide statistically validated predictive models that can then be manipulated for finding optimal process configurations. Variation transmitted to responses from poorly controlled process factors can be accounted for by the mathematical technique of propagation of error (POE), which facilitates ‘finding the flats’ on the surfaces generated by RSM. The dual response approach to RSM captures the standard deviation of the output as well as the average. It accounts for unknown sources of variation. Dual response plus propagation of error (POE) provides a more useful model of overall response variation. In our case, we implemented this technique in predicting compressive strength of concrete of 28 days in age. Since 28 days is quite time consuming, while it is important to ensure the quality control process. This paper investigates the potential of using design of experiments (DOE-RSM) to predict the compressive strength of concrete at 28th day. Data used for this study was carried out from experiment schemes at university of Benghazi, civil engineering department. A total of 114 sets of data were implemented. ACI mix design method was utilized for the mix design. No admixtures were used, only the main concrete mix constituents such as cement, coarseaggregate, fine aggregate and water were utilized in all mixes. Different mix proportions of the ingredients and different water cement ratio were used. The proposed mathematical models are capable of predicting the required concrete compressive strength of concrete from early ages.

Keywords: Mix proportioning, response surface methodology, compressive strength, optimal design.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2169
371 Analysis of Motor Cycle Helmet under Static and Dynamic Loading

Authors: V. C. Sathish Gandhi, R. Kumaravelan, S. Ramesh, M. Venkatesan, M. Ponraj

Abstract:

Each year nearly nine hundred persons die in head injuries and over fifty thousand persons are severely injured due to non wearing of helmets. In motor cycle accidents, the human head is exposed to heavy impact loading against natural protection. In this work, an attempt has been made for analyzing the helmet with all the standard data. The simulation software ‘ANSYS’ is used to analyze the helmet with different conditions such as bottom fixed-load on top surface, bottom fixed -load on top line, side fixed –load on opposite surface, side fixed-load on opposite line and dynamic analysis. The maximum force of 19.5 kN is applied on the helmet to study the model in static and dynamic conditions. The simulation has been carried out for the static condition for the parameters like total deformation, strain energy, von-Mises stress for different cases. The dynamic analysis has been performed for the parameter like total deformation and equivalent elastic strain. The result shows that these values are concentrated in the retention portion of the helmet. These results have been compared with the standard experimental data proposed by the BIS and well within the acceptable limit.

Keywords: Helmet, Deformation, Strain energy, Equivalent elastic strain.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 4854
370 Aging Evaluation of Ammonium Perchlorate/Hydroxyl Terminated Polybutadiene-Based Solid Rocket Engine by Reactive Molecular Dynamics Simulation and Thermal Analysis

Authors: R. F. B. Gonçalves, E. N. Iwama, J. A. F. F. Rocco, K. Iha

Abstract:

Propellants based on Hydroxyl Terminated Polybutadiene/Ammonium Perchlorate (HTPB/AP) are the most commonly used in most of the rocket engines used by the Brazilian Armed Forces. This work aimed at the possibility of extending its useful life (currently in 10 years) by performing kinetic-chemical analyzes of its energetic material via Differential Scanning Calorimetry (DSC) and also performing computer simulation of aging process using the software Large-scale Atomic/Molecular Massively Parallel Simulator (LAMMPS). Thermal analysis via DSC was performed in triplicates and in three heating ratios (5 ºC, 10 ºC, and 15 ºC) of rocket motor with 11 years shelf-life, using the Arrhenius equation to obtain its activation energy, using Ozawa and Kissinger kinetic methods, allowing comparison with manufacturing period data (standard motor). In addition, the kinetic parameters of internal pressure of the combustion chamber in 08 rocket engines with 11 years of shelf-life were also acquired, for comparison purposes with the engine start-up data.

Keywords: Shelf-life, thermal analysis, Ozawa method, Kissinger method, LAMMPS software, thrust.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 774
369 Simple Agents Benefit Only from Simple Brains

Authors: Valeri A. Makarov, Nazareth P. Castellanos, Manuel G. Velarde

Abstract:

In order to answer the general question: “What does a simple agent with a limited life-time require for constructing a useful representation of the environment?" we propose a robot platform including the simplest probabilistic sensory and motor layers. Then we use the platform as a test-bed for evaluation of the navigational capabilities of the robot with different “brains". We claim that a protocognitive behavior is not a consequence of highly sophisticated sensory–motor organs but instead emerges through an increment of the internal complexity and reutilization of the minimal sensory information. We show that the most fundamental robot element, the short-time memory, is essential in obstacle avoidance. However, in the simplest conditions of no obstacles the straightforward memoryless robot is usually superior. We also demonstrate how a low level action planning, involving essentially nonlinear dynamics, provides a considerable gain to the robot performance dynamically changing the robot strategy. Still, however, for very short life time the brainless robot is superior. Accordingly we suggest that small organisms (or agents) with short life-time does not require complex brains and even can benefit from simple brain-like (reflex) structures. To some extend this may mean that controlling blocks of modern robots are too complicated comparative to their life-time and mechanical abilities.

Keywords: Neural network, probabilistic control, robot navigation.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1402
368 One-DOF Precision Position Control using the Combined Piezo-VCM Actuator

Authors: Yung-Tien Liu, Chun-Chao Wang

Abstract:

This paper presents the control performance of a high-precision positioning device using the hybrid actuator composed of a piezoelectric (PZT) actuator and a voice-coil motor (VCM). The combined piezo-VCM actuator features two main characteristics: a large operation range due to long stroke of the VCM, and high precision and heavy load positioning ability due to PZT impact force. A one-degree-of-freedom (DOF) experimental setup was configured to examine the fundamental characteristics, and the control performance was effectively demonstrated by using a switching controller. In rough positioning state, an integral variable structure controller (IVSC) was used for the VCM to conduct long range of operation; in precision positioning state, an impact force controller (IFC) for the PZT actuator coupled with presliding states of the sliding table was used to obtain high-precision position control and achieve both forward and backward actuations. The experimental results showed that the sliding table having a mass of 881g and with a preload of 10 N was successfully positioned within the positioning accuracy of 10 nm in both forward and backward position controls.

Keywords: Integral variable structure controller (IVSC), impact force, precision positioning, presliding, PZT actuator, voice-coil motor (VCM).

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1900
367 Two New Collineations of some Moufang-Klingenberg Planes

Authors: Atilla Akpinar, Basri Çelik

Abstract:

In this paper we are interested in Moufang-Klingenberg planesM(A) defined over a local alternative ring A of dual numbers. We introduce two new collineations of M(A).

Keywords: Moufang-Klingenberg planes, local alternative ring, projective collineation.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1109
366 Diagnosis of Inter Turn Fault in the Stator of Synchronous Generator Using Wavelet Based ANFIS

Authors: R. Rajeswari, N. Kamaraj

Abstract:

In this paper, Wavelet based ANFIS for finding inter turn fault of generator is proposed. The detector uniquely responds to the winding inter turn fault with remarkably high sensitivity. Discrimination of different percentage of winding affected by inter turn fault is provided via ANFIS having an Eight dimensional input vector. This input vector is obtained from features extracted from DWT of inter turn faulty current leaving the generator phase winding. Training data for ANFIS are generated via a simulation of generator with inter turn fault using MATLAB. The proposed algorithm using ANFIS is giving satisfied performance than ANN with selected statistical data of decomposed levels of faulty current.

Keywords: Winding InterTurn fault, ANN, ANFIS, and DWT.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2907
365 Forming Limit Analysis of DP600-800 Steels

Authors: M. C. Cardoso, L. P. Moreira

Abstract:

In this work, the plastic behaviour of cold-rolled zinc coated dual-phase steel sheets DP600 and DP800 grades is firstly investigated with the help of uniaxial, hydraulic bulge and Forming Limit Curve (FLC) tests. The uniaxial tensile tests were performed in three angular orientations with respect to the rolling direction to evaluate the strain-hardening and plastic anisotropy. True stressstrain curves at large strains were determined from hydraulic bulge testing and fitted to a work-hardening equation. The limit strains are defined at both localized necking and fracture conditions according to Nakajima’s hemispherical punch procedure. Also, an elasto-plastic localization model is proposed in order to predict strain and stress based forming limit curves. The investigated dual-phase sheets showed a good formability in the biaxial stretching and drawing FLC regions. For both DP600 and DP800 sheets, the corresponding numerical predictions overestimated and underestimated the experimental limit strains in the biaxial stretching and drawing FLC regions, respectively. This can be attributed to the restricted failure necking condition adopted in the numerical model, which is not suitable to describe the tensile and shear fracture mechanisms in advanced high strength steels under equibiaxial and biaxial stretching conditions.

Keywords: Advanced high strength steels, forming limit curve, numerical modeling, sheet metal forming.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 3423
364 Generation of 3D Models Obtained with Low-Cost RGB and Thermal Sensors Mounted on Drones

Authors: Julio Manuel de Luis Ruiz, Javier Sedano Cibrián, Rubén Pérez Álvarez, Raúl Pereda García, Felipe Piña García

Abstract:

Nowadays it is common to resort to aerial photography to carry out the prospection and/or exploration of archaeological sites. In recent years, Unmanned Aerial Vehicles (UAVs) have been applied as the vehicles that carry the sensor. This implies certain advantages, such as the possibility of including low-cost sensors, given that these vehicles can carry the sensor at relatively low altitudes. Due to this, low-cost dual sensors have recently begun to be used. This new equipment can collaborate with classic Digital Elevation Models (DEMs) in the exploration of archaeological sites, but this entails the need for a methodological setting to optimize the acquisition, processing and exploitation of the information provided by low-cost dual sensors. This research focuses on the design of an appropriate workflow to obtain 3D models with low-cost sensors carried on UAVs, both in the RGB and thermal domains. All the foregoing has been applied to the archaeological site of Juliobriga, located in Cantabria (Spain). To this end, a flight with this type of sensors has been planned, developed and analyzed. It has been applied to the archaeological site of Juliobriga (Cantabria, Spain). A strong dependence of the thermal sensor on the GSD, and the capability of this technique to interpret underground materials. This research allows to state that the thermal nature of the site does not provide main information about the site itself, but with combination with other types of information, such as the DEM, the typology of materials, etc., can produce very positive results with respect to the exploration and knowledge of the site. 

Keywords: process optimization, RGB models, thermal models, UAV, workflow

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 562
363 Design and Construction of the Semi-Automatic Sliced Ginger Machine

Authors: J. Chatthong, W. Boonchouytan, R. Burapa

Abstract:

The purpose of study was to design and construction the semi-automatic sliced ginger machine for reduce production times in sheet and slice ginger procedure furthermore, reduced amount of labor of slides and cutting method. Take consider into clean and safety of workers and consumers. The principle of machines, used 1 horsepower motor, rotation speed of sliced blade 967 rpm, the diameter of sliced dish 310 mm, consists of 2 blades for sheet cutting ginger and the power from motor which transfer to rotate the sliced blade roller, rotation speed 440 rpm. The slice cutter roller was sliced ginger from sheet ginger to line ginger. The conveyer could adjustment level of motors, used to the beginning area that sheet ginger was transference to the roller for sheet and sliced cutting in next process. The cover of sliced cutting had channel for 1 tuber of ginger. The semi-automatic sliced ginger machine could produced sheet ginger 81.8 kg/h (6.2 times of labor) and line ginger 17.9 kg/h (2.5 times of labor) compare with, labor work could produced sheet ginger 13.2 kg/h and line ginger 7.1 kg/h, and when timekeeper, the total times of semi auto machine 30.86 kg/h and labor 4.6 kg/h, there for the semi auto machine was 6.7 times of labor. The semiautomatic sliced ginger machine convenient, easy for use and maintain, in addition to reduce fatigue of body and seriousness from works; must be used high skill, and protection accident in slicing procedure. Beside, machine could used with other vegetables for example potato, carrot .etc

Keywords: Sliced Machine, Sliced Ginger, Line Ginger

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 3190
362 Improvement of Short Channel Effects in Cylindrical Strained Silicon Nanowire Transistor

Authors: Fatemeh Karimi, Morteza Fathipour, Hamdam Ghanatian, Vala Fathipour

Abstract:

In this paper we investigate the electrical characteristics of a new structure of gate all around strained silicon nanowire field effect transistors (FETs) with dual dielectrics by changing the radius (RSiGe) of silicon-germanium (SiGe) wire and gate dielectric. Indeed the effect of high-κ dielectric on Field Induced Barrier Lowering (FIBL) has been studied. Due to the higher electron mobility in tensile strained silicon, the n-type FETs with strained silicon channel have better drain current compare with the pure Si one. In this structure gate dielectric divided in two parts, we have used high-κ dielectric near the source and low-κ dielectric near the drain to reduce the short channel effects. By this structure short channel effects such as FIBL will be reduced indeed by increasing the RSiGe, ID-VD characteristics will be improved. The leakage current and transfer characteristics, the threshold-voltage (Vt), the drain induced barrier height lowering (DIBL), are estimated with respect to, gate bias (VG), RSiGe and different gate dielectrics. For short channel effects, such as DIBL, gate all around strained silicon nanowire FET have similar characteristics with the pure Si one while dual dielectrics can improve short channel effects in this structure.

Keywords: SNWT (silicon nanowire transistor), Tensile Strain, high-κ dielectric, Field Induced Barrier Lowering (FIBL), cylindricalnano wire (CW), drain induced barrier lowering (DIBL).

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1973
361 Investigating the Regulation System of the Synchronous Motor Excitation Mode Serving as a Reactive Power Source

Authors: Baghdasaryan Marinka, Ulikyan Azatuhi

Abstract:

The efficient usage of the compensation abilities of the electrical drive synchronous motors used in production processes can essentially improve the technical and economic indices of the process.  Reducing the flows of the reactive electrical energy due to the compensation of reactive power allows to significantly reduce the load losses of power in the electrical networks. As a result of analyzing the scientific works devoted to the issues of regulating the excitation of the synchronous motors, the need for comprehensive investigation and estimation of the excitation mode has been substantiated. By means of the obtained transmission functions, in the Simulink environment of the software package MATLAB, the transition processes of the excitation mode have been studied. As a result of obtaining and estimating the graph of the Nyquist plot and the transient process, the necessity of developing the Proportional-Integral-Derivative (PID) regulator has been justified. The transient processes of the system of the PID regulator have been investigated, and the amplitude–phase characteristics of the system have been estimated. The analysis of the obtained results has shown that the regulation indices of the developed system have been improved. The developed system can be successfully applied for regulating the excitation voltage of different-power synchronous motors, operating with a changing load, ensuring a value of the power coefficient close to 1.

Keywords: Transient process, synchronous motor, excitation mode, regulator, reactive power.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 645
360 Measurement of Real Time Drive Cycle for Indian Roads and Estimation of Component Sizing for HEV using LABVIEW

Authors: Varsha Shah, Patel Pritesh, Patel Sagar, PrasantaKundu, RanjanMaheshwari

Abstract:

Performance of vehicle depends on driving patterns and vehicle drive train configuration. Driving patterns depends on traffic condition, road condition and driver behavior. HEV design is carried out under certain constrain like vehicle operating range, acceleration, decelerations, maximum speed and road grades which are directly related to the driving patterns. Therefore the detailed study on HEV performance over a different drive cycle is required for selection and sizing of HEV components. A simple hardware is design to measured velocity v/s time profile of the vehicle by operating vehicle on Indian roads under real traffic conditions. To size the HEV components, a detailed dynamic model of the vehicle is developed considering the effect of inertia of rotating components like wheels, drive chain, engine and electric motor. Using vehicle model and different Indian drive cycles data, total tractive power demanded by vehicle and power supplied by individual components has been calculated.Using above information selection and estimation of component sizing for HEV is carried out so that HEV performs efficiently under hostile driving condition. Complete analysis is carried out in LABVIEW.

Keywords: BLDC motor, Driving cycle, LABVIEW Ultracapacitors, Vehicle Dynamics,

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 3861
359 Aerodynamic Designing of Supersonic Centrifugal Compressor Stages

Authors: Y. Galerkin, A. Rekstin, K. Soldatova

Abstract:

Universal modeling method well proven for industrial compressors was applied for design of the high flow rate supersonic stage. Results were checked by ANSYS CFX and NUMECA Fine Turbo calculations. The impeller appeared to be very effective at transonic flow velocities. Stator elements efficiency is acceptable at design Mach numbers too. Their loss coefficient versus inlet flow angle performances correlates well with Universal modeling prediction. The impeller demonstrates ability of satisfactory operation at design flow rate. Supersonic flow behavior in the impeller inducer at the shroud blade to blade surface Φ des deserves additional study.

Keywords: Centrifugal compressor stage, supersonic impeller, inlet flow angle, loss coefficient, return channel, shock wave, vane diffuser.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 3162
358 The Effect of Sport Specific Exercises on the Visual Skills of Rugby Players

Authors: P.J. Du Toit, P. Janse Van Vuuren , S. Le Roux , E. Henning, M. Kleynhans, H.C. Terblanche, D. Crafford, C. Grobbelaar, P.S. Wood, C.C. Grant, L. Fletcher

Abstract:

Introduction: Visual performance is an important factor in sport excellence. Visual involvement in a sport varies according to environmental demands associated with that sport. These environmental demands are matched by a task specific motor response. The purpose of this study was to determine if sport specific exercises will improve the visual performance of male rugby players, in order to achieve maximal results on the sports field. Materials & Methods: Twenty six adult male rugby players, aged 16-22, were chosen as subjects. In order to evaluate the effect of sport specific exercises on visual skills, a pre-test - post-test experimental group design was adopted for the study. Results: Significant differences (p≤0.05) were seen in the focussing, tracking, vergence, sequencing, eye-hand coordination and visualisation components Discussion & Conclusions: Sport specific exercises improved visual skills in rugby players which may provide them with an advantage over their opponents. This study suggests that these training programs and participation in regular on-line EyeDrills sports vision exercises (www.eyedrills.co.za) aimed at improving the athlete-s visual coordination, concentration, focus, hand-eye co-ordination, anticipation and motor response should be incorpotated in the rugby players exercise regime.

Keywords: Rugby players, sport specific exercises, visual skills.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2219
357 An Efficient Tool for Mitigating Voltage Unbalance with Reactive Power Control of Distributed Grid-Connected Photovoltaic Systems

Authors: Malinwo Estone Ayikpa

Abstract:

With the rapid increase of grid-connected PV systems over the last decades, genuine challenges have arisen for engineers and professionals of energy field in the planning and operation of existing distribution networks with the integration of new generation sources. However, the conventional distribution network, in its design was not expected to receive other generation outside the main power supply. The tools generally used to analyze the networks become inefficient and cannot take into account all the constraints related to the operation of grid-connected PV systems. Some of these constraints are voltage control difficulty, reverse power flow, and especially voltage unbalance which could be due to the poor distribution of single-phase PV systems in the network. In order to analyze the impact of the connection of small and large number of PV systems to the distribution networks, this paper presents an efficient optimization tool that minimizes voltage unbalance in three-phase distribution networks with active and reactive power injections from the allocation of single-phase and three-phase PV plants. Reactive power can be generated or absorbed using the available capacity and the adjustable power factor of the inverter. Good reduction of voltage unbalance can be achieved by reactive power control of the PV systems. The presented tool is based on the three-phase current injection method and the PV systems are modeled via an equivalent circuit. The primal-dual interior point method is used to obtain the optimal operating points for the systems.

Keywords: Photovoltaic generation, primal-dual interior point method, three-phase optimal power flow, unbalanced system.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1058
356 Reversible Binary Arithmetic for Integrated Circuit Design

Authors: D. Krishnaveni, M. Geetha Priya

Abstract:

Application of reversible logic in integrated circuits results in the improved optimization of power consumption. This technology can be put into use in a variety of low power applications such as quantum computing, optical computing, nano-technology, and Complementary Metal Oxide Semiconductor (CMOS) Very Large Scale Integrated (VLSI) design etc. Logic gates are the basic building blocks in the design of any logic network and thus integrated circuits. In this paper, reversible Dual Key Gate (DKG) and Dual key Gate Pair (DKGP) gates that work singly as full adder/full subtractor are used to realize the basic building blocks of logic circuits. Reversible full adder/subtractor and parallel adder/ subtractor are designed using other reversible gates available in the literature and compared with that of DKG & DKGP gates. Efficient performance of reversible logic circuits relies on the optimization of the key parameters viz number of constant inputs, garbage outputs and number of reversible gates. The full adder/subtractor and parallel adder/subtractor design with reversible DKGP and DKG gates results in least number of constant inputs, garbage outputs, and number of reversible gates compared to the other designs. Thus, this paper provides a threshold to build more complex arithmetic systems using these reversible logic gates, leading to the enhanced performance of computing systems.

Keywords: Low power CMOS, quantum computing, reversible logic gates, full adder, full subtractor, parallel adder/subtractor, basic gates, universal gates.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1393