Two New Collineations of some Moufang-Klingenberg Planes

Atilla Akpinar and Basri Çelik

Abstract—In this paper we are interested in Moufang-Klingenberg planes $\mathbf{M}(\mathcal{A})$ defined over a local alternative ring \mathcal{A} of dual numbers. We introduce two new collineations of $\mathbf{M}(\mathcal{A})$.

Keywords—Moufang-Klingenberg planes, local alternative ring, projective collineation.

I. Introduction

The number of collineations of any projective plane is huge. For example; the Fano plane has 168 collineations, the non-Desarguesian projective Veblen-Wedderburn plane of order 9 (which is denoted by $\pi_N(9)$) has 311,040 collineations [8, p. 366]. It is easy to see that the composite of any two collineations is a collineation, as the invers of any collineation. Function composition is always associative; thus the collineations of any projective or affine plane form a group. For more detailed information about these groups, the reader is referred to the books of [5], [8].

In this paper we deal with the class (which we will denote by $\mathbf{M}(\mathcal{A})$) of Moufang-Klingenberg (MK) planes coordinatized by a local alternative ring $\mathcal{A}:=\mathbf{A}\left(\varepsilon\right)=\mathbf{A}+\mathbf{A}\varepsilon$ (an alternative field $\mathbf{A},\,\varepsilon\notin\mathbf{A}$ and $\varepsilon^2=0$) introduced by Blunck in [3]. We will introduce two collineations of $\mathbf{M}(\mathcal{A})$, different from the collineations given in [4].

The paper is organized as follows. Section 2 includes some basic definitions and results from the literature. In Section 3 we will give two transformations of M(A) and show that the transformations are collineations M(A).

II. PRELIMINARIES

Let $\mathbf{M}=(\mathbf{P},\mathbf{L},\in,\sim)$ consist of an incidence structure $(\mathbf{P},\mathbf{L},\in)$ (points, lines, incidence) and an equivalence relation ' \sim ' (neighbour relation) on \mathbf{P} and on \mathbf{L} , respectively. Then \mathbf{M} is called a *projective Klingenberg plane* (PK-plane), if it satisfies the following axioms:

(PK1) If P,Q are non-neighbour points, then there is a unique line PQ through P and Q.

(PK2) If g, h are non-neighbour lines, then there is a unique point $g \cap h$ on both g and h.

(PK3) There is a projective plane $\mathbf{M}^* = (\mathbf{P}^*, \mathbf{L}^*, \in)$ and an incidence structure epimorphism $\Psi : \mathbf{M} \to \mathbf{M}^*$, such that the conditions

$$\Psi(P) = \Psi(Q) \Leftrightarrow P \sim Q, \ \Psi(g) = \Psi(h) \Leftrightarrow g \sim h$$

hold for all $P, Q \in \mathbf{P}, g, h \in \mathbf{L}$.

Atilla Akpinar and Basri Çelik are with the Uludag University, Department of Mathematics, Faculty of Science, Bursa-TURKEY, emails: aakpinar@uludag.edu.tr, basri@uludag.edu.tr

A point $P \in \mathbf{P}$ is called *near* a line $g \in \mathbf{L}$ iff there exists a line $h \sim g$ such that $P \in h$.

An incidence structure automorphism preserving and reflecting the neighbour relation is called a *collineation* of M.

A Moufang-Klingenberg plane (MK-plane) is a PK-plane M that generalizes a Moufang plane, and for which M^* is a Moufang plane (for the exact definition see [1]).

An alternative ring (field) \mathbf{R} is a not necessarily associative ring (field) that satisfies the alternative laws

$$a(ab) = a^2b$$
, $(ba) a = ba^2$, $\forall a, b \in \mathbf{R}$.

An alternative ring \mathbf{R} with identity element 1 is called *local* if the set \mathbf{I} of its non-unit elements is an ideal.

We are now ready to give consecutively two important lemmas related to alternative rings.

Lemma 2.1: The subring generated by any two elements of an alternative ring is associative (cf. [7, Theorem 3.1]).

Lemma 2.2: The identities

$$x (y (xz)) = (xyx) z$$
$$((yx) z) x = y (xzx)$$
$$(xy) (zx) = x (yz) x$$

which are known as Moufang identities are satisfied in every alternative ring (cf. [6, p. 160]).

We summarize some basic concepts about the coordinatization of MK-planes from [1].

Let \mathbf{R} be a local alternative ring. Then $\mathbf{M}(\mathbf{R}) = (\mathbf{P}, \mathbf{L}, \in$, \sim) is the incidence structure with neighbour relation defined as follows:

$$\begin{array}{rcl} \mathbf{P} &=& \{(x,y,1): \ x,y \in \mathbf{R}\} \\ && \cup \{(1,y,z): \ y \in \mathbf{R}, \ z \in \mathbf{I}\}, \\ && \cup \{(w,1,z): w,z \in \mathbf{I}\}, \\ \mathbf{L} &=& \{[m,1,p]: \ m,p \in \mathbf{R}\}, \\ && \cup \{[1,n,p]: \ p \in \mathbf{R}, \ n \in \mathbf{I}\}, \\ && \cup \{[q,n,1]: q,n \in \mathbf{I}\}, \\ [m,1,p] &=& \{(x,xm+p,1): x \in \mathbf{R}\}, \\ && \cup \{(1,zp+m,z): z \in \mathbf{I}\}, \\ [1,n,p] &=& \{(yn+p,y,1): y \in \mathbf{R}\}, \\ && \cup \{(zp+n,1,z): z \in \mathbf{I}\}, \\ [q,n,1] &=& \{(1,y,yn+q): y \in \mathbf{R}\}, \\ && \cup \{(w,1,wq+n): w \in \mathbf{I}\}, \end{array}$$

and

$$P = (x_1, x_2, x_3) \sim (y_1, y_2, y_3) = Q \Leftrightarrow x_i - y_i \in \mathbf{I} \ (i = 1, 2, 3) \ , \forall P, Q \in \mathbf{P}; g = [x_1, x_2, x_3] \sim [y_1, y_2, y_3] = h \Leftrightarrow x_i - y_i \in \mathbf{I} \ (i = 1, 2, 3) \ , \forall g, h \in \mathbf{L}.$$

Now it is time to give the following theorem from [1].

Theorem 2.1: $\mathbf{M}(\mathbf{R})$ is an MK-plane, and each MK-plane is isomorphic to some $\mathbf{M}(\mathbf{R})$.

Let **A** be an alternative field and $\varepsilon \notin \mathbf{A}$. Consider $\mathcal{A} := \mathbf{A}(\varepsilon) = \mathbf{A} + \mathbf{A}\varepsilon$ with componentwise addition and multiplication as follows:

$$(a_1 + a_2\varepsilon)(b_1 + b_2\varepsilon) = a_1b_1 + (a_1b_2 + a_2b_1)\varepsilon,$$

where $a_i, b_i \in \mathbf{A}$, i = 1, 2. Then \mathcal{A} is a local alternative ring with ideal $\mathbf{I} = \mathbf{A}\varepsilon$ of non-units. The set of formal inverses of the non-units of \mathcal{A} is denoted as \mathbf{I}^{-1} . Calculations with the elements of \mathbf{I}^{-1} are defined as follows [2]:

$$(a\varepsilon)^{-1} + t : = (a\varepsilon)^{-1} := t + (a\varepsilon)^{-1},$$

$$q(a\varepsilon)^{-1} : = (aq^{-1}\varepsilon)^{-1},$$

$$(a\varepsilon)^{-1}q : = (q^{-1}a\varepsilon)^{-1},$$

$$((a\varepsilon)^{-1})^{-1} : = a\varepsilon,$$

where $(a\varepsilon)^{-1} \in \mathbf{I}^{-1}$, $t \in \mathcal{A}$, $q \in \mathcal{A} \setminus \mathbf{I}$. (Other terms are not defined.). For more information about \mathcal{A} and its relation to MK-planes, the reader is referred to the papers of Blunck [2], [3]. In [3], the centre $\mathbf{Z}(\mathcal{A})$ is defined to be the (commutative, associative) subring of \mathcal{A} which is commuting and associating with all elements of \mathcal{A} . It is $\mathbf{Z}(\mathcal{A}) := \mathbf{Z}(\varepsilon) = \mathbf{Z} + \mathbf{Z}\varepsilon$ where $\mathbf{Z} = \{z \in \mathbf{A} : za = az, \forall a \in \mathbf{A}\}$ is the centre of \mathbf{A} . If \mathbf{A} is not associative, then \mathbf{A} is a Cayley division algebra over its centre \mathbf{Z} . Throughout this paper we assume $char\mathbf{A} \neq \mathbf{2}$ and we restrict ourselves to the MK-planes $\mathbf{M}(\mathcal{A})$. In the next section, we will introduce two collineations of $\mathbf{M}(\mathcal{A})$.

III. Two Collineations of $\mathbf{M}(\mathcal{A})$

In this section we will give two transformations. We will show that these are collineations of M(A).

Now we start with giving the transformations, where $w, z, q, n \in \mathbf{A}$: For any $s \notin \mathbf{I}$, the map \mathbf{J}_s transforms points and lines as follows:

$$\begin{aligned} &(x,y,1) \to \left(ys^{-1},xs,1\right), \\ &(1,y,z\varepsilon) \to \left(1,sy^{-1}s,s(y^{-1}z)\right) \ if \quad y \notin \mathbf{I}, \\ &(1,y,z\varepsilon) \to \left(s^{-1}ys^{-1},1,s^{-1}z\right) \ if \ y \in \mathbf{I}, \\ &(w\varepsilon,1,z\varepsilon) \to (1,sws,sz) \end{aligned}$$

and

$$\begin{split} [m,1,k] &\to \left[sm^{-1}s,1,-\left(km^{-1}\right)s\right] \ if \ m \notin \mathbf{I}, \\ [m,1,k] &\to \left[1,s^{-1}ms^{-1},ks^{-1}\right] \ if \ m \in \mathbf{I}, \\ [1,n\varepsilon,p] &\to \left[sns,1,ps\right], \\ [q\varepsilon,n\varepsilon,1] &\to \left[sn,s^{-1}q,1\right]. \end{split}$$

For any $s \notin \mathbf{I}$, the map \mathbf{H}_s transforms points and lines as follows:

$$\begin{split} &(x,y,1) \rightarrow \left(s\left((y+s)^{-1}\,x\right), \left(s\left(y+s\right)^{-1}\right)y,1\right) \\ &if \quad y+s \not\in \mathbf{I}, \\ &(x,y,1) \rightarrow \left(1,x^{-1}y, \left(x^{-1}\left(y+s\right)\right)s^{-1}\right) \\ &if \quad y+s \in \mathbf{I} \land x \not\in \mathbf{I}, \\ &(x,y,1) \rightarrow \left(y^{-1}x,1,y^{-1}\left((y+s)\,s^{-1}\right)\right) \\ &if \quad y+s \in \mathbf{I} \land x \in \mathbf{I}, \\ &(1,y,z\varepsilon) \rightarrow \left(s\left(y+zs\right)^{-1}, \left(s\left(y+zs\right)^{-1}\right)y,1\right) \\ &if \quad y \not\in \mathbf{I}, \\ &(1,y,z\varepsilon) \rightarrow \left(1,y,z+ys^{-1}\right) \\ &if \quad y \in \mathbf{I}, \\ &(w\varepsilon,1,z\varepsilon) \rightarrow \left(\left(s\left(1+zs\right)^{-1}\right)w,s\left(1+zs\right)^{-1},1\right) \end{split}$$

an

$$[m,1,k] \rightarrow \left[\begin{array}{c} m - \left(ms^{-1}\right) \left(\left(s\left(s+k\right)^{-1}\right) k \right), \\ 1, \left(s\left(s+k\right)^{-1}\right) k \end{array} \right]$$

$$if \quad s+k \notin \mathbf{I},$$

$$[m,1,k] \rightarrow \left[1,s^{-1}\left(\left(s+k\right)m^{-1}\right),-km^{-1}\right]$$

$$if \quad s+k \in \mathbf{I} \land m \notin \mathbf{I},$$

$$[m,1,k] \rightarrow \left[-mk^{-1},k^{-1}\left(\left(s+k\right)s^{-1}\right),1\right]$$

$$if \quad s+k \in \mathbf{I} \land m \in \mathbf{I},$$

$$[1,n\varepsilon,p] \rightarrow \left[\left(sn-p\right)^{-1}s,1,-p\left(\left(sn-p\right)^{-1}s\right)\right]$$

$$if \quad p \notin \mathbf{I},$$

$$[1,n\varepsilon,p] \rightarrow \left[1,n-s^{-1}p,p\right]$$

$$if \quad p \in \mathbf{I},$$

$$[q\varepsilon,n\varepsilon,1] \rightarrow \left[-q\left(s\left(1+ns\right)^{-1}\right),1,s\left(1+ns\right)^{-1}\right].$$

Now we are ready to give the main result of the paper.

Theorem 3.1: The transformations J_s and H_s , defined above, are collineations of M(A).

Proof: The proof can be done by direct computation with using Moufang identities and properties of the local alternative rings (cf [1]). We will only show that J_s preserves the incidence relation (i.e. $P \in l \Leftrightarrow J_s(P) \in J_s(l)$) and the neighbour relation (i.e. $P \sim Q \Leftrightarrow J_s(P) \sim J_s(Q)$ and $g \sim h \Leftrightarrow J_s(g) \sim J_s(h)$).

Case 1. Let
$$P=(x,y,1)$$
. Then $J_s(P)=\left(ys^{-1},xs,1\right)$.
1.1. Let $l=[m,1,k]$.

1.1.1. If $m\in \mathbf{I}$, then since $J_s(P)=(ys^{-1},xs,1)$ and $J_s(l)=[1,s^{-1}ms^{-1},ks^{-1}]$, we have $J_s(P)\in J_s(l)\Leftrightarrow ys^{-1}=(xs)\left(s^{-1}ms^{-1}\right)+ks^{-s}$. By Lemma 2.1 and 2.2, we

and $J_s(l) = [1, s^{-1}ms^{-1}, ks^{-1}]$, we have $J_s(P) \in J_s(l) \Leftrightarrow ys^{-1} = (xs)\left(s^{-1}ms^{-1}\right) + ks^{-s}$. By Lemma 2.1 and 2.2, we get $J_s(P) \in J_s(l) \Leftrightarrow ys^{-1} = \left((xss^{-1})m\right)s^{-1} + ks^{-1} = (xm)s^{-1} + ks^{-1}$ and multiplying by s on the right, we find $y = xm + k \Leftrightarrow P \in l$.

1.1.2. If $m \notin \mathbf{I}$, then since $\mathbf{J}_s(P) = (ys^{-1}, xs, 1)$ and $\mathbf{J}_s(l) = [sm^{-1}s, 1, -(km^{-1})s]$, we have $\mathbf{J}_s(P) \in \mathbf{J}_s(l) \Leftrightarrow xs = (ys^{-1}) \left(sm^{-1}s\right) + -\left(km^{-1}\right)s$. Again by Lemma 2.1 and 2.2, we get $\mathbf{J}_s(P) \in \mathbf{J}_s(l) \Leftrightarrow xs = \left(\left(ys^{-1}s\right)m^{-1}\right)s + \left(\frac{sm^{-1}s}{sm^{-1}s}\right) + \frac{sm^{-1}s}{sm^{-1}s}$

 $-\left(km^{-1}\right)s=\left(ym^{-1}\right)s-\left(km^{-1}\right)s$ and multiplying by s^{-1} on the right, we obtain $\mathbf{J}_s(P)\in\mathbf{J}_s(l)\Leftrightarrow x=ym^{-1}-km^{-1}.$ Finally, by multiplying both sides on the right by $m,\ y=xm+k\Leftrightarrow P\in l.$

1.2. Let $l = [1, n\varepsilon, p]$ where $n \in \mathbf{A}$. Then since $\mathbf{J}_s(P) = (ys^{-1}, xs, 1)$ and $\mathbf{J}_s(l) = [sns, 1, ps]$, we have $\mathbf{J}_s(P) \in \mathbf{J}_s(l) \Leftrightarrow xs = (ys^{-1})(sns) + ps \Leftrightarrow xs = (ys^{-1}s) n + ps \Leftrightarrow x = yn + p \Leftrightarrow P \in l$.

1.3. Let $l = [q\varepsilon, n\varepsilon, 1]$ where $q, n \in \mathbf{A}$. In this case $P \notin l$. Since $\mathbf{J}_s(P) = (ys^{-1}, xs, 1)$ and $\mathbf{J}_s(l) = [sn, s^{-1}q, 1]$ then $\mathbf{J}_s(P) \notin \mathbf{J}_s(l)$. So, $P \notin l \Leftrightarrow \mathbf{J}_s(P) \notin \mathbf{J}_s(l)$.

Case 2. Let $P = (1, y, z\varepsilon)$ where $z \in A$.

2.1. Let l = [m, 1, k].

2.1.1. If $m \in \mathbf{I}$ and $y \in \mathbf{I}$ then since $\mathbf{J}_s(P) = \left(s^{-1}ys^{-1}, 1, s^{-1}z\right)$ and $\mathbf{J}_s(l) = \left[1, s^{-1}ms^{-1}, ks^{-1}\right]$. In this case, we have $\mathbf{J}_s(P) \in \mathbf{J}_s(l) \Leftrightarrow s^{-1}ys^{-1} = s^{-1}ms^{-1} + \left(s^{-1}z\right)\left(ks^{-1}\right)$. By Lemma 2.1, we obtain $\mathbf{J}_s(P) \in \mathbf{J}_s(l) \Leftrightarrow s^{-1}ys^{-1} = s^{-1}ms^{-1} + s^{-1}(zk)s^{-1}$. By multiplying both sides on the right and left by s we find $\mathbf{J}_s(P) \in \mathbf{J}_s(l) \Leftrightarrow y = m + zk$ and so $\mathbf{J}_s(P) \in \mathbf{J}_s(l) \Leftrightarrow P \in l$.

2.1.2. If $m \in \mathbf{I}$ and $y \notin \mathbf{I}$ then $y = m + zk \in \mathbf{I}$, which is a contradiction. That is, $P \notin l$. Also as a direct consequence of the coordinatization of $\mathbf{M}(\mathcal{A})$, $\mathbf{J}_s(P) \notin \mathbf{J}_s(l)$.

2.1.3. If $m \notin \mathbf{I}$ and $y \in \mathbf{I}$ then $y - zk = m \in \mathbf{I}$, which is a contradiction. That is, $P \notin l$. Also as a direct consequence of the coordinatization of $\mathbf{M}(\mathcal{A})$, $\mathbf{J}_s(P) \notin \mathbf{J}_s(l)$.

2.1.4. If $m \notin \mathbf{I}$ and $y \notin \mathbf{I}$ then since $\mathbf{J}_s(P) = (1, sy^{-1}s, s(y^{-1}z))$ and $\mathbf{J}_s(l) = [sm^{-1}s, 1, -(km^{-1})s]$. In this case, we have $P \in l \Rightarrow y = m + zk$. where $y^{-1} = m^{-1} - m^{-1}(zk)m^{-1}$. By Lemma 2.2, we get $y^{-1} = m^{-1} - (m^{-1}z)(km^{-1})$. Note that $m^{-1}z = y^{-1}z$ where $z \in \mathbf{I}$. So, $y^{-1} = m^{-1} - (y^{-1}z)(km^{-1})$. By multiplying both sides on the right and left by s, we find $sy^{-1}s = sm^{-1}s - s((y^{-1}z))((km^{-1}))s$. By Lemma 2.2, we obtain $sy^{-1}s = sm^{-1}s - (s(y^{-1}z))((km^{-1})s)$ which means that $\mathbf{J}_s(P) \in \mathbf{J}_s(l)$. Conversely, let $\mathbf{J}_s(P) \in \mathbf{J}_s(l) \Rightarrow sy^{-1}s = sm^{-1}s - (s(y^{-1}z))((km^{-1})s)$. Since $m \notin \mathbf{I}$ and $y \notin \mathbf{I}$, there exists $m_1, m_2, y_1, y_2 \in \mathbf{A}$ such that $m_1 \neq 0 \neq y_1$ and $m = m_1 + m_2\varepsilon$, $y = y_1 + y_2\varepsilon$. Then using the inverses $m^{-1} = m_1^{-1} - m_1^{-1}m_2m_1^{-1}\varepsilon$ and $y^{-1} = y_1^{-1} - y_1^{-1}y_2y_1^{-1}\varepsilon$ of m and y, respectively;

$$\begin{array}{ccc} \left(1,sy^{-1}s,s(y^{-1}z)\right) & \in & \left[sm^{-1}s,1,-\left(km^{-1}\right)s\right] \\ & \Leftrightarrow & \left\{ \begin{array}{c} y_1^{-1} = m_1^{-1} \Leftrightarrow y_1 = m_1 \\ y_1^{-1}y_2y_1^{-1} = m_1^{-1}m_2m_1^{-1} \\ + \left(y_1^{-1}z\right)\left(k_1m_1^{-1}\right) \end{array} \right. \end{array}$$

(in which k has the form $k_1 + k_2\varepsilon$ where $k_1, k_2 \in \mathbf{A}$) and so the solution of this equation system is

$$y_1^{-1}y_2y_1^{-1} = y_1^{-1}m_2y_1^{-1} + (y_1^{-1}z)(k_1y_1^{-1}).$$

Since all terms of this equation are elements of Cayley division ring A, Moufang identities are valid. Therefore,

$$\begin{array}{rcl} y_1^{-1} y_2 y_1^{-1} & = & y_1^{-1} m_2 y_1^{-1} + y_1^{-1} \left(z k_1 \right) y_1^{-1} \\ & = & y_1^{-1} \left(m_2 + z k_1 \right) y_1^{-1} \\ & = & y_1^{-1} \left(\left(m_2 + z k_1 \right) y_1^{-1} \right) \end{array}$$

is obtained. Then we have

$$y_1^{-1}y_2y_1^{-1} = y_1^{-1}\left(\left(m_2 + zk_1\right)y_1^{-1}\right) \Leftrightarrow y_2 = m_2 + zk_1$$

from Lemma 2.1. Finally we have $y_1=m_1$ and $y_2=m_2+zk_1$ which means that $P\in l$.

2.2. Let $l=[1,n\varepsilon,p]$ where $n\in \mathbf{A}.$ In this case, $\mathbf{J}_s(l)=[sns,1,ps]$ and $P\notin l.$

2.2.1. If $y \in \mathbf{I}$, then $J_s\left(P\right) = \left(s^{-1}ys^{-1}, 1, s^{-1}z\right)$. Also as a direct consequence of the coordinatization of $\mathbf{M}(\mathcal{A})$, $J_s\left(P\right) \notin J_s\left(l\right)$.

2.2.2. If $y \notin \mathbf{I}$, then $J_s(P) = (1, sy^{-1}s, s(y^{-1}z))$. In this case we have $J_s(P) \in J_s(l) \Leftrightarrow sy^{-1}s = sns + (s(y^{-1}z))(ps)$. By Lemma 2.2, $J_s(P) \in J_s(l) \Leftrightarrow sy^{-1}s = sns + s((y^{-1}z)p)s$. By multiplying both sides on the right and left by s^{-1} , we find $J_s(P) \in J_s(l) \Leftrightarrow y^{-1} = n + (y^{-1}z)p \in \mathbf{I}$ which contradicts with our hypothesis $y \notin \mathbf{I}$. That is, $J_s(P) \notin J_s(l)$.

2.3. Let $l=[q\varepsilon,n\varepsilon,1]$ where $q,n\in \mathbf{A}.$ In this case, $\mathbf{J}_s\left(l\right)=\left[sn,s^{-1}q,1\right].$

2.3.1. If $y \in I$, then $J_s(P) = (s^{-1}ys^{-1}, 1, s^{-1}z)$. So we have $J_s(P) \in J_s(l) \Leftrightarrow s^{-1}z = (s^{-1}ys^{-1})(sn) + s^{-1}q$. By Lemma 2.1 and 2.2, we get $J_s(P) \in J_s(l) \Leftrightarrow s^{-1}z = s^{-1}(y(s^{-1}sn)) + s^{-1}q$. By multiplying both sides on the left by s, we find $J_s(P) \in J_s(l) \Leftrightarrow z = yn + q$. So, $J_s(P) \in J_s(l) \Leftrightarrow P \in l$.

2.3.2. If $y \notin \mathbf{I}$, then $\mathbf{J}_s(P) = (1, sy^{-1}s, s(y^{-1}z))$. In his case, we have $J_s(P) \in J_s(l) \Leftrightarrow s(y^{-1}z) = sn + (sy^{-1}s) (s^{-1}q)$. By Lemma 2.1 and 2.2, we get $J_s(P) \in J_s(l) \Leftrightarrow s(y^{-1}z) = sn + s (y^{-1}(ss^{-1}q))$. By multiplying both sides on the left by s, we find $J_s(P) \in J_s(l) \Leftrightarrow y^{-1}z = n + y^{-1}q$. By multiplying both sides on the left by y, we obtain $J_s(P) \in J_s(l) \Leftrightarrow z = yn + q$. So, we get $J_s(P) \in J_s(l) \Leftrightarrow P \in l$.

Case 3. Let $P=(w\varepsilon,1,z\varepsilon)$ where $w,z\in \mathbf{A}$. Then $\mathbf{J}_s\left(P\right)=(1,sws,sz)$.

3.1. Let l=[m,1,k]. Then from the coordinatization of $\mathbf{M}(\mathcal{A})$ we obviously have $P\notin l.$

3.1.1. If $m \in \mathbf{I}$, then $J_s(l) = [1, s^{-1}ms^{-1}, ks^{-1}]$. Also as a direct consequence of the coordinatization of $\mathbf{M}(\mathcal{A})$, $\mathbf{J}_s\left(P\right) \notin \mathbf{J}_s\left(l\right)$.

3.1.2. If $m \notin \mathbf{I}$, then $J_s(l) = [sm^{-1}s, 1, -(km^{-1})s]$. In this case, we have $J_s(P) \in J_s(l) \Leftrightarrow sws = sm^{-1}s - (sz)\left(\left(km^{-1}\right)s\right)$. By Lemma 2.2, we get $J_s(P) \in J_s(l) \Leftrightarrow sws = sm^{-1}s - s\left(z\left(km^{-1}\right)\right)s$. By multiplying both sides on the right and left by s^{-1} , we find $J_s(P) \in J_s(l) \Leftrightarrow w = m^{-1} - z\left(km^{-1}\right)$. So, we obtain $J_s(P) \in J_s(l) \Leftrightarrow m^{-1} = w + z\left(km^{-1}\right) \in \mathbf{I}$ which contradicts with our hypothesis $m \notin \mathbf{I}$. That is, $J_s(P) \notin J_s(l)$.

3.2. Let $l=[1,n\varepsilon,p]$ where $n\in \mathbf{A}$. Then $J_s(P)=[sns,1,ps]$. In this case, $J_s(P)\in J_s(l)\Leftrightarrow sws=sns+(sz)(ps)$. By Lemma 2.2, we have $J_s(P)\in J_s(l)\Leftrightarrow sws=sns+s(zp)s$. By multiplying both sides on the right and left by s^{-1} , we obtain $J_s(P)\in J_s(l)\Leftrightarrow w=n+zp$ which means that $P\in l$.

3.3. Let $l=[q\varepsilon,n\varepsilon,1]$ where $q,n\in \mathbf{A}$. Then $J_s(l)=[sn,s^{-1}q,1]$. In this case we have $J_s(P)\in J_s(l)\Leftrightarrow sz=sn+(sws)\left(s^{-1}q\right)=sn+s\left(wq\right)$ by Lemma 2.1 and 2.2. By multiplying both sides on the left by s^{-1} , we find $J_s(P)\in J_s(l)\Leftrightarrow z=n+wq$ which means that $P\in l$.

Now, we will show that \mathbf{J}_s preserves the neighbour relation for the point and the lines by using properties of ideals. The case in which the most complicated computations arise is when $m,u\notin\mathbf{I}$ for the lines [m,1,k] and [u,1,v]. Therefore we give the proof for only this case. Then $\mathbf{J}_s\left([m,1,k]\right)=\left[sm^{-1}s,1,-\left(km^{-1}\right)s\right]$ and $\mathbf{J}_s\left([u,1,v]\right)=\left[su^{-1}s,1,-\left(vu^{-1}\right)s\right]$ and also

$$[sm^{-1}s, 1, -(km^{-1})s] \sim [su^{-1}s, 1, -(vu^{-1})s]$$

$$\Leftrightarrow m^{-1} - u^{-1} \in \mathbf{I} \wedge vu^{-1} - km^{-1} \in \mathbf{I}$$

$$\Leftrightarrow m_1^{-1} - u_1^{-1} = 0, \ v_1u_1^{-1} - k_1m_1^{-1} = 0$$

$$\Leftrightarrow m_1 = u_1, \ v_1 = k_1$$

$$\Leftrightarrow m_1 - u_1 = 0, \ v_1 - k_1 = 0$$

$$\Leftrightarrow m - u \in \mathbf{I} \wedge v - k \in \mathbf{I} \ (or \ k - v \in \mathbf{I})$$

$$\Leftrightarrow [m, 1, k] \sim [u, 1, v].$$

REFERENCES

- Baker C.A., Lane N.D., Lorimer J.W. A coordinatization for Moufang-Klingenberg planes. Simon Stevin 65(1991), 3–22.
- [2] Blunck A. Cross-ratios over local alternative rings. Res. Math. 19(1991), 246–256.
- [3] Blunck A. Cross-ratios in Moufang-Klingenberg planes. Geom. Dedicata 43(1992), 93–107.
- [4] Celik B., Akpinar A., Ciftci S. 4-Transitivity and 6-figures in some Moufang-Klingenberg planes. Monatshefte für Mathematik 152(2007), 283–294.
- [5] Hughes D.R, Piper F.C. *Projective planes*. Springer: New York (1973).
- [6] Pickert G. Projektive Ebenen. Springer: Berlin (1955).
- [7] Schafer R.D. An introduction to nonassociative algebras. Dover Publications, New York, (1995).
- [8] Stevenson F.W. Projective planes. W.H. Freeman Co.: San Francisco (1972).