Search results for: carbon dioxide storage.
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 1503

Search results for: carbon dioxide storage.

1023 Quality of Bali Beef and Broiler after Immersion in Liquid Smoke on Different Concentrations and Storage Times

Authors: E. Abustam, M. Yusuf, H. M. Ali, M. I. Said, F. N. Yuliati

Abstract:

The aim of this study was to improve the durability and quality of Bali beef (M. Longissimus dorsi) and broiler carcass through the addition of liquid smoke as a natural preservative. This study was using Longissimus dorsi muscle from male Bali beef aged 3 years, broiler breast and thigh aged 40 days. Three types of meat were marinated in liquid smoke with concentrations of 0, 5, and 10% for 30 minutes at the level of 20% of the sample weight (w/w). The samples were storage at 2-5°C for 1 month. This study designed as a factorial experiment 3 x 3 x 4 based on a completely randomized design with 5 replications; the first factor was meat type (beef, chicken breast and chicken thigh); the 2nd factor was liquid smoke concentrations (0, 5, and 10%), and the 3rd factor was storage duration (1, 2, 3, and 4 weeks). Parameters measured were TBA value, total bacterial colonies, water holding capacity (WHC), shear force value both before and after cooking (80°C – 15min.), and cooking loss. The results showed that the type of meat produced WHC, shear force value, cooking loss and TBA differed between the three types of meat. Higher concentration of liquid smoke, the WHC, shear force value, TBA, and total bacterial colonies were decreased; at a concentration of 10% of liquid smoke, the total bacterial colonies decreased by 57.3% from untreated with liquid smoke. Longer storage, the total bacterial colonies and WHC were increased, while the shear force value and cooking loss were decreased. It can be concluded that a 10% concentration of liquid smoke was able to maintain fat oxidation and bacterial growth in Bali beef and chicken breast and thigh.

Keywords: Bali beef, chicken meat, liquid smoke, meat quality.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1541
1022 An Experimentally Validated Thermo- Mechanical Finite Element Model for Friction Stir Welding in Carbon Steels

Authors: A. H. Kheireddine, A. A. Khalil, A. H. Ammouri, G. T. Kridli, R. F. Hamade

Abstract:

Solidification cracking and hydrogen cracking are some defects generated in the fusion welding of ultrahigh carbon steels. However, friction stir welding (FSW) of such steels, being a solid-state technique, has been demonstrated to alleviate such problems encountered in traditional welding. FSW include different process parameters that must be carefully defined prior processing. These parameters included but not restricted to: tool feed, tool RPM, tool geometry, tool tilt angle. These parameters form a key factor behind avoiding warm holes and voids behind the tool and in achieving a defect-free weld. More importantly, these parameters directly affect the microstructure of the weld and hence the final mechanical properties of weld. For that, 3D finite element (FE) thermo-mechanical model was developed using DEFORM 3D to simulate FSW of carbon steel. At points of interest in the joint, tracking is done for history of critical state variables such as temperature, stresses, and strain rates. Typical results found include the ability to simulate different weld zones. Simulations predictions were successfully compared to experimental FSW tests. It is believed that such a numerical model can be used to optimize FSW processing parameters to favor desirable defect free weld with better mechanical properties.

Keywords: Carbon Steels, DEFORM 3D, FEM, Friction stir welding.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2565
1021 Genetic Algorithm Optimization of the Economical, Ecological and Self-Consumption Impact of the Energy Production of a Single Building

Authors: Ludovic Favre, Thibaut M. Schafer, Jean-Luc Robyr, Elena-Lavinia Niederhäuser

Abstract:

This paper presents an optimization method based on genetic algorithm for the energy management inside buildings developed in the frame of the project Smart Living Lab (SLL) in Fribourg (Switzerland). This algorithm optimizes the interaction between renewable energy production, storage systems and energy consumers. In comparison with standard algorithms, the innovative aspect of this project is the extension of the smart regulation over three simultaneous criteria: the energy self-consumption, the decrease of greenhouse gas emissions and operating costs. The genetic algorithm approach was chosen due to the large quantity of optimization variables and the non-linearity of the optimization function. The optimization process includes also real time data of the building as well as weather forecast and users habits. This information is used by a physical model of the building energy resources to predict the future energy production and needs, to select the best energetic strategy, to combine production or storage of energy in order to guarantee the demand of electrical and thermal energy. The principle of operation of the algorithm as well as typical output example of the algorithm is presented.

Keywords: Building’s energy, control system, energy management, modelling, genetic optimization algorithm, renewable energy, greenhouse gases, energy storage.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 780
1020 Design Modification of Lap Joint of Fiber Metal Laminates (CARALL)

Authors: Shaher Bano, Samia Fida, Asif Israr

Abstract:

The synergistic effect of properties of metals and fibers reinforced laminates has diverted attention of the world towards use of robust composite materials known as fiber-metal laminates in many high performance applications. In this study, modification of an adhesively bonded joint as a single lap joint of carbon fibers based CARALL FML has done to increase interlaminar shear strength of the joint. The effect of different configurations of joint designs such as spews, stepped and modification in adhesive by addition of nano-fillers was studied. Both experimental and simulation results showed that modified joint design have superior properties as maximum force experienced stepped joint was 1.5 times more than the simple lap joint. Addition of carbon nano-tubes as nano-fillers in the adhesive joint increased the maximum force due to crack deflection mechanism.

Keywords: Adhesive joint, carbon reinforced aluminium laminate, CARALL, fiber metal laminates, spews.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1097
1019 Separation of Composites for Recycling: Measurement of Electrostatic Charge of Carbon and Glass Fiber Particles

Authors: J. Thirunavukkarasu, M. Poulet, T. Turner, S. Pickering

Abstract:

Composite waste from manufacturing can consist of different fiber materials, including blends of different fiber. Commercially, the recycling of composite waste is currently limited to carbon fiber waste and recycling glass fiber waste is currently not economically viable due to the low cost of virgin glass fiber and the reduced mechanical properties of the recovered fibers. For this reason, the recycling of hybrid fiber materials, where carbon fiber is blended with glass fibers, cannot be processed economically. Therefore, a separation method is required to remove the glass fiber materials during the recycling process. An electrostatic separation method is chosen for this work because of the significant difference between carbon and glass fiber electrical properties. In this study, an experimental rig has been developed to measure the electrostatic charge achievable as the materials are passed through a tube. A range of particle lengths (80-100 µm, 6 mm and 12 mm), surface state conditions (0%SA, 2%SA and 6%SA), and several tube wall materials have been studied. A polytetrafluoroethylene (PTFE) tube and recycled fiber without sizing agent were identified as the most suitable parameters for the electrical separation method. It was also found that shorter fiber lengths helped to encourage particle flow and attain higher charge values. These findings can be used to develop a separation process to enable the cost-effective recycling of hybrid fiber composite waste. 

Keywords: electrostatic charging, hybrid fiber composite, recycling, short fiber composites

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 659
1018 Wet Flue Gas Desulfurization Using a New O-Element Design Which Replaces the Venturi Scrubber

Authors: P. Lestinsky, D. Jecha, V. Brummer, P. Stehlik

Abstract:

Scrubbing by a liquid spraying is one of the most effective processes used for removal of fine particles and soluble gas pollutants (such as SO2, HCl, HF) from the flue gas. There are many configurations of scrubbers designed to provide contact between the liquid and gas stream for effectively capturing particles or soluble gas pollutants, such as spray plates, packed bed towers, jet scrubbers, cyclones, vortex and venturi scrubbers. The primary function of venturi scrubber is the capture of fine particles as well as HCl, HF or SO2 removal with effect of the flue gas temperature decrease before input to the absorption column. In this paper, sulfur dioxide (SO2) from flue gas was captured using new design replacing venturi scrubber (1st degree of wet scrubbing). The flue gas was prepared by the combustion of the carbon disulfide solution in toluene (1:1 vol.) in the flame in the reactor. Such prepared flue gas with temperature around 150°C was processed in designed laboratory O-element scrubber. Water was used as absorbent liquid. The efficiency of SO2 removal, pressure drop and temperature drop were measured on our experimental device. The dependence of these variables on liquid-gas ratio was observed. The average temperature drop was in the range from 150°C to 40°C. The pressure drop was increased with increasing of a liquid-gas ratio, but no too much as for the common venturi scrubber designs. The efficiency of SO2 removal was up to 70 %. The pressure drop of our new designed wet scrubber is similar to commonly used venturi scrubbers; nevertheless the influence of amount of the liquid on pressure drop is not so significant.

Keywords: Desulphurization, absorption, flue gas, modeling.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2885
1017 Longitudinal Shear Modulus of Single Aramid, Carbon and Glass Fibres by Torsion Pendulum Tests

Authors: I Prasanna Kumar, Satya Prakash Kushwaha, Preetamkumar Mohite, Sudhir Kamle

Abstract:

The longitudinal shear moduli of a single aramid, carbon and glass fibres are measured in the present study. A popularly known concept of freely oscillating torsion pendulum has been used to characterize the torsional modulus. A simple freely oscillating torsional pendulum setup is designed with two different types of plastic discs: horizontal and vertical, as the known mass of the pendulum. The time period of the torsional oscillation is measured to determine the torsional rigidity of the fibre. Then the shear modulus of the fibre is calculated from its torsional rigidity. The mean shear modulus of aramid, carbon and glass fibres  measured are 6.22±0.09, 18.5±0.91, 38.1±3.55 GPa by horizontal disc pendulum and 6.19±0.13, 18.1±1.34 and 39.5±1.83 GPa by vertical disc pendulum, respectively. The results obtained by both pendulums differed by less than 5% and agreed well with the results reported in literature for these three types of fibres. A detailed uncertainty calculations are carried out for the measurements. It is seen that scatter as well as uncertainty (or error) in the measured shear modulus of these fibres is less than 10%. For aramid fibres the effect of gauge length on the shear modulus value is also studied. It is verified that the scatter in measured shear modulus value increases with gauge length and scatter in fibre diameter.

Keywords: Aramid; Carbon; Glass fibres, Longitudinal shear modulus, Torsion pendulum.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 3759
1016 Optimization of Carbon Nanotube Content of Asphalt Nanocomposites with Regard to Resistance to Permanent Deformation

Authors: João V. Staub de Melo, Glicério Trichês, Liseane P. Thives

Abstract:

This paper presents the results of the development of asphalt nanocomposites containing carbon nanotubes (CNTs) with high resistance to permanent deformation, aiming to increase the performance of asphalt surfaces in relation to the rutting problem. Asphalt nanocomposites were prepared with the addition of different proportions of CNTs (1%, 2% and 3%) in relation to the weight of asphalt binder. The base binder used was a conventional binder (50-70 penetration) classified as PG 58-22. The optimum percentage of CNT addition in the asphalt binder (base) was determined through the evaluation of the rheological and empirical characteristics of the nanocomposites produced. In order to evaluate the contribution and the effects of the nanocomposite (optimized) in relation to the rutting, the conventional and nanomodified asphalt mixtures were tested in a French traffic simulator (Orniéreur). The results obtained demonstrate the efficient contribution of the asphalt nanocomposite containing CNTs to the resistance to permanent deformation of the asphalt mixture.

Keywords: Asphalt nanocomposites, asphalt mixtures, carbon nanotubes, nanotechnology, permanent deformation.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1482
1015 Integration of Unified Power Flow Controller with Backup Energy Supply System for Enhancing Power System Stability

Authors: K. Saravanan

Abstract:

An electrical power system has some negative aspects such as flickering and deviations of voltage/power. This can be eliminated using energy storage devices that will provide a backup energy at the time of voltage/power deviations. Energy-storage devices get charging when system voltage/power is higher than reference value and discharging when system voltage/power is lower than reference value, it is acting as catalysts to provide energy boost. In this paper, a dynamic control of Unified Power Flow Controller (UPFC) integrated with superconducting magnetic energy storage (SMES) is developed to improve the power quality, power oscillation damping, and dynamic voltage stability through the transmission line. UPFC inter-connected to SMES through an interface with DC-DC chopper. This inter-connected system is capable of injecting (absorbing) the real and reactive power into (from) the system at the beginning of stability problems. In this paper, the simulation results of UPFC integrated with SMES and UPFC integrated with fuel cells (FCs) are compared using MATLAB/Simulink software package.

Keywords: UPFC, SMES, power system stability, flexible ac transmission systems, fuel cells, chopper.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1388
1014 Electricity Generation from Renewables and Targets: An Application of Multivariate Statistical Techniques

Authors: Filiz Ersoz, Taner Ersoz, Tugrul Bayraktar

Abstract:

Renewable energy is referred to as "clean energy" and common popular support for the use of renewable energy (RE) is to provide electricity with zero carbon dioxide emissions. This study provides useful insight into the European Union (EU) RE, especially, into electricity generation obtained from renewables, and their targets. The objective of this study is to identify groups of European countries, using multivariate statistical analysis and selected indicators. The hierarchical clustering method is used to decide the number of clusters for EU countries. The conducted statistical hierarchical cluster analysis is based on the Ward’s clustering method and squared Euclidean distances. Hierarchical cluster analysis identified eight distinct clusters of European countries. Then, non-hierarchical clustering (k-means) method was applied. Discriminant analysis was used to determine the validity of the results with data normalized by Z score transformation. To explore the relationship between the selected indicators, correlation coefficients were computed. The results of the study reveal the current situation of RE in European Union Member States.

Keywords: Share of electricity generation, CO2 emission, targets, multivariate methods, hierarchical clustering, K-means clustering, discriminant analyzed, correlation, EU member countries.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1241
1013 Effects of Additives on Thermal Decompositions of Carbon Black/High Density Polyethylene Compounds

Authors: Orathai Pornsunthorntawee, Wareerom Polrut, Nopphawan Phonthammachai

Abstract:

In the present work, the effects of additives, including contents of the added antioxidants and type of the selected metallic stearates (either calcium stearate (CaSt) or zinc stearate (ZnSt)), on the thermal stabilities of carbon black (CB)/high density polyethylene (HDPE) compounds were studied. The results showed that the AO contents played a key role in the thermal stabilities of the CB/HDPE compounds — the higher the AO content, the higher the thermal stabilities. Although the CaSt-containing compounds were slightly superior to those with ZnSt in terms of the thermal stabilities, the remaining solid residue of CaSt after heated to the temperature of 600 °C (mainly calcium carbonate (CaCO3) as characterized by the X-ray diffraction (XRD) technique) seemed to catalyze the decomposition of CB in the HDPE-based compounds. Hence, the quantification of CB in the CaSt-containing compounds with a muffle furnace gave an inaccurate CB content — much lower than actual value. However, this phenomenon was negligible in the ZnSt-containing system.

Keywords: Antioxidant, Stearate, Carbon black, Polyethylene.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 3379
1012 Cloud Computing Databases: Latest Trends and Architectural Concepts

Authors: Tarandeep Singh, Parvinder S. Sandhu

Abstract:

The Economic factors are leading to the rise of infrastructures provides software and computing facilities as a service, known as cloud services or cloud computing. Cloud services can provide efficiencies for application providers, both by limiting up-front capital expenses, and by reducing the cost of ownership over time. Such services are made available in a data center, using shared commodity hardware for computation and storage. There is a varied set of cloud services available today, including application services (salesforce.com), storage services (Amazon S3), compute services (Google App Engine, Amazon EC2) and data services (Amazon SimpleDB, Microsoft SQL Server Data Services, Google-s Data store). These services represent a variety of reformations of data management architectures, and more are on the horizon.

Keywords: Data Management in Cloud, AWS, EC2, S3, SQS, TQG.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1978
1011 An Innovation and Development System for a New Hybrid Composite Technology in Aerospace Industry

Authors: M. Fette, J. P. Wulfsberg, A. Herrmann, R.-H. Ladstaetter

Abstract:

Lightweight design represents an important key to successful implementation of energy-saving, fuel-efficient and environmentally friendly means of transport in the aerospace and automotive industry. In this context the use of carbon fibre reinforced plastics (CFRP) which are distinguished by their outstanding mechanical properties at relatively low weight, promise significant improvements. Due to the reduction of the total mass, with the resulting lowered fuel or energy consumption and CO2 emissions during the operational phase, commercial aircraft will increasingly be made of CFRP. An auspicious technology for the efficient and economic production of high performance thermoset composites and hybrid structures for future lightweight applications is the combination of carbon fibre sheet moulding compound, tailored continuous carbon fibre reinforcements and metallic components in a one-shot pressing and curing process. This paper deals with a hybrid composite technology for aerospace industries, which was developed with the help of a special innovation and development system.

Keywords: Composite, development, hybrid, innovation, system.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2596
1010 Effect of Carbon-Free Fly Ash and Ground Granulated Blast-Furnace Slag on Compressive Strength of Mortar under Different Curing Conditions

Authors: Abdul Khaliq Amiri, Shigeyuki Date

Abstract:

This study investigates the effect of using carbon-free fly ash (CfFA) and ground granulated blast-furnace slag (GGBFS) on the compressive strength of mortar. The CfFA used in this investigation is high-quality fly ash and the carbon content is 1.0% or less. In this study, three types of blends with a 30% water-binder ratio (w/b) were prepared: control, binary and ternary blends. The Control blend contained only Ordinary Portland Cement (OPC), in binary and ternary blends OPC was partially replaced with CfFA and GGBFS at different substitution rates. Mortar specimens were cured for 1 day, 7 days and 28 days under two curing conditions: steam curing and water curing. The steam cured specimens were exposed to two different pre-curing times (1.5 h and 2.5 h) and one steam curing duration (6 h) at 45 °C. The test results showed that water cured specimens revealed higher compressive strength than steam cured specimens at later ages. An increase in CfFA and GGBFS contents caused a decrease in the compressive strength of mortar. Ternary mixes exhibited better compressive strength than binary mixes containing CfFA with the same replacement ratio of mineral admixtures.

Keywords: Carbon-free fly ash, compressive strength, ground granulated blast-furnace slag, steam curing, water curing.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 431
1009 The Effect of Nano-Silver Packaging on Quality Maintenance of Fresh Strawberry

Authors: Naser Valipour Motlagh, Majid Aliabadi, Elnaz Rahmani, Samira Ghorbanpour

Abstract:

Strawberry is one of the most favored fruits all along the world. But due to its vulnerability to microbial contamination and short life storage, there are lots of problems in industrial production and transportation of this fruit. Therefore, lots of ideas have tried to increase the storage life of strawberries especially through proper packaging. This paper works on efficient packaging as well. The primary material used is produced through simple mixing of low-density polyethylene (LDPE) and silver nanoparticles in different weight fractions of 0.5 and 1% in presence of dicumyl peroxide as a cross-linking agent. Final packages were made in a twin-screw extruder. Then, their effect on the quality maintenance of strawberry is evaluated. The SEM images of nano-silver packages show the distribution of silver nanoparticles in the packages. Total bacteria count, mold, yeast and E. coli are measured for microbial evaluation of all samples. Texture, color, appearance, odor, taste and total acceptance of various samples are evaluated by trained panelists and based on 9-point hedonic scale method. The results show a decrease in total bacteria count and mold in nano-silver packages compared to the samples packed in polyethylene packages for the same storage time. The optimum concentration of silver nanoparticles for the lowest bacteria count and mold is predicted to be around 0.5% which has attained the most acceptance from the panelist as well. Moreover, organoleptic properties of strawberry are preserved for a longer period in nano-silver packages. It can be concluded that using nano-silver particles in strawberry packages has improved the storage life and quality maintenance of the fruit.

Keywords: Antimicrobial properties, polyethylene, silver nanoparticles, strawberry.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1007
1008 From Individual Memory to Organizational Memory (Intelligence of Organizations)

Authors: A. Bencsik, 1V. Lıre, 2, I. Marosi

Abstract:

Intensive changes of environment and strong market competition have raised management of information and knowledge to the strategic level of companies. In a knowledge based economy only those organizations are capable of living which have up-to-date, special knowledge and they are able to exploit and develop it. Companies have to know what knowledge they have by taking a survey of organizational knowledge and they have to fix actual and additional knowledge in organizational memory. The question is how to identify, acquire, fix and use knowledge effectively. The paper will show that over and above the tools of information technology supporting acquisition, storage and use of information and organizational learning as well as knowledge coming into being as a result of it, fixing and storage of knowledge in the memory of a company play an important role in the intelligence of organizations and competitiveness of a company.

Keywords: Individual memory, organizational memory, knowledge management, organizational intelligence.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1637
1007 Nutritional Potential and Functionality of Whey Powder Influenced by Different Processing Temperature and Storage

Authors: Zarmina Gillani, Nuzhat Huma, Aysha Sameen, Mulazim Hussain Bukhari

Abstract:

Whey is an excellent food ingredient owing to its high nutritive value and its functional properties. However, composition of whey varies depending on composition of milk, processing conditions, processing method, and its whey protein content. The aim of this study was to prepare a whey powder from raw whey and to determine the influence of different processing temperatures (160 and 180 °C) on the physicochemical, functional properties during storage of 180 days and on whey protein denaturation. Results have shown that temperature significantly (P < 0.05) affects the pH, acidity, non-protein nitrogen (NPN), protein total soluble solids, fat and lactose contents. Significantly (p < 0.05) higher foaming capacity (FC), foam stability (FS), whey protein nitrogen index (WPNI), and a lower turbidity and solubility index (SI) were observed in whey powder processed at 160 °C compared to whey powder processed at 180 °C. During storage of 180 days, slow but progressive changes were noticed on the physicochemical and functional properties of whey powder. Reverse phase-HPLC analysis revealed a significant (P < 0.05) effect of temperature on whey protein contents. Denaturation of β-Lactoglobulin is followed by α-lacalbumin, casein glycomacropeptide (CMP/GMP), and bovine serum albumin (BSA).

Keywords: Whey powder, temperature, denaturation, reverse phase – HPLC.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1220
1006 Analysis of the CO2 Emissions of Public Passenger Transport in Tianjin City of China

Authors: Tao Zhao, Xianshuo Xu

Abstract:

Low-carbon public passenger transport is an important part of low carbon city. The CO2 emissions of public passenger transport in Tianjin from 1995 to 2010 are estimated with IPCC CO2 counting method, which shows that the total CO2 emissions of Tianjin public passenger transport have gradually become stable at 1,425.1 thousand tons. And then the CO2 emissions of the buses, taxies, and rail transits are calculated respectively. A CO2 emission of 829.9 thousand tons makes taxies become the largest CO2 emissions source among the public passenger transport in Tianjin. Combining with passenger volume, this paper analyzes the CO2 emissions proportion of the buses, taxies, and rail transits compare the passenger transport rate with the proportion of CO2 emissions, as well as the CO2 emissions change of per 10,000 people. The passenger volume proportion of bus among the three public means of transport is 72.62% which is much higher than its CO2 emissions proportion of 36.01%, with the minimum number of CO2 emissions per 10,000 people of 4.90 tons. The countermeasures to reduce CO2 emissions of public passenger transport in Tianjin are to develop rail transit, update vehicles and use alternative fuel vehicles.

Keywords: Public passenger transport, carbon emissions, countermeasures.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1053
1005 Behavior of Generated Gas in Lost Foam Casting

Authors: M. Khodai, S. M. H. Mirbagheri

Abstract:

In the Lost Foam Casting process, melting point temperature of metal, as well as volume and rate of the foam degradation have significant effect on the mold filling pattern. Therefore, gas generation capacity and gas gap length are two important parameters for modeling of mold filling time of the lost foam casting processes. In this paper, the gas gap length at the liquidfoam interface for a low melting point (aluminum) alloy and a high melting point (Carbon-steel) alloy are investigated by the photography technique. Results of the photography technique indicated, that the gas gap length and the mold filling time are increased with increased coating thickness and density of the foam. The Gas gap lengths measured in aluminum and Carbon-steel, depend on the foam density, and were approximately 4-5 and 25-60 mm, respectively. By using a new system, the gas generation capacity for the aluminum and steel was measured. The gas generation capacity measurements indicated that gas generation in the Aluminum and Carbon-steel lost foam casting was about 50 CC/g and 3200 CC/g polystyrene, respectively.

Keywords: gas gap, lost foam casting, photographytechnique.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 3496
1004 H2 Permeation Properties of a Catalytic Membrane Reactor in Methane Steam Reforming Reaction

Authors: M. Amanipour, J. Towfighi, E. Ganji Babakhani, M. Heidari

Abstract:

Cylindrical alumina microfiltration membrane (GMITM Corporation, inside diameter=9 mm, outside diameter=13 mm, length= 50 mm) with an average pore size of 0.5 micrometer and porosity of about 0.35 was used as the support for membrane reactor. This support was soaked in boehmite sols, and the mean particle size was adjusted in the range of 50 to 500 nm by carefully controlling hydrolysis time, and calcined at 650 °C for two hours. This process was repeated with different boehmite solutions in order to achieve an intermediate layer with an average pore size of about 50 nm. The resulting substrate was then coated with a thin and dense layer of silica by counter current chemical vapour deposition (CVD) method. A boehmite sol with 10 wt.% of nickel which was prepared by a standard procedure was used to make the catalytic layer. BET, SEM, and XRD analysis were used to characterize this layer. The catalytic membrane reactor was placed in an experimental setup to evaluate the permeation and hydrogen separation performance for a steam reforming reaction. The setup consisted of a tubular module in which the membrane was fixed, and the reforming reaction occurred at the inner side of the membrane. Methane stream, diluted with nitrogen, and deionized water with a steam to carbon (S/C) ratio of 3.0 entered the reactor after the reactor was heated up to 500 °C with a specified rate of 2 °C/ min and the catalytic layer was reduced at presence of hydrogen for 2.5 hours. Nitrogen flow was used as sweep gas through the outer side of the reactor. Any liquid produced was trapped and separated at reactor exit by a cold trap, and the produced gases were analyzed by an on-line gas chromatograph (Agilent 7890A) to measure total CH4 conversion and H2 permeation. BET analysis indicated uniform size distribution for catalyst with average pore size of 280 nm and average surface area of 275 m2.g-1. Single-component permeation tests were carried out for hydrogen, methane, and carbon dioxide at temperature range of 500-800 °C, and the results showed almost the same permeance and hydrogen selectivity values for hydrogen as the composite membrane without catalytic layer. Performance of the catalytic membrane was evaluated by applying membranes as a membrane reactor for methane steam reforming reaction at gas hourly space velocity (GHSV) of 10,000 h−1 and 2 bar. CH4 conversion increased from 50% to 85% with increasing reaction temperature from 600 °C to 750 °C, which is sufficiently above equilibrium curve at reaction conditions, but slightly lower than membrane reactor with packed nickel catalytic bed because of its higher surface area compared to the catalytic layer.

Keywords: Catalytic membrane, hydrogen, methane steam reforming, permeance.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 886
1003 Influence of Different Thicknesses on Mechanical and Corrosion Properties of α-C:H Films

Authors: S. Tunmee, P. Wongpanya, I. Toda, X. L. Zhou, Y. Nakaya, N. Konkhunthot, S. Arakawa, H. Saitoh

Abstract:

The hydrogenated amorphous carbon films (α-C:H) were deposited on p-type Si (100) substrates at different thicknesses by radio frequency plasma enhanced chemical vapor deposition technique (rf-PECVD). Raman spectra display asymmetric diamond-like carbon (DLC) peaks, representative of the α-C:H films. The decrease of intensity ID/IG ratios revealed the sp3 content arise at different thicknesses of the α-C:H films. In terms of mechanical properties, the high hardness and elastic modulus values showed the elastic and plastic deformation behaviors related to sp3 content in amorphous carbon films. Electrochemical properties showed that the α-C:H films exhibited excellent corrosion resistance in air-saturated 3.5 wt.% NaCl solution for pH 2 at room temperature. Thickness increasing affected the small sp2 clusters in matrix, restricting the velocity transfer and exchange of electrons. The deposited α-C:H films exhibited excellent mechanical properties and corrosion resistance.

Keywords: Thickness, Mechanical properties, Electrochemical corrosion properties, α-C:H film.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 5265
1002 Sensory, Microbiological and Chemical Assessment of Cod (Gadus morhua) Fillets during Chilled Storage as Influenced by Bleeding Methods

Authors: Minh Van Nguyen, Magnea Gudrun Karlsdottir, Adalheidur Olafsdottir, Arnljotur Bjarki Bergsson, Sigurjon Arason

Abstract:

The effects of seawater and slurry ice bleeding methods on the sensory, microbiological and chemical quality changes of cod fillets during chilled storage were examined in this study. The results from sensory evaluation showed that slurry ice bleeding method prolonged the shelf life of cod fillets up to 13-14 days compared to 10-11 days for fish bled in seawater. Slurry ice bleeding method also led to a slower microbial growth and biochemical developments, resulting lower total plate count (TPC), H2S-producing bacteria count, total volatile basic nitrogen (TVB-N), trimethylamine (TMA), free fatty acid (FFA) content and higher phospholipid content (PL) compared to those of samples bled in seawater. The results of principle component analysis revealed that TPC, H2S-producing bacteria, TVB-N, TMA and FFA were in significant correlation. They were also in negative correlation with sensory evaluation (Torry score), PL and water holding capacity (WHC).

Keywords: Bleeding method, chilled storage, microbial growth, sensory evaluation.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2977
1001 Characterization of Biodegradable Nanocomposites with Poly (Lactic Acid) and Multi-Walled Carbon Nanotubes

Authors: Md F. Mina, Mohammad D.H. Beg, Muhammad R. Islam, Abu K. M. M. Alam A. Nizam, Rosli M. Younus

Abstract:

In this study, structural, mechanical, thermal and electrical properties of poly (lactic acid) (PLA) nanocomposites with low-loaded (0-1.5 wt%) untreated, heat and nitric acid treated multiwalled carbon nanotubes (MWCNTs) were studied. Among the composites, untreated 0.5 wt % MWCNTs and acid-treated 1.0 wt% MWCNTs reinforced PLA show the tensile strength and modulus values higher than the others. These two samples along with pure PLA exhibit the stable orthorhombic α-form, whilst other samples reveal the less stable orthorhombic β-form, as demonstrated by X-ray diffraction study. Differential scanning calorimetry reveals the evolution of the mentioned different phases by controlled cooling and discloses an enhancement of PLA crystallization by nanotubes incorporation. Thermogravimetric analysis shows that the MWCNTs loaded sample degraded faster than PLA. Surface resistivity of the nanocomposites is found to be dropped drastically by a factor of 1013 with a low loading of MWCNTs (1.5 wt%).

Keywords: Crystallization, multi-walled carbon nanotubes, nanocomposites, Poly (lactic acid).

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2598
1000 Characterization of a Pure Diamond-Like Carbon Film Deposited by Nanosecond Pulsed Laser Deposition

Authors: Camilla G. Goncalves, Benedito Christ, Walter Miyakawa, Antonio J. Abdalla

Abstract:

This work aims to investigate the properties and microstructure of diamond-like carbon film deposited by pulsed laser deposition by ablation of a graphite target in a vacuum chamber on a steel substrate. The equipment was mounted to provide one laser beam. The target of high purity graphite and the steel substrate were polished. The mechanical and tribological properties of the film were characterized using Raman spectroscopy, nanoindentation test, scratch test, roughness profile, tribometer, optical microscopy and SEM images. It was concluded that the pulsed laser deposition (PLD) technique associated with the low-pressure chamber and a graphite target provides a good fraction of sp3 bonding, that the process variable as surface polishing and laser parameter have great influence in tribological properties and in adherence tests performance. The optical microscopy images are efficient to identify the metallurgical bond.

Keywords: Characterization, diamond-like carbon, DLC, mechanical properties, pulsed laser deposition.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 697
999 Simulation Study on the Indoor Thermal Comfort with Insulation on Interior Structural Components of Super High-Rise Residences

Authors: Y. Wang, H. Fukuda, A. Ozaki, H. Sato

Abstract:

In this study, we discussed the effects on the thermal comfort of super high-rise residences that how effected by the high thermal capacity structural components. We considered different building orientations, structures, and insulation methods. We used the dynamic simulation software THERB (simulation of the thermal environment of residential buildings). It can estimate the temperature, humidity, sensible temperature, and heating/cooling load for multiple buildings. In the past studies, we examined the impact of air-conditioning loads (hereinafter referred to as AC loads) on the interior structural parts and the AC-usage patterns of super-high-rise residences. Super-high-rise residences have more structural components such as pillars and beams than do ordinary apartment buildings. The skeleton is generally made of concrete and steel, which have high thermal-storage capacities. The thermal-storage capacity of super-high-rise residences is considered to have a larger impact on the AC load and thermal comfort than that of ordinary residences. We show that the AC load of super-high-rise units would be reduced by installing insulation on the surfaces of interior walls that are not usually insulated in Japan.

Keywords: High-rise Residences, AC Load, Thermal Comfort, Thermal Storage, Insulation Patterns

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1534
998 Novel CFRP Adhesive Joints and Structures for Offshore Application

Authors: M. R. Abusrea, Shiyi Jiang, Dingding Chen, Kazuo Arakawa

Abstract:

Novel wind-lens turbine designs can augment power output. Vacuum-Assisted Resin Transfer Molding (VARTM) is used to form large and complex structures from a Carbon Fiber Reinforced Polymer (CFRP) composite. Typically, wind-lens turbine structures are fabricated in segments, and then bonded to form the final structure. This paper introduces five new adhesive joints, divided into two groups: one is constructed between dry carbon and CFRP fabrics, and the other is constructed with two dry carbon fibers. All joints and CFRP fabrics were made in our laboratory using VARTM manufacturing techniques. Specimens were prepared for tensile testing to measure joint performance. The results showed that the second group of joints achieved a higher tensile strength than the first group. On the other hand, the tensile fracture behavior of the two groups showed the same pattern of crack originating near the joint ends followed by crack propagation until fracture.

Keywords: Adhesive joints, CFRP, VARTM, resin transfer molding.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1863
997 Automatic Generation Control of an Interconnected Power System with Capacitive Energy Storage

Authors: Rajesh Joseph Abraham, D. Das, Amit Patra

Abstract:

This paper is concerned with the application of small rating Capacitive Energy Storage units for the improvement of Automatic Generation Control of a multiunit multiarea power system. Generation Rate Constraints are also considered in the investigations. Integral Squared Error technique is used to obtain the optimal integral gain settings by minimizing a quadratic performance index. Simulation studies reveal that with CES units, the deviations in area frequencies and inter-area tie-power are considerably improved in terms of peak deviations and settling time as compared to that obtained without CES units.

Keywords: Automatic Generation Control, Capacitive EnergyStorage, Integral Squared Error.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2793
996 NSBS: Design of a Network Storage Backup System

Authors: Xinyan Zhang, Zhipeng Tan, Shan Fan

Abstract:

The first layer of defense against data loss is the backup data. This paper implements an agent-based network backup system used the backup, server-storage and server-backup agent these tripartite construction, and the snapshot and hierarchical index are used in the NSBS. It realizes the control command and data flow separation, balances the system load, thereby improving efficiency of the system backup and recovery. The test results show the agent-based network backup system can effectively improve the task-based concurrency, reasonably allocate network bandwidth, the system backup performance loss costs smaller and improves data recovery efficiency by 20%.

Keywords: Agent, network backup system, three architecture model, NSBS.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2220
995 Decontamination of Chromium Containing Ground Water by Adsorption Using Chemically Modified Activated Carbon Fabric

Authors: J. R. Mudakavi, K. Puttanna

Abstract:

Chromium in the environment is considered as one of the most toxic elements probably next only to mercury and arsenic. It is acutely toxic, mutagenic and carcinogenic in the environment. Chromium contamination of soil and underground water due to industrial activities is a very serious problem in several parts of India covering Karnataka, Tamil Nadu, Andhra Pradesh etc. Functionally modified Activated Carbon Fabrics (ACF) offer targeted chromium removal from drinking water and industrial effluents. Activated carbon fabric is a light weight adsorbing material with high surface area and low resistance to fluid flow. We have investigated surface modification of ACF using various acids in the laboratory through batch as well as through continuous flow column experiments with a view to develop the optimum conditions for chromium removal. Among the various acids investigated, phosphoric acid modified ACF gave best results with a removal efficiency of 95% under optimum conditions. Optimum pH was around 2 – 4 with 2 hours contact time. Continuous column experiments with an effective bed contact time (EBCT) of 5 minutes indicated that breakthrough occurred after 300 bed volumes. Adsorption data followed a Freundlich isotherm pattern. Nickel adsorbs preferentially and sulphate reduces chromium adsorption by 50%. The ACF could be regenerated up to 52.3% using 3 M NaOH under optimal conditions. The process is simple, economical, energy efficient and applicable to industrial effluents and drinking water.

Keywords: Activated carbon fabric, adsorption, drinking water, hexavalent chromium.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1038
994 Morphology Feature of Nanostructure Bainitic Steel after Tempering Treatment

Authors: C. Y. Chen, C. C. Chen, J. S. Lin

Abstract:

The microstructure characterization of tempered nanocrystalline bainitic steel is investigated in the present study. It is found that two types of plastic relaxation, dislocation debris and nanotwin, occurs in the displacive transformation due to relatively low transformation temperature and high carbon content. Because most carbon atoms trap in the dislocation, high dislocation density can be sustained during the tempering process. More carbides only can be found in the high tempered temperature due to intense recovery progression.

Keywords: Nanostructure Bainitic Steel, Tempered, TEM, Nano-Twin, Dislocation Debris, Accommodation.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2510