Optimization of Carbon Nanotube Content of Asphalt Nanocomposites with Regard to Resistance to Permanent Deformation
Authors: João V. Staub de Melo, Glicério Trichês, Liseane P. Thives
Abstract:
This paper presents the results of the development of asphalt nanocomposites containing carbon nanotubes (CNTs) with high resistance to permanent deformation, aiming to increase the performance of asphalt surfaces in relation to the rutting problem. Asphalt nanocomposites were prepared with the addition of different proportions of CNTs (1%, 2% and 3%) in relation to the weight of asphalt binder. The base binder used was a conventional binder (50-70 penetration) classified as PG 58-22. The optimum percentage of CNT addition in the asphalt binder (base) was determined through the evaluation of the rheological and empirical characteristics of the nanocomposites produced. In order to evaluate the contribution and the effects of the nanocomposite (optimized) in relation to the rutting, the conventional and nanomodified asphalt mixtures were tested in a French traffic simulator (Orniéreur). The results obtained demonstrate the efficient contribution of the asphalt nanocomposite containing CNTs to the resistance to permanent deformation of the asphalt mixture.
Keywords: Asphalt nanocomposites, asphalt mixtures, carbon nanotubes, nanotechnology, permanent deformation.
Digital Object Identifier (DOI): doi.org/10.5281/zenodo.1315819
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1489References:
[1] Ali B. Modèle numérique pour comportement mécanique des chaussées: application à l’analyse de l’orniérage. These. Laboratoire de Mécanique de Lille. Ecole Polytechnique Universitaire de Lille. 2006.
[2] Melo J. V. S, Trichês G. Desenvolvimento e estudo do comportamento reológico e desempenho mecânico de concretos asfálticos modificados com nanocompósitos. Tese de Doutorado. Programa de Pós-graduação em Engenharia Civil, Universidade Federal de Santa Catarina. Florianopolis-SC, Brasil, p. 414, 2014.
[3] Joliet Y, Mallot M. Precautions when interpreting rutting results from the LCPC traffic simulator. 2º Eurasphalt & Eurobitume Congress Barcelona, 2000.
[4] Hunter R. N. Asphalt in road construction. Lanham, Maryland, Thomas Telford. 2000.
[5] Ray M. O. et al. Polymer/layered silicate nanocomposites: a review from preparation to processing. Progress in Polymer Science, v. 28: p. 1539-1641. 2003.
[6] Santagata E. et al. Rheological characterization of bituminous binders modified with carbon nanotubes. Procedia - Social and Behavioral Sciences, Elsevier, v. 53, p. 546-555. 2012.
[7] You Z. et al. Nanoclay-modified asphalt materials preparation and characterization. Construction and Building Materials, Elsevier, v. 25, p. 1072-1078. 2011.
[8] Yu J-Y. et al. Effect of organo-montmorillonite on aging properties of asphalt. Construction and Building Materials, Elsevier, v. 23, p. 2636-2640. 2009.
[9] Zare-Shahabadi A. et al. Preparation and rheological characterization of asphalt binders reinforced with layered silicate nanoparticles. Construction and Building Materials, Elsevier, v. 24, p. 1239-1244. 2010.
[10] Leite L. F. M. et al. Efeito de nanomodificadores no envelhecimento e susceptibilidade térmica de cimentos asfálticos. In: Anais do 42a Reunião Anual de Pavimentação. Fortaleza, CE, Brasil. 2012.
[11] Jahromi S. G, KHODAII A. Effects of nanoclay on rheological properties of bitumen binder. Construction and Building Materials, Elsevier, v. 23, p. 2894–2904. 2009.
[12] ASTM - American Society for Testing and Materials. ASTM C 127: Standard test method for density, relative density (specific gravity), and absorption of coarse aggregate. USA. 2012.
[13] DNER - Departamento Nacional de Estradas de Rodagem. DNER-ME 084: Agregado miúdo - Determinação da densidade real. Método de Ensaio. Rio de Janeiro. 1995.
[14] DNER - Departamento Nacional de Estradas de Rodagem. DNER-ME 085: Material finamente pulverizado - Determinação da massa específica real. Método de Ensaio. Rio de Janeiro. 1994.
[15] ASTM - American Society for Testing and Materials. ASTM D 5821: Standard test method for determining the percentage of fractured particles in coarse aggregate. USA. 2013.
[16] ASTM - American Society for Testing and Materials. ASTM C 1252: Standard test methods for uncompacted void content of fine aggregate (as influenced by particle shape, surface texture and grading). USA. 2006.
[17] ABNT - Associação Brasileira de Normas Técnicas. ABNT NBR 6954: Lastro-padrão - Determinação da forma do material. 1989.
[18] AASHTO - American Association of State Highway and Transportation. AASHTO T 176: Standard method of test for plastic fines in graded aggregates and soils by use of the sand equivalent test. Test Standard Specifications for Transportation Materials and Methods of Sampling and Testing. Washington, DC. 2008.
[19] ASTM - American Society for Testing and Materials. ASTM C 131: Standard test method for resistance to degradation of small-size coarse aggregate by abrasion and impact in the Los Angeles machine. USA. 2006.
[20] ASTM - American Society for Testing and Materials. ASTM C 88: Standard test method for soundness of aggregates by use of sodium sulfate or magnesium sulfate. USA. 2013.
[21] AASHTO - American Association of State Highway and Transportation. AASHTO T 112: Standard method of test for clay lumps and friable particles in aggregate. Test Standard Specifications for Transportation Materials and Methods of Sampling and Testing. Washington, DC. 2012.
[22] ASTM - American Society for Testing and Materials. ASTM D 5: Standard test method for penetration of bituminous materials. USA. 2013.
[23] ASTM - American Society for Testing and Materials. ASTM D 36: Standard test method for softening point of bitumen (ring-and-ball apparatus). USA. 2014.
[24] ASTM - American Society for Testing and Materials. ASTM D 2872: Standard test method for effect of heat and air on a moving film of asphalt (rolling thin-film oven test). USA. 2012.
[25] ASTM - American Society for Testing and Materials. ASTM D 7175: Standard Test Method for determining the rheological properties of asphalt binder using a dynamic shear rheometer. USA. 2008.
[26] AASHTO - American Association of State Highway and Transportation. AASHTO M 323: Standard specification for Superpave volumetric mix design. Test Standard Specifications for Transportation Materials and Methods of Sampling and Testing. Washington, DC. 2013.
[27] AASHTO - American Association of State Highway and Transportation. AASHTO R 35: Standard practice for Superpave volumetric design for hot-mix asphalt (HMA). Test Standard Specifications for Transportation Materials and Methods of Sampling and Testing. Washington, DC. 2012.
[28] AFNOR - Association Française de Normalisation. AFNOR NF P 98-250-2: Essais relatifs aux chaussées - préparation des mélanges hydrocarbonés, partie 2: compactage des plaques. Association Française de Normalisation, AFNOR. 1991.
[29] AFNOR - Association Française de Normalisation. AFNOR NF P 98-253-1: Préparation des mélanges hydrocarbonés, partie 1: essai d’orniérage. Association Française de Normalisation, AFNOR. 1993.
[30] Biercuk M. J. et al. Rational modeling of tertiary flow for asphalt mixtures. Journal of the Transportation Research Board, Washington, DC, n. 2001, p 63-72. 2007.
[31] Liu L. Q, Wagner H. D. Rubbery and glassy epoxy resins reinforced with carbon nanotubes. Composite Science Technology, v. 65. 2005.
[32] Ma P. C. et al. Effects of silane functionalization on the properties of carbon nanotubes/epoxy nanocomposites. Composite Science Technology, v. 67, p. 2965-2972. 2007.
[33] Kosmidou T. V. et al. Structural, mechanical and electrical characterization of epoxy amine/carbon black nanocomposites. Express Polymer Letters, v. 2, p. 364-372. 2008.
[34] Ma, P. C. et al. Development of electrically conducting nanocomposites by employing hybrid fillers of carbon nanotubes and carbon black. Applied Materials Interfaces, v. 1, p.1090-1096. 2009.