Fracture Toughness Characterization of Carbon-Epoxy Composite using Arcan Specimen
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 33093
Fracture Toughness Characterization of Carbon-Epoxy Composite using Arcan Specimen

Authors: M. Nikbakht, N. Choupani

Abstract:

In this study the behavior of interlaminar fracture of carbon-epoxy thermoplastic laminated composite is investigated numerically and experimentally. Tests are performed with Arcan specimens. Testing with Arcan specimen gives the opportunity of utilizing just one kind of specimen for extracting fracture properties for mode I, mode II and different mixed mode ratios of materials with exerting load via different loading angles. Variation of loading angles in range of 0-90° made possible to achieve different mixed mode ratios. Correction factors for various conditions are obtained from ABAQUS 2D finite element models which demonstrate the finite shape of Arcan specimens used in this study. Finally, applying the correction factors to critical loads obtained experimentally, critical interlaminar fracture toughness of this type of carbon- epoxy composite has been attained.

Keywords: Fracture Mechanics, Mixed Mode, Arcan Specimen, Finite Element.

Digital Object Identifier (DOI): doi.org/10.5281/zenodo.1059685

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2899

References:


[1] F. Dharmawan, G. Simpson, I. Herszberg, S. John. "Mixed mode fracture toughness of GFRP composites." Composite Structures,2006
[2] James R. Reeder. K. Song, P. Chunchu, D. R. Ambur, "Postbukling and growth of delamination in composite plates subjected to axial compression." AIAA journal, 2002.
[3] James R. Reeder and John R. Crews. "Mixed Mode Bending Method for Delamination Testing." Published in AIAA Journal, vol 28, 1990, pages 1270-1276.
[4] James R. Reeder. "3d mixed mode delamination fracture criteria-an experimentalist perspective." NASA Langley research center,M/S 188E, Hampton VA 23681-2199,USA.
[5] John H. Crews, Jr. and James R. Reeder. "A mixed mode bending apparatus for delamination testing." NASA technical memorandum 100662, August 1988.
[6] Andras Szekrenyes. "Delamination fracture analysis in the GI-GII plane using prestressed transparent composite beams." International journal of solids and structures 44(2007) 3359-3378.
[7] Andras Szekrenyes. "Prestressed fracture specimen for delamination testing of composites." International journal of fracture (2006) 139: 213- 237.
[8] Yuh J. Chao and Shu Liu. "On the failure of crack under mixed mode loads." International journal of fracture 87: 201-223, 1997.
[9] E. Priel, A. bussiba, I. Gilad, Z. Yosibash. "Mixed mode failure criteria for brittle elastic V-notched structures." International journal of fracture (2007) 144: 247-265.
[10] Ronald Krueger. "A shell/3D modeling technique for delamination in composite laminates. In proceedings of the American society for composites," 14th technical conference, technomic publishing, 1999.
[11] Ronald Krueger, P. J. Minguet, T. K. O-Brien. "Implementation of interlaminar fracture mechanics in design: an overview.", Presented at 14th international conference on composite materials (ICCM-14), San Diego, July 14-18,2003.
[12] R. Krueger, D. Goetze. "influence of finite element software on energy release rates computed using the virtual crack closure technique." NASA/CR-2006-214523, NIA Report No. 2006-06.
[13] C. Liu, Y. Huang, M.L. Lovato, M.G. Stout. "measurement of the fracture toughness of fiber reinforced composite using the Brazilian geometry." International journal of fracture 87: 241-263.1997.
[14] L. Banks-Sills, Y. Freed, R. Eliasi, V.Fourman. "fracture toughness of the +45/-45 interface of laminate composite." International journal of fracture (2006) 141: 195-210.
[15] S.K. Verma, P. Kumar. "Evaluation of critical sif of DCB specimen made of slender cantilever. Engineering fracture mechanics." 1995.
[16] B.W. Kim, A.H. Mayer, "Influence of fiber direction and mixed mode ratio on delamination fracture toughness of carbon-epoxy laminates." Composite science and technology. 2003.
[17] B.S. Majumdar and D. Hunston, "Continuous Parallel Fiber Composites: Fracture", Encyclopedia of Materials: Science and Technology, Elsevioe Ltd. 2001.
[18] M. Arcan, Z. hashin, A. voloshin, "A method to produce uniform plane stress state with application to fiber-reinforced materials," Experimental mechanics. 1978.
[19] M.A. Sutton, W. Zhao, M.L. Boone, A. P. Reynolds, D.S. Dawicke, "Prediction of crack growth direction for mode I/II loading using smallscale yielding and void initiation/growth concepts." International Journal of Fracture, 83, 1997.
[20] N. Hallback. "The influence of finite geometry and material properties on mixed mode I/II fracture of aluminum." International journal of fracture 87: 151-188, 1997.
[21] M.R. Ayatollahi, R. Hashemi. "Mixed mode Fracture in an inclined center crack repaired by composite patching." Composite structure, 81, 264-273, 2007.
[22] M.R. Ayatollahi, D.J. Smith and M.J. Pavier."Crack-tip Constraint in mode II deformation." International Journal of Fracture, 113, 2002.
[23] S.C. Hung and K.M. Liechti. "An evaluation of the Arcan specimen for determining the shear module of fiber reinforced composites." Experimental mechanics, volume 37, no. 4, December 1997.
[24] ABAQUS user-s manual, version 6.5. Pawtucket, USA: Hibbit, Karlsson and Sorensen, HKS Inc; 2004.
[25] American society for testing and materials.1991,standard D5045- 91a,plane-stain fracture toughness and strain energy release rate of plastic materials, Annual book of ASTM standards Philadelphia: ASTM.
[26] N. Choupani. "Experimental and numerical investigation of the mixed mode delamination in Arcan laminated specimens." Material science and technology, volume 478(2008): 229-242.