Search results for: Variable speed refrigeration system
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 9893

Search results for: Variable speed refrigeration system

9413 High Specific Speed in Circulating Water Pump Can Cause Cavitation, Noise and Vibration

Authors: Chandra Gupt Porwal

Abstract:

Excessive vibration means increased wear, increased repair efforts, bad product selection & quality and high energy consumption. This may be sometimes experienced by cavitation or suction/discharge recirculation which could occur only when net positive suction head available NPSHA drops below the net positive suction head required NPSHR. Cavitation can cause axial surging, if it is excessive, will damage mechanical seals, bearings, possibly other pump components frequently, and shorten the life of the impeller. Efforts have been made to explain Suction Energy (SE), Specific Speed (Ns), Suction Specific Speed (Nss), NPSHA, NPSHR & their significance, possible reasons of cavitation /internal recirculation, its diagnostics and remedial measures to arrest and prevent cavitation in this paper. A case study is presented by the author highlighting that the root cause of unwanted noise and vibration is due to cavitation, caused by high specific speeds or inadequate net- positive suction head available which results in damages to material surfaces of impeller & suction bells and degradation of machine performance, its capacity and efficiency too. Author strongly recommends revisiting the technical specifications of CW pumps to provide sufficient NPSH margin ratios >1.5, for future projects and Nss be limited to 8500 - 9000 for cavitation free operation.

Keywords: Best efficiency point (BEP), Net positive suction head NPSHA, NPSHR, Specific Speed NS, Suction Specific Speed Nss.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 5021
9412 An Evaluation of TIG Welding Parametric Influence on Tensile Strength of 5083 Aluminium Alloy

Authors: Lakshman Singh, Rajeshwar Singh, Naveen Kumar Singh, Davinder Singh, Pargat Singh

Abstract:

Tungsten Inert Gas (TIG) welding is a high quality welding process used to weld the thin metals and their alloy. 5083 Aluminium alloys play an important role in engineering and metallurgy field because of excellent corrosion properties, ease of fabrication and high specific strength coupled with best combination of toughness and formability.

TIG welding technique is one of the precise and fastest processes used in aerospace, ship and marine industries. TIG welding process is used to analyze the data and evaluate the influence of input parameters on tensile strength of 5083 Al-alloy specimens with dimensions of 100mm long x 15mm wide x 5mm thick. Welding current (I), gas flow rate (G) and welding speed (S) are the input parameters which effect tensile strength of 5083 Al-alloy welded joints. As welding speed increased, tensile strength increases first till optimum value and after that both decreases by increasing welding speed further. Results of the study show that maximum tensile strength of 129 MPa of weld joint are obtained at welding current of 240 Amps, gas flow rate of 7 Lt/min and welding speed of 98 mm/min. These values are the optimum values of input parameters which help to produce efficient weld joint that have good mechanical properties as a tensile strength.

Keywords: 5083 Aluminium alloy, Gas flow rate, TIG welding, Welding current, Welding speed and Tensile strength.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 4064
9411 Wind Speed Data Analysis using Wavelet Transform

Authors: S. Avdakovic, A. Lukac, A. Nuhanovic, M. Music

Abstract:

Renewable energy systems are becoming a topic of great interest and investment in the world. In recent years wind power generation has experienced a very fast development in the whole world. For planning and successful implementations of good wind power plant projects, wind potential measurements are required. In these projects, of great importance is the effective choice of the micro location for wind potential measurements, installation of the measurement station with the appropriate measuring equipment, its maintenance and analysis of the gained data on wind potential characteristics. In this paper, a wavelet transform has been applied to analyze the wind speed data in the context of insight in the characteristics of the wind and the selection of suitable locations that could be the subject of a wind farm construction. This approach shows that it can be a useful tool in investigation of wind potential.

Keywords: Wind potential, Wind speed data, Wavelettransform.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2613
9410 Iris Localization using Circle and Fuzzy Circle Detection Method

Authors: Marzieh. Savoj, S. Amirhassan. Monadjemi

Abstract:

Iris localization is a very important approach in biometric identification systems. Identification process usually is implemented in three levels: iris localization, feature extraction, and pattern matching finally. Accuracy of iris localization as the first step affects all other levels and this shows the importance of iris localization in an iris based biometric system. In this paper, we consider Daugman iris localization method as a standard method, propose a new method in this field and then analyze and compare the results of them on a standard set of iris images. The proposed method is based on the detection of circular edge of iris, and improved by fuzzy circles and surface energy difference contexts. Implementation of this method is so easy and compared to the other methods, have a rather high accuracy and speed. Test results show that the accuracy of our proposed method is about Daugman method and computation speed of it is 10 times faster.

Keywords: Convolution, Edge detector filter, Fuzzy circle, Identification

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2023
9409 Starting Characteristic Analysis of LSPM for Pumping System Considering Demagnetization

Authors: Subrato Saha, Yun-Hyun Cho

Abstract:

This paper presents the design process of a high performance 3-phase 3.7 kW 2-pole line start permanent magnet synchronous motor for pumping system. A method was proposed to study the starting torque characteristics considering line start with high inertia load. A d-q model including cage was built to study the synchronization capability. Time-stepping finite element method analysis was utilized to accurately predict the dynamic and transient performance, efficiency, starting current, speed curve and etc. Considering the load torque of pumps during starting stage, the rotor bar was designed with minimum demagnetization of permanent magnet caused by huge starting current.

Keywords: LSPM, starting analysis, demagnetization, FEA, pumping system.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2242
9408 Aerodynamic Design Optimization of High-Speed Hatchback Cars for Lucrative Commercial Applications

Authors: A. Aravind, M. Vetrivel, P. Abhimanyu, C. A. Akaash Emmanuel Raj, K. Sundararaj, V. R. S. Kumar

Abstract:

The choice of high-speed, low budget hatchback car with diversified options is increasing for meeting the new generation buyers trend. This paper is aimed to augment the current speed of the hatchback cars through the aerodynamic drag reduction technique. The inverted airfoils are facilitated at the bottom of the car for generating the downward force for negating the lift while increasing the current speed range for achieving a better road performance. The numerical simulations have been carried out using a 2D steady pressure-based    k-ɛ realizable model with enhanced wall treatment. In our numerical studies, Reynolds-averaged Navier-Stokes model and its code of solution are used. The code is calibrated and validated using the exact solution of the 2D boundary layer displacement thickness at the Sanal flow choking condition for adiabatic flows. We observed through the parametric analytical studies that the inverted airfoil integrated with the bottom surface at various predesigned locations of Hatchback cars can improve its overall aerodynamic efficiency through drag reduction, which obviously decreases the fuel consumption significantly and ensure an optimum road performance lucratively with maximum permissible speed within the framework of the manufactures constraints.

Keywords: Aerodynamics of commercial cars, downward force, hatchback car, inverted airfoil.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1601
9407 High Speed Bitwise Search for Digital Forensic System

Authors: Hyungkeun Jee, Jooyoung Lee, Dowon Hong

Abstract:

The most common forensic activity is searching a hard disk for string of data. Nowadays, investigators and analysts are increasingly experiencing large, even terabyte sized data sets when conducting digital investigations. Therefore consecutive searching can take weeks to complete successfully. There are two primary search methods: index-based search and bitwise search. Index-based searching is very fast after the initial indexing but initial indexing takes a long time. In this paper, we discuss a high speed bitwise search model for large-scale digital forensic investigations. We used pattern matching board, which is generally used for network security, to search for string and complex regular expressions. Our results indicate that in many cases, the use of pattern matching board can substantially increase the performance of digital forensic search tools.

Keywords: Digital forensics, search, regular expression.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1793
9406 Stability Enhancement of a Large-Scale Power System Using Power System Stabilizer Based on Adaptive Neuro Fuzzy Inference System

Authors: Agung Budi Muljono, I Made Ginarsa, I Made Ari Nrartha

Abstract:

A large-scale power system (LSPS) consists of two or more sub-systems connected by inter-connecting transmission. Loading pattern on an LSPS always changes from time to time and varies depend on consumer need. The serious instability problem is appeared in an LSPS due to load fluctuation in all of the bus. Adaptive neuro-fuzzy inference system (ANFIS)-based power system stabilizer (PSS) is presented to cover the stability problem and to enhance the stability of an LSPS. The ANFIS control is presented because the ANFIS control is more effective than Mamdani fuzzy control in the computation aspect. Simulation results show that the presented PSS is able to maintain the stability by decreasing peak overshoot to the value of −2.56 × 10−5 pu for rotor speed deviation Δω2−3. The presented PSS also makes the settling time to achieve at 3.78 s on local mode oscillation. Furthermore, the presented PSS is able to improve the peak overshoot and settling time of Δω3−9 to the value of −0.868 × 10−5 pu and at the time of 3.50 s for inter-area oscillation.

Keywords: ANFIS, large-scale, power system, PSS, stability enhancement.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1180
9405 Optimal Control Strategies for Speed Control of Permanent-Magnet Synchronous Motor Drives

Authors: Roozbeh Molavi, Davood A. Khaburi

Abstract:

The permanent magnet synchronous motor (PMSM) is very useful in many applications. Vector control of PMSM is popular kind of its control. In this paper, at first an optimal vector control for PMSM is designed and then results are compared with conventional vector control. Then, it is assumed that the measurements are noisy and linear quadratic Gaussian (LQG) methodology is used to filter the noises. The results of noisy optimal vector control and filtered optimal vector control are compared to each other. Nonlinearity of PMSM and existence of inverter in its control circuit caused that the system is nonlinear and time-variant. With deriving average model, the system is changed to nonlinear time-invariant and then the nonlinear system is converted to linear system by linearization of model around average values. This model is used to optimize vector control then two optimal vector controls are compared to each other. Simulation results show that the performance and robustness to noise of the control system has been highly improved.

Keywords: Kalman filter, Linear quadratic Gaussian (LQG), Linear quadratic regulator (LQR), Permanent-Magnet synchronousmotor (PMSM).

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2997
9404 Design and Analysis of Low-Power, High Speed and Area Efficient 2-Bit Digital Magnitude Comparator in 90nm CMOS Technology Using Gate Diffusion Input

Authors: Fasil Endalamaw

Abstract:

Digital magnitude comparators based on Gate Diffusion Input (GDI) implementation technique are high speed and area-efficient, and they consume less power as compared to other implementation techniques. However, they are less efficient for some logic gates and have no full voltage swing. In this paper, we made a performance comparison between the GDI implementation technique and other implementation methods, such as Static CMOS, Pass Transistor Logic (PTL), and Transmission Gate (TG) in 90 nm, 120 nm, and 180 nm CMOS technologies using BSIM4 MOS model. We proposed a methodology (hybrid implementation) of implementing digital magnitude comparators which significantly improved the power, speed, area, and voltage swing requirements. Simulation results revealed that the hybrid implementation of digital magnitude comparators show a 10.84% (power dissipation), 41.6% (propagation delay), 47.95% (power-delay product (PDP)) improvement compared to the usual GDI implementation method. We used Microwind & Dsch Version 3.5 as well as the Tanner EDA 16.0 tools for simulation purposes.

Keywords: Efficient, gate diffusion input, high speed, low power, CMOS.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 416
9403 Interface Analysis of Annealed Al/Cu Cladded Sheet

Authors: Joon Ho Kim, Tae Kwon Ha

Abstract:

Effect of aging treatment on microstructural aspects of interfacial layers of the Cu/Al clad sheet produced by differential speed rolling (DSR) process were studied by electron back scattered diffraction (EBSD). Clad sheet of Al/Cu has been fabricated by using DSR, which caused severe shear deformation between Al and Cu plate to easily bond to each other. Rolling was carried out at 100oC with speed ratio of 2, in which the total thickness reduction was 45%. Interface layers of clad sheet were analyzed by EBSD after subsequent annealing at 400oC for 30 to 120min. With increasing annealing time, thickness of interface layer and fraction of high angle grain boundary were increased and average grain size was decreased.

Keywords: Aluminum/Copper clad sheet, differential speed rolling, interface layer, microstructure, annealing, electron back scattered diffraction.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2072
9402 Three Phase PWM Inverter for Low Rating Energy Efficient Systems

Authors: Nelson K. Lujara

Abstract:

The paper presents a practical three-phase PWM inverter suitable for low voltage, low rating energy efficient systems. The work in the paper is conducted with the view to establishing the significance of the loss contribution from the PWM inverter in the determination of the complete losses of a photovoltaic (PV) arraypowered induction motor drive water pumping system. Losses investigated include; conduction and switching loss of the devices and gate drive losses. It is found that the PWM inverter operates at a reasonable variable efficiency that does not fall below 92% depending on the load. The results between the simulated and experimental results for the system with or without a maximum power tracker (MPT) compares very well, within an acceptable range of 2% margin.

Keywords: Energy, Inverter, Losses, Photovoltaic.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2844
9401 Performance Characteristics of Some Small Scale Wind Turbines Fabricated in Tanzania

Authors: Talam K. E, Kainkwa R. M.

Abstract:

In this study, a field testing has been carried out to assess the power characteristics of some small scale wind turbines fabricated by one native technician from Tanzania. Two Horizontal Axis Wind Turbines (HAWTs), one with five and other with sixteen blades were installed at a height of 2.4m above the ground. The rotation speed of the rotor blade and wind speed approaching the turbines were measured simultaneously. The data obtained were used to determine how the power coefficient varies as a function of tip speed ratio and also the way in which the output power compares with available power in the wind for each turbine. For the sixteen-bladed wind turbine the maximum value of power coefficient of about 0.14 was found to occur at a tip speed ratio of around 0.65 while for the five bladed, these extreme values were respectively attained at approximately 0.2 and 1.7. The five bladed-wind turbine was found to have a higher power efficiency of about 37.5% which is higher compared to the sixteen bladed wind turbine whose corresponding value was 14.37%. This is what would be expected, as the smaller the number of blades of a wind turbine, the higher the electric power efficiency and vice versa. Some of the main reasons for the low efficiency of these machines may be due to the low aerodynamic efficiency of the turbine or low efficiency of the transmission mechanisms such as gearbox and generator which were not examined in this study. It is recommended that some other researches be done to investigate the power efficiency of such machines from different manufacturers in the country. The manufacturers should also be encouraged to use fewer blades in their designs so as to improve the efficiency and at the same time reduce materials used to fabricate the blades. The power efficiency of the electric generators used in the locally fabricated wind turbines should also be examined.

Keywords: Tip speed ratio, Power coefficients and power efficiency.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 3058
9400 Signal Processing Approach to Study Multifractality and Singularity of Solar Wind Speed Time Series

Authors: Tushnik Sarkar, Mofazzal H. Khondekar, Subrata Banerjee

Abstract:

This paper investigates the nature of the fluctuation of the daily average Solar wind speed time series collected over a period of 2492 days, from 1st January, 1997 to 28th October, 2003. The degree of self-similarity and scalability of the Solar Wind Speed signal has been explored to characterise the signal fluctuation. Multi-fractal Detrended Fluctuation Analysis (MFDFA) method has been implemented on the signal which is under investigation to perform this task. Furthermore, the singularity spectra of the signals have been also obtained to gauge the extent of the multifractality of the time series signal.

Keywords: Detrended fluctuation analysis, generalized Hurst exponent, holder exponents, multifractal exponent, multifractal spectrum, singularity spectrum, time series analysis.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1294
9399 High-Speed Train Planning in France, Lessons from Mediterranean TGV-Line

Authors: Stéphanie Leheis

Abstract:

To fight against the economic crisis, French Government, like many others in Europe, has decided to give a boost to high-speed line projects. This paper explores the implementation and decision-making process in TGV projects, their evolutions, especially since the Mediterranean TGV-line. This project was probably the most controversial, but paradoxically represents today a huge success for all the actors involved. What kind of lessons we can learn from this experience? How to evaluate the impact of this project on TGV-line planning? How can we characterize this implementation and decision-making process regards to the sustainability challenges? The construction of Mediterranean TGV-line was the occasion to make several innovations: to introduce more dialog into the decisionmaking process, to take into account the environment, to introduce a new project management and technological innovations. That-s why this project appears today as an example in terms of integration of sustainable development. In this paper we examine the different kinds of innovations developed in this project, by using concepts from sociology of innovation to understand how these solutions emerged in a controversial situation. Then we analyze the lessons which were drawn from this decision-making process (in the immediacy and a posteriori) and the way in which procedures evolved: creation of new tools and devices (public consultation, project management...). Finally we try to highlight the impact of this evolution on TGV projects governance. In particular, new methods of implementation and financing involve a reconfiguration of the system of actors. The aim of this paper is to define the impact of this reconfiguration on negotiations between stakeholders.

Keywords: High-speed train, innovation, governance, sustainability.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2339
9398 High Performance Direct Torque Control for Induction Motor Drive Fed from Photovoltaic System

Authors: E. E. El-Kholy, Ahamed Kalas, Mahmoud Fauzy, M. El-Shahat Dessouki, Abdou. M. El-Refay, Mohammed El-Zefery

Abstract:

Direct Torque Control (DTC) is an AC drive control method especially designed to provide fast and robust responses. In this paper a progressive algorithm for direct torque control of threephase induction drive system supplied by photovoltaic arrays using voltage source inverter to control motor torque and flux with maximum power point tracking at different level of insolation is presented. Experimental results of the new DTC method obtained by an experimental rapid prototype system for drives are presented. Simulation and experimental results confirm that the proposed system gives quick, robust torque and speed responses at constant switching frequencies.

Keywords: Photovoltaic (PV) array, direct torque control (DTC), constant switching frequency, induction motor, maximum power point tracking (MPPT).

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2246
9397 Effect of Inlet Valve Variable Timing in the Spark Ignition Engine on Achieving Greener Transport

Authors: Osama H. Ghazal, Yousef S. Najjar, Kutaeba J. AL-Khishali

Abstract:

The current emission legislations and the large concern about the environment produced very numerous constraints on both governments and car manufacturers. Also the cost of energy increase means a reduction in fuel consumption must be met, without largely affecting the current engine production and performance. It is the intension to contribute towards the development and pursuing, among others on variable valve timing (VVT), for improving the engine performance. The investigation of the effect of (IVO) and (IVC) to optimize engine torque and volumetric efficiency for different engine speeds was considered. Power, BMEP and BSFC were calculated and presented to show the effect of varying inlet valve timing on them for all cases. A special program used to carry out the calculations. The analysis of the results shows that the reduction of 10% of (IVO) angle gave an improvement of around 1.3% in torque, BSFC, and volumetric efficiency, while a 10% decrease in (IVC) caused a 0.1% reduction in power, torque, and volumetric efficiency.

 

Keywords: Green transportation, inlet valve variable timing, performance, spark ignition engines.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2850
9396 FPGA Based Parallel Architecture for the Computation of Third-Order Cross Moments

Authors: Syed Manzoor Qasim, Shuja Abbasi, Saleh Alshebeili, Bandar Almashary, Ateeq Ahmad Khan

Abstract:

Higher-order Statistics (HOS), also known as cumulants, cross moments and their frequency domain counterparts, known as poly spectra have emerged as a powerful signal processing tool for the synthesis and analysis of signals and systems. Algorithms used for the computation of cross moments are computationally intensive and require high computational speed for real-time applications. For efficiency and high speed, it is often advantageous to realize computation intensive algorithms in hardware. A promising solution that combines high flexibility together with the speed of a traditional hardware is Field Programmable Gate Array (FPGA). In this paper, we present FPGA-based parallel architecture for the computation of third-order cross moments. The proposed design is coded in Very High Speed Integrated Circuit (VHSIC) Hardware Description Language (VHDL) and functionally verified by implementing it on Xilinx Spartan-3 XC3S2000FG900-4 FPGA. Implementation results are presented and it shows that the proposed design can operate at a maximum frequency of 86.618 MHz.

Keywords: Cross moments, Cumulants, FPGA, Hardware Implementation.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1716
9395 Vibration Signals of Small Vertical Axis Wind Turbines

Authors: Aqoul H. H. Alanezy, Ali M. Abdelsalam, Nouby M. Ghazaly

Abstract:

In recent years, progress has been made in increasing the renewable energy share in the power sector particularly in the wind. The experimental study conducted in this paper aims to investigate the effects of number of blades and inflow wind speed on vibration signals of a vertical axis Savonius type wind turbine. The operation of the model of Savonius type wind turbine is conducted to compare two, three and four blades wind turbines to show vibration amplitudes related with wind speed. It is found that the increase of the number of blades leads to decrease of the vibration magnitude. Furthermore, inflow wind speed has reduced effect on the vibration level for higher number of blades.

Keywords: Savonius wind turbine, number of blades, vibration amplitude, renewable energy.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 924
9394 Perceptual Framework for a Modern Left-Turn Collision Warning System

Authors: E. Dabbour, S. M. Easa

Abstract:

Most of the collision warning systems currently available in the automotive market are mainly designed to warn against imminent rear-end and lane-changing collisions. No collision warning system is commercially available to warn against imminent turning collisions at intersections, especially for left-turn collisions when a driver attempts to make a left-turn at either a signalized or non-signalized intersection, conflicting with the path of other approaching vehicles traveling on the opposite-direction traffic stream. One of the major factors that lead to left-turn collisions is the human error and misjudgment of the driver of the turning vehicle when perceiving the speed and acceleration of other vehicles traveling on the opposite-direction traffic stream; therefore, using a properly-designed collision warning system will likely reduce, or even eliminate, this type of collisions by reducing human error. This paper introduces perceptual framework for a proposed collision warning system that can detect imminent left-turn collisions at intersections. The system utilizes a commercially-available detection sensor (either a radar sensor or a laser detector) to detect approaching vehicles traveling on the opposite-direction traffic stream and calculate their speeds and acceleration rates to estimate the time-tocollision and compare that time to the time required for the turning vehicle to clear the intersection. When calculating the time required for the turning vehicle to clear the intersection, consideration is given to the perception-reaction time of the driver of the turning vehicle, which is the time required by the driver to perceive the message given by the warning system and react to it by engaging the throttle. A regression model was developed to estimate perception-reaction time based on age and gender of the driver of the host vehicle. Desired acceleration rate selected by the driver of the turning vehicle, when making the left-turn movement, is another human factor that is considered by the system. Another regression model was developed to estimate the acceleration rate selected by the driver of the turning vehicle based on driver-s age and gender as well as on the location and speed of the nearest approaching vehicle along with the maximum acceleration rate provided by the mechanical characteristics of the turning vehicle. By comparing time-to-collision with the time required for the turning vehicle to clear the intersection, the system displays a message to the driver of the turning vehicle when departure is safe. An application example is provided to illustrate the logic algorithm of the proposed system.

Keywords: Collision warning systems, intelligent transportationsystems, vehicle safety.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2038
9393 The Effects of Speed on the Performance of Routing Protocols in Mobile Ad-hoc Networks

Authors: Narendra Singh Yadav, R.P.Yadav

Abstract:

Mobile ad hoc network is a collection of mobile nodes communicating through wireless channels without any existing network infrastructure or centralized administration. Because of the limited transmission range of wireless network interfaces, multiple "hops" may be needed to exchange data across the network. Consequently, many routing algorithms have come into existence to satisfy the needs of communications in such networks. Researchers have conducted many simulations comparing the performance of these routing protocols under various conditions and constraints. One question that arises is whether speed of nodes affects the relative performance of routing protocols being studied. This paper addresses the question by simulating two routing protocols AODV and DSDV. Protocols were simulated using the ns-2 and were compared in terms of packet delivery fraction, normalized routing load and average delay, while varying number of nodes, and speed.

Keywords: AODV, DSDV, MANET, relative performance

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2152
9392 Multicast Optimization Techniques using Best Effort Genetic Algorithms

Authors: Dinesh Kumar, Y. S. Brar, V. K. Banga

Abstract:

Multicast Network Technology has pervaded our lives-a few examples of the Networking Techniques and also for the improvement of various routing devices we use. As we know the Multicast Data is a technology offers many applications to the user such as high speed voice, high speed data services, which is presently dominated by the Normal networking and the cable system and digital subscriber line (DSL) technologies. Advantages of Multi cast Broadcast such as over other routing techniques. Usually QoS (Quality of Service) Guarantees are required in most of Multicast applications. The bandwidth-delay constrained optimization and we use a multi objective model and routing approach based on genetic algorithm that optimizes multiple QoS parameters simultaneously. The proposed approach is non-dominated routes and the performance with high efficiency of GA. Its betterment and high optimization has been verified. We have also introduced and correlate the result of multicast GA with the Broadband wireless to minimize the delay in the path.

Keywords: GA (genetic Algorithms), Quality of Service, MOGA, Steiner Tree.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1543
9391 Fuzzy Controller Design for Ball and Beam System with an Improved Ant Colony Optimization

Authors: Yeong-Hwa Chang, Chia-Wen Chang, Hung-Wei Lin, C.W. Tao

Abstract:

In this paper, an improved ant colony optimization (ACO) algorithm is proposed to enhance the performance of global optimum search. The strategy of the proposed algorithm has the capability of fuzzy pheromone updating, adaptive parameter tuning, and mechanism resetting. The proposed method is utilized to tune the parameters of the fuzzy controller for a real beam and ball system. Simulation and experimental results indicate that better performance can be achieved compared to the conventional ACO algorithms in the aspect of convergence speed and accuracy.

Keywords: Ant colony algorithm, Fuzzy control, ball and beamsystem

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2177
9390 2D Image Processing for DSO Astrophotography

Authors: R. Suszynski, K. Wawryn, R. Wirski

Abstract:

The new concept of two–dimensional (2D) image processing implementation for auto-guiding system is shown in this paper. It is dedicated to astrophotography and operates with astronomy CCD guide cameras or with self-guided dual-detector CCD cameras and ST4 compatible equatorial mounts. This idea was verified by MATLAB model, which was used to test all procedures and data conversions. Next the circuit prototype was implemented at Altera MAX II CPLD device and tested for real astronomical object images. The digital processing speed of CPLD prototype board was sufficient for correct equatorial mount guiding in real-time system.

Keywords: DSO astrophotography, image processing, twodimensionalconvolution method, two-dimensional filtering.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2259
9389 Programmable Logic Controller for Cassava Centrifugal Machine

Authors: R. Oonsivilai, M. Oonsivilai, J. Sanguemrum, N. Thumsirirat, A. Oonsivilai

Abstract:

Chaiyaphum Starch Co. Ltd. is one of many starch manufacturers that has introduced machinery to aid in manufacturing. Even though machinery has replaced many elements and is now a significant part in manufacturing processes, problems that must be solved with respect to current process flow to increase efficiency still exist. The paper-s aim is to increase productivity while maintaining desired quality of starch, by redesigning the flipping machine-s mechanical control system which has grossly low functional lifetime. Such problems stem from the mechanical control system-s bearings, as fluids and humidity can access into said bearing directly, in tandem with vibrations from the machine-s function itself. The wheel which is used to sense starch thickness occasionally falls from its shaft, due to high speed rotation during operation, while the shaft may bend from impact when processing dried bread. Redesigning its mechanical control system has increased its efficiency, allowing quality thickness measurement while increasing functional lifetime an additional 62 days.

Keywords: Control system, Machinery, Measurement, Potato starch

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2087
9388 Design of the Production Line Based On RFID through 3D Modeling

Authors: Aliakbar Akbari, Majid Hashemipour, Shiva Mirshahi

Abstract:

Radio-frequency identification has entered as a beneficial means with conforming GS1 standards to provide the best solutions in the manufacturing area. It competes with other automated identification technologies e.g. barcodes and smart cards with regard to high speed scanning, reliability and accuracy as well. The purpose of this study is to improve production line-s performance by implementing RFID system in the manufacturing area on the basis of radio-frequency identification (RFID) system by 3D modeling in the program Cinema 4D R13 which provides obvious graphical scenes for users to portray their applications. Finally, with regard to improving system performance, it shows how RFID appears as a well-suited technology in a comparison of the barcode scanner to handle different kinds of raw materials in the production line base on logical process.

Keywords: Radio Frequency Identification, Manufacturing and Production Lines, 3D modeling

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2097
9387 Analysis of Residual Strain and Stress Distributions in High Speed Milled Specimens using an Indentation Method

Authors: Felipe V. Díaz, Claudio A. Mammana, Armando P. M. Guidobono, Raúl E. Bolmaro

Abstract:

Through a proper analysis of residual strain and stress distributions obtained at the surface of high speed milled specimens of AA 6082–T6 aluminium alloy, the performance of an improved indentation method is evaluated. This method integrates a special device of indentation to a universal measuring machine. The mentioned device allows introducing elongated indents allowing to diminish the absolute error of measurement. It must be noted that the present method offers the great advantage of avoiding both the specific equipment and highly qualified personnel, and their inherent high costs. In this work, the cutting tool geometry and high speed parameters are selected to introduce reduced plastic damage. Through the variation of the depth of cut, the stability of the shapes adopted by the residual strain and stress distributions is evaluated. The results show that the strain and stress distributions remain unchanged, compressive and small. Moreover, these distributions reveal a similar asymmetry when the gradients corresponding to conventional and climb cutting zones are compared.

Keywords: Residual strain, residual stress, high speed milling, indentation methods, aluminium alloys.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1609
9386 Real-Time Defects Detection Algorithm for High-Speed Steel Bar in Coil

Authors: Se Ho Choi, Jong Pil Yun, Boyeul Seo, YoungSu Park, Sang Woo Kim

Abstract:

This paper presents a real-time defect detection algorithm for high-speed steel bar in coil. Because the target speed is very high, proposed algorithm should process quickly the large volumes of image for real-time processing. Therefore, defect detection algorithm should satisfy two conflicting requirements of reducing the processing time and improving the efficiency of defect detection. To enhance performance of detection, edge preserving method is suggested for noise reduction of target image. Finally, experiment results show that the proposed algorithm guarantees the condition of the real-time processing and accuracy of detection.

Keywords: Defect detection, edge preserving filter, real-time image processing, surface inspection.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 3281
9385 Application of Genetic Algorithm for FACTS-based Controller Design

Authors: Sidhartha Panda, N. P. Padhy, R.N.Patel

Abstract:

In this paper, genetic algorithm (GA) opmization technique is applied to design Flexible AC Transmission System (FACTS)-based damping controllers. Two types of controller structures, namely a proportional-integral (PI) and a lead-lag (LL) are considered. The design problem of the proposed controllers is formulated as an optimization problem and GA is employed to search for optimal controller parameters. By minimizing the time-domain based objective function, in which the deviation in the oscillatory rotor speed of the generator is involved; stability performance of the system is improved. The proposed controllers are tested on a weakly connected power system subjected to different disturbances. The non-linear simulation results are presented to show the effectiveness of the proposed controller and their ability to provide efficient damping of low frequency oscillations. It is also observed that the proposed SSSC-based controllers improve greatly the voltage profile of the system under severe disturbances. Further, the dynamic performances of both the PI and LL structured FACTS-controller are analyzed at different loading conditions and under various disturbance condition as well as under unbalanced fault conditions..

Keywords: Genetic algorithm, proportional-integral controller, lead-lag controller, power system stability, FACTS.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2526
9384 New Insight into Fluid Mechanics of Lorenz Equations

Authors: Yu-Kai Ting, Jia-Ying Tu, Chung-Chun Hsiao

Abstract:

New physical insights into the nonlinear Lorenz equations related to flow resistance is discussed in this work. The chaotic dynamics related to Lorenz equations has been studied in many papers, which is due to the sensitivity of Lorenz equations to initial conditions and parameter uncertainties. However, the physical implication arising from Lorenz equations about convectional motion attracts little attention in the relevant literature. Therefore, as a first step to understand the related fluid mechanics of convectional motion, this paper derives the Lorenz equations again with different forced conditions in the model. Simulation work of the modified Lorenz equations without the viscosity or buoyancy force is discussed. The time-domain simulation results may imply that the states of the Lorenz equations are related to certain flow speed and flow resistance. The flow speed of the underlying fluid system increases as the flow resistance reduces. This observation would be helpful to analyze the coupling effects of different fluid parameters in a convectional model in future work.

Keywords: Galerkin method, Lorenz equations, Navier-Stokes equations.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2294