Stability Enhancement of a Large-Scale Power System Using Power System Stabilizer Based on Adaptive Neuro Fuzzy Inference System
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 33093
Stability Enhancement of a Large-Scale Power System Using Power System Stabilizer Based on Adaptive Neuro Fuzzy Inference System

Authors: Agung Budi Muljono, I Made Ginarsa, I Made Ari Nrartha

Abstract:

A large-scale power system (LSPS) consists of two or more sub-systems connected by inter-connecting transmission. Loading pattern on an LSPS always changes from time to time and varies depend on consumer need. The serious instability problem is appeared in an LSPS due to load fluctuation in all of the bus. Adaptive neuro-fuzzy inference system (ANFIS)-based power system stabilizer (PSS) is presented to cover the stability problem and to enhance the stability of an LSPS. The ANFIS control is presented because the ANFIS control is more effective than Mamdani fuzzy control in the computation aspect. Simulation results show that the presented PSS is able to maintain the stability by decreasing peak overshoot to the value of −2.56 × 10−5 pu for rotor speed deviation Δω2−3. The presented PSS also makes the settling time to achieve at 3.78 s on local mode oscillation. Furthermore, the presented PSS is able to improve the peak overshoot and settling time of Δω3−9 to the value of −0.868 × 10−5 pu and at the time of 3.50 s for inter-area oscillation.

Keywords: ANFIS, large-scale, power system, PSS, stability enhancement.

Digital Object Identifier (DOI): doi.org/10.5281/zenodo.1126860

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1194

References:


[1] K. F. Zhang, X. Z. Dai, Structural analysis of large-scale power systems, Mathematica Problem in Eng., Hindawi Pub, 2012.
[2] Y. Y. Hsu, C. C. Su, Application of power system stabilizer on a system with pumped storage plant, IEEE Trans. on Power Syst., Vol. 3, No. 1,1988.
[3] M. Saidy, F. M. Hughes, Performance Improvement of a conventional power system stabilizer, Elect. Power and Energy Syst., Vol. 17 No. 5, 1995.
[4] L. S. Moulin, A. P. A. da Silva, M. A. El-Sharkawi, R.J. Marks II, Support vector machines for transient stability analysis of large-scale power systems, IEEE Trans. on Power Syst., Vol. 19, No. 2, 2004.
[5] I. M. Ginarsa, A. B. Muljono, I. M. A. Nrartha, Controlling chaos and voltage collapse using layered recurrent network-based PID-SVC in power systems, Telkomnika, Vol. 11, No. 3, 2013.
[6] A. B. Muljono, I. M. Ginarsa, I. M. A. Nrartha, Dynamic stability improvement using ANFIS-based power system stabilizer in a multimachine power system (In Bahasa Indonesia), Proc. of SENTIA, Polinema Malang, Vol. 7, pp. B16-B21, 2015.
[7] A. B. Muljono, I. M. Ginarsa, I. M. A. Nrartha, Dynamic stability improvement of multimachine power system using ANFIS-based power system stabilizer, Telkomnika, Vol. 7, pp. B16-B21, 2015.
[8] S. Mohagheghi, G. K. Venayagamoorthy, R.G. Harley,Adaptive critic design based neuro-fuzzy controller for a static compensator in a multimachine power system, IEEE Trans. on Power Syst., Vol. 21, No. 4,2006.
[9] I. M. Ginarsa, A. Soeprijanto, M. H. Purnomo, Controlling chaos and voltage collapse using an ANFIS-based composite controller-static var compensator in power systems, IJEPES, Vol. 46, pp. 79-88, 2013.
[10] I. M. Ginarsa, A. Soeprijanto, M. H. Purnomo, Syafaruddin, T. Hiyama, Improvement of transient voltage responses using an additional PID-loop on an ANFIS-based composite controller-SVC (CC-SVC) to control chaos and voltage collapse in power systems, IEEJ Trans. on Power and Energy (Section B), Vol. 131, No. 10, pp. 836-848, 2011.
[11] I. M. Ginarsa, A. B. Muljono, I. M. A. Nrartha, O. Zebua, Regulation of 12-pulse rectifier converter using ANFIS-based controller in a HVDC transmission system, in Integrated Sci-Tech: The Interdisciplinary Research Approach, Vol. 1, Chapt. 6, UPT Perpustakaan UNILA Lampung, pp. 44-53, 2015.
[12] N. Bawane, A. G. Kothari, D. P. Kothari, ANFIS based control and fault detection of HVDC converter, HAIT Journal of Science and Engineering B, Vol. 2, No. 5-6, pp. 673-689, 2011.
[13] I. M. Ginarsa, O. Zebua, Stability improvement of single machine using ANFIS-PSS based on feedback-linearization, Telkomnika, Vol. 12, No. 2, 2014.
[14] T. Hussein, A. Shamekh, Adaptive rule-base fuzzy power system stabilizer for a multi-machine system, Proc. of the MED Conf., pp.1415-1419, 2013.
[15] M. Kushwaha, R. Khare, Dynamic stability enhancement of power system using fuzzy Logic based power system stabilizer, Proc. of Int. Conf. on ICPEC, pp. 213-219, 2013.
[16] B. Shah, Comparative study of conventional and fuzzy based power system stabilizer, Proc. of Int. Conf. on CSNT, IEEE, pp. 547-551, 2013.
[17] S. Mohagheghi, G. K. Venayagamoorthy, R. G. Harley,Adaptive critic design based neuro-fuzzy controller for a static compensator in a multimachine power system, IEEE Trans. on Power Syst., Vol. 21, No. 4,2006.
[18] P. Kundur, Power system stability and control, EPRI. McGraw-Hill. New York, 1994.
[19] K. R. Padiyar, Power system dynamic stability and control, John Wiley and Sons (Asia) Pte Ltd, Singapura, 1994.
[20] J.-S. R. Jang, C. T. Sun and E. Mizutani, Neuro-fuzzy and soft computing: A computational approach to learning and machine intelligence, Prentice-Hall International, Inc., USA, 1997.
[21] Matlab, MATLAB Version 7.9.0.529 (2009b), The Matworks Inc, 2009.