{"title":"Signal Processing Approach to Study Multifractality and Singularity of Solar Wind Speed Time Series","authors":"Tushnik Sarkar, Mofazzal H. Khondekar, Subrata Banerjee","volume":122,"journal":"International Journal of Computer and Information Engineering","pagesStart":168,"pagesEnd":174,"ISSN":"1307-6892","URL":"https:\/\/publications.waset.org\/pdf\/10006285","abstract":"This paper investigates the nature of the fluctuation of the daily average Solar wind speed time series collected over a period of 2492 days, from 1^{st <\/sup>January, 1997 to 28th<\/sup> October, 2003. The degree of self-similarity and scalability of the Solar Wind Speed signal has been explored to characterise the signal fluctuation. Multi-fractal Detrended Fluctuation Analysis (MFDFA) method has been implemented on the signal which is under investigation to perform this task. Furthermore, the singularity spectra of the signals have been also obtained to gauge the extent of the multifractality of the time series signal.","references":"[1]\tF. Culot, \"Participation in the Norwegian Dayside Auroral Observation Programme on Svalbard,\" University de Versailles Saint-Quentin-en-Yvelines, 2000, available online from http:\/\/culot.org\/sources\/rapportmaitrise.doc, Accessed on 10\/06\/2016.\r\n[2]\tL. Telesca, V. Lapenna, and M. Macchiato, \u201cMultifractal fluctuations in earthquake-related geoelectrical signals,\u201d New J. Phys., 2005, vol. 7, pp. 214\u2013228.\r\n[3]\tR.G. Kavasseri, R. Nagarajan, \"A multifractal description of wind speed records,\" Chaos, Solitons & Fractals, 2005, vol. 24, pp. 165-173.\r\n[4]\tZ. Hong, D. Keqiang, \u201cMultifractal Analysis of Traffic Flow Time Series,\u201d Journal of Hebei University of Engineering, 2009, vol. 26, pp. 109-112.\r\n[5]\tK. M. Hossain, D. N. Ghosh,and K. Ghosh, \u201cInvestigating multifractality of solar irradiance data through wavelet based multifractal spectral analysis\u201d, Signal Process. Int. J. (SPIJ), 2009, vol. 3, No. 4, pp. 83-94.\r\n[6]\tC. Barman, H. Chaudhuri, D. Ghose, A. Deb, and B. Sinha, \u201cMultifractal Detrended Fluctuation Analysis of Seismic Induced Radon-222 Time Series, \u201dJournal of Earthquake Science and Engineering, 2014,Vol-1, PP 59-79.\r\n[7]\tH. Feng, Y. Xu \u201cMultifractal Detrended Fluctuation Analysis of WLAN Traffic, \u201dWireless Personal Communications, 2012, Volume 66, pp 385\u2013395.\r\n[8]\tS. M. Ossadnik, S. V. Buldyrev, A. L. Goldberger, \u201cCorrelation approach to identify coding regions in DNA sequences\u201d, Biophys.J,1994, vol. 67, pp. 64-70.\r\n[9]\tS. Benbachir, M. H. Alaoui,\u201d A Multifractal Detrended Fluctuation Analysis of the Moroccan Dirham with respect to the US Dollar,\u201d 2011, vol.6, No.2, pp. 287-300.\r\n[10]\tL. Erhui, M. Xingmin, Z. Guangju, and G. Peng,\u201d Multifractal Detrended Fluctuation Analysis of Streamflow in the Yellow River Basin, China,\u201d Water ,2015, vol.7, pp. 1670-1686.\r\n[11]\tJ. W. Kantelhardt, E. K. Bunde, H. H. Rego, S Havlin, and A. Bunde, \u201cDetecting long range correlations with detrended fluctuation analysis\u201d, Physica A, 2001, vol.295, No.3, pp. 441-454.\r\n[12]\t\tK. M. Hossain, D. N. Ghosh, K. Ghosh, and A. K. Bhattacharya, \u201cMultifractality and singularity of 8B solar neutrino flux signals from Sudbury Neutrino Observatory,\u201dIET Signal Process., 2011, vol.5, No.7, pp. 690-700.\r\n[13]\tJ. W. Kantelhardt, S. A. Zschiegner, and E. K. Bunde, \u201cMultifractal detrended fluctuation analysis on nonstationary time series, \u201dPhysica A, 2002, vol.316, No.1-4, pp. 87-114.\r\n[14]\tT. Sarkar, R. Ray, M. H. Khondekar, K. Ghosh, and S. Banerjee,\u201d Chaos and periodicity in solar wind speed: cycle 23,\u201d Astrophysics and Space Science, 2015, vol.357, No. 2, pp. 1-10.\r\n[15]\tP. Oswiecimka, J. Kwapien, and S. Drozdz, \u201cWavelet versus detrendedfluctuation analysis of multifractal structures, \u201dPhys. Rev. E, 2005, vol.74, No.1, pp. 1-17.\r\n[16]\tT. James, S. Eubank, A. Longtin, et al., \u201cTesting for nonlinearity in time series: the method of surrogate data, \u201dPhysica D: Nonl. Phen., 1992, vol. 58, No.1\u20134, pp. 77\u201394.","publisher":"World Academy of Science, Engineering and Technology","index":"Open Science Index 122, 2017"}}