Search results for: water deficit stress
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 3371

Search results for: water deficit stress

2951 Influential Effect of Self-Healing Treatment on Water Absorption and Electrical Resistance of Normal and Light Weight Aggregate Concretes

Authors: B. Tayebani, N. Hosseinibalam, D. Mostofinejad

Abstract:

Interest in using bacteria in cement materials due to its positive influences has been increased. Cement materials such as mortar and concrete basically suffer from higher porosity and water absorption compared to other building materials such as steel materials. Because of the negative side-effects of certain chemical techniques, biological methods have been proposed as a desired and environmentally friendly strategy for reducing concrete porosity and diminishing water absorption. This paper presents the results of an experimental investigation carried out to evaluate the influence of Sporosarcina pasteurii bacteria on the behaviour of two types of concretes (light weight aggregate concrete and normal weight concrete). The resistance of specimens to water penetration by testing water absorption and evaluating the electrical resistance of those concretes was examined and compared. As a conclusion, 20% increase in electrical resistance and 10% reduction in water absorption of lightweight aggregate concrete (LWAC) and for normal concrete the results show 7% decrease in water absorption and almost 10% increase in electrical resistance.

Keywords: Bacteria, biological method, normal weight concrete, lightweight aggregate concrete, water absorption, electrical resistance.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1006
2950 Maximum Water Hammer Sensitivity Analysis

Authors: Jalil Emadi, Abbas Solemani

Abstract:

Pressure waves and Water Hammer occur in a pumping system when valves are closed or opened suddenly or in the case of sudden failure of pumps. Determination of maximum water hammer is considered one of the most important technical and economical items of which engineers and designers of pumping stations and conveyance pipelines should take care. Hammer Software is a recent application used to simulate water hammer. The present study focuses on determining significance of each input parameter of the application relative to the maximum amount of water hammer estimated by the software. The study determines estimated maximum water hammer variations due to variations of input parameters including water temperature, pipe type, thickness and diameter, electromotor rpm and power, and moment of inertia of electromotor and pump. In our study, Kuhrang Pumping Station was modeled using WaterGEMS Software. The pumping station is characterized by total discharge of 200 liters per second, dynamic height of 194 meters and 1.5 kilometers of steel conveyance pipeline and transports water to Cheshme Morvarid for farmland irrigation. The model was run in steady hydraulic condition and transferred to Hammer Software. Then, the model was run in several unsteady hydraulic conditions and sensitivity of maximum water hammer to each input parameter was calculated. It is shown that parameters to which maximum water hammer is most sensitive are moment of inertia of pump and electromotor, diameter, type and thickness of pipe and water temperature, respectively.

Keywords: Pressure Wave, Water Hammer, Sensitivity Analysis, Hammer Software, Kuhrang, Cheshme Morvarid

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 3275
2949 Determination of Stress-Strain Characteristics of Railhead Steel using Image Analysis

Authors: Bandula-Heva, T., Dhanasekar, M.

Abstract:

True stress-strain curve of railhead steel is required to investigate the behaviour of railhead under wheel loading through elasto-plastic Finite Element (FE) analysis. To reduce the rate of wear, the railhead material is hardened through annealing and quenching. The Australian standard rail sections are not fully hardened and hence suffer from non-uniform distribution of the material property; usage of average properties in the FE modelling can potentially induce error in the predicted plastic strains. Coupons obtained at varying depths of the railhead were, therefore, tested under axial tension and the strains were measured using strain gauges as well as an image analysis technique, known as the Particle Image Velocimetry (PIV). The head hardened steel exhibit existence of three distinct zones of yield strength; the yield strength as the ratio of the average yield strength provided in the standard (σyr=780MPa) and the corresponding depth as the ratio of the head hardened zone along the axis of symmetry are as follows: (1.17 σyr, 20%), (1.06 σyr, 20%-80%) and (0.71 σyr, > 80%). The stress-strain curves exhibit limited plastic zone with fracture occurring at strain less than 0.1.

Keywords: Stress-Strain Curve, Tensile Test, Particle Image Velocimetry, Railhead Metal Properties

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 3446
2948 Chlorophyll Fluorescence as Criterion for the Diagnosis Salt Stress in Wheat (Triticum aestivum) Plants

Authors: M. Abdeshahian, M. Nabipour, M. Meskarbashee

Abstract:

To investigate effect of salt stress on Chlorophyll fluorescence four cultivars (fong,star,chamran and kharchia) of wheat (Triticum aestivum) plants subjected to salinity levels ( control,8,12 and 16 dsm-1 ) from one week after emergence to the end of stem elongation under greenhouse condition . results showed that quantum yield of photosystem II from light adopted leaves (ΦPSII), Photochemical quenching (qP) ,quantum yield of dark adopted leaves (fv/fm) and non photochemical quenching (NPq) were affected by salt stress . Salinity levels affected photosynthetic rate. Star and fong cultivars showed minimum and maximum levels of photosynthetic rate in respectively. Minimum photosynthetic rate differences between levels of salinity were shown in Kharchia. Shoot dry matter of all cultivars decreased by increasing salinity levels. Results showed that non photochemical quenching by salinity levels attribute to the decreases in shoot dry matter.

Keywords: salt stress, wheat, chlorophyll fluorescence, photosynthesis , shoot dry matter .

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2480
2947 Subcritical Water Extraction of Mannitol from Olive Leaves

Authors: S. M. Ghoreishi, R. Gholami Shahrestani, S. H. Ghaziaskar

Abstract:

Subcritical water extraction was investigated as a novel and alternative technology in the food and pharmaceutical industry for the separation of Mannitol from olive leaves and its results was compared with those of Soxhlet extraction. The effects of temperature, pressure, and flow rate of water and also momentum and mass transfer dimensionless variables such as Reynolds and Peclet Numbers on extraction yield and equilibrium partition coefficient were investigated. The 30-110 bars, 60-150°C, and flow rates of 0.2-2 mL/min were the water operating conditions. The results revealed that the highest Mannitol yield was obtained at 100°C and 50 bars. However, extraction of Mannitol was not influenced by the variations of flow rate. The mathematical modeling of experimental measurements was also investigated and the model is capable of predicting the experimental measurements very well. In addition, the results indicated higher extraction yield for the subcritical water extraction in contrast to Soxhlet method.

Keywords: Extraction, Mannitol, Modeling, Olive leaves, Soxhlet extraction, Subcritical water.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 3066
2946 Dispersion of a Solute in Peristaltic Motion of a Couple Stress Fluid in the Presence of Magnetic Field

Authors: Habtu Alemayehu, G. Radhakrishnamacharya

Abstract:

An analytical solution for dispersion of a solute in the peristaltic motion of a couple stress fluid in the presence of magnetic field with both homogeneous and heterogeneous chemical reactions is presented. The average effective dispersion coefficient has been found using Taylor-s limiting condition and long wavelength approximation. The effects of various relevant parameters on the average effective coefficient of dispersion have been studied. The average effective dispersion coefficient tends to decrease with magnetic field parameter, homogeneous chemical reaction rate parameter and amplitude ratio but tends to increase with heterogeneous chemical reaction rate parameter.

Keywords: Dispersion, Peristalsis, Couple stress fluid, Chemicalreaction, Magnetic field.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1777
2945 The Behavior of Self-Compacting Light Weight Concrete Produced by Magnetic Water

Authors: Moosa Mazloom, Hojjat Hatami

Abstract:

The aim of this article is to access the optimal mix design of self-compacting light weight concrete. The effects of magnetic water, superplasticizer based on polycarboxylic-ether, and silica fume on characteristics of this type of concrete are studied. The workability of fresh concrete and the compressive strength of hardened concrete are considered here. For this purpose, nine mix designs were studied. The percentages of superplasticizer were 0.5, 1, and 2% of the weight of cement, and the percentages of silica fume were 0, 6, and 10% of the weight of cement. The water to cementitious ratios were 0.28, 0.32, and 0.36. The workability of concrete samples was analyzed by the devices such as slump flow, V-funnel, L box, U box, and Urimet with J ring. Then, the compressive strengths of the mixes at the ages of 3, 7, 28, and 90 days were obtained. The results show that by using magnetic water, the compressive strengths are improved at all the ages. In the concrete samples with ordinary water, more superplasticizer dosages were needed. Moreover, the combination of superplasticizer and magnetic water had positive effects on the mixes containing silica fume and they could flow easily.

Keywords: Magnetic water, self-compacting light weight concrete, silica fume, superplasticizer.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1292
2944 Experimental Investigation of Gas Bubble Behaviours in a Domestic Heat Pump Water Heating System

Authors: J. B. Qin, X. H. Jiang, Y. T. Ge

Abstract:

The growing awareness of global warming potential has internationally aroused interest and demand in reducing greenhouse gas emissions produced by human activity. Much national energy in the UK had been consumed in the residential sector mainly for space heating and domestic hot water production. Currently, gas boilers are mostly applied in the domestic water heating which contribute significantly to excessive CO2 emissions and consumption of primary energy resources. The issues can be solved by popularizing heat pump systems that are attributable to higher performance efficiency than those of traditional gas boilers. Even so, the heat pump system performance can be further enhanced if the dissolved gases in its hot water circuit can be efficiently discharged.  To achieve this target, the bubble behaviors in the heat pump water heating system need to be extensively investigated. In this paper, by varying different experimental conditions, the effects of various heat pump hot water side parameters on gas microbubble diameters were measured and analyzed. Correspondingly, the effect of each parameter has been investigated. These include varied system pressures, water flow rates, saturation ratios and heat outputs. The results measurement showed that the water flow rate is the most significant parameter to influence on gas microbubble productions. The research outcomes can significantly contribute to the understanding of gas bubble behaviors at domestic heat pump water heating systems and thus the efficient way for the discharging of the associated dissolved gases.  

Keywords: Dissolved gases in water, heat pump, domestic water heating system, microbubble formation.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 841
2943 Water Quality and Freshwater Fish Diversity at Khao Luang National Park, Thailand

Authors: S. Sutin, M. Jaroensutasinee, K. Jaroensutasinee

Abstract:

Water quality and freshwater fish diversity from nine waterfalls at Khao Luang National Park, Thailand was examined. Streams were shallow, fast flowing with clear water and rocky and sandy substrate. The mean water quality of waterfalls at Khao Luang National Park were as following pH 7.50, air temperature 24.27 °C, water temperature 26.37 °C, dissolved oxygen 7.88 mg/l, hardness 4.44-21.33 mg/l, alkalinity 3.55-11.88 mg/(as CaCO3). Twenty fish species were found at Khao Luang National Park belonging to nine families. A cluster analysis of water quality at Khao Luang National Park revealed that waterfalls at Khao Luang National Park were divided into two groups: A and B. Group A composed of two waterfalls (i.e. Aie Kaew and Wangmaipak) that flew to the Gulf of Thailand side. Group B composed of seven waterfalls (i.e. Promlok, Kalom, Nuafa, Suankun, Soidaw, Suanhai, and Thapae) that flew to the Andaman Sea side (Fig. 2) .The Cyprinids represented the major species in all the waterfalls comprising of 45%.

Keywords: Water quality, Freshwater fishes, National Park, Khao Luang, Thailand.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2068
2942 Evaluation of Antiglycation Effects of Extracts Obtained from Canarium album Raeusch Fruit and Beneficial Activity on Advanced Glycation Endproduct-Mediated Oxidative Stress and Inflammation in Monocytes and Vascular Endothelial Cells

Authors: Chiung-Tsun Kuoa, Tzu-Hao Liu, Fang-Yi Lin, Tai-Hao Hsu, Hui-Yin Chen

Abstract:

Hyperglycemia-mediated accumulation of advanced glycation end-products (AGEs) play a pivotal role in the development of diabetic complications by inducing inflammation. In the present study, we evaluated the possible effects of water/ethanol (1/1, v/v) extracts (WEE) and its fractions from Canarium album Raeusch. (Chinese olive) which is a fruit used on AGEs-stimulated oxidative stress and inflammation in monocytes and vascular endothelial cells. Co-incubation of EA.hy926 endothelial cells with WEE and its fractions for 24h resulted in a significant decrease of monocyte–endothelial cell adhesion, the expression of ICAM-1, generation of intracellular ROS and depletion of GSH induced by AGEs. Chinese olive fruit extracts also reduced the expression of pro-inflammatory mediates, such as TNF-α, IL-1β and IL-6 in THP-1 cells. These findings suggested that Chinese olive fruit was able to protect vascular endothelium from dysfunction induced by AGEs. 

Keywords: Advanced glycation end-products (AGEs), Canarium album Raeusch, endothelial dysfunction, inflammation.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1674
2941 Soil-Cement Floor Produced with Alum Water Treatment Residues

Authors: Flavio Araujo, Paulo Scalize, Julio Lima, Natalia Vieira, Antonio Albuquerque, Isabela Santos

Abstract:

From a concern regarding the environmental impacts caused by the disposal of residues generated in Water Treatment Plants (WTP's), alternatives ways have been studied to use these residues as raw material for manufacture of building materials, avoiding their discharge on water streams, disposal on sanitary landfills or incineration. This paper aims to present the results of a research work, which is using WTR for replacing the soil content in the manufacturing of soil-cement floor with proportions of 0, 5, 10 and 15%. The samples tests showed a reduction mechanical strength in so far as has increased the amount of waste. The water absorption was below the maximum of 6% required by the standard. The application of WTR contributes to the reduction of the environmental damage in the water treatment industry.

Keywords: Residue, soil-cement floor, sustainable, WTP.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1251
2940 A Performance Analysis Study of an Active Solar Still Integrating Fin at the Basin Plate

Authors: O. Ansari, H. Hafs, A. Bah, M. Asbik, M. Malha, M. Bakhouya

Abstract:

Water is one of the most important and vulnerable natural resources due to human activities and climate change. Water-level continues declining year after year and it is primarily caused by sustained, extensive, and traditional usage methods. Improving water utilization becomes an urgent issue in order satisfy the increasing population needs. Desalination of seawater or brackish water could help in increasing water potential. However, a cost-effective desalination process is required. The most appropriate method for performing this desalination is solar-driven distillation, given its simplicity, low cost and especially the availability of the solar energy source. The main objective of this paper is to demonstrate the influence of coupling integrated basin plate by fins with preheating by solar collector on the performance of solar still. The energy balance equations for the various elements of the solar still are introduced. A numerical example is used to show the efficiency of the proposed solution.

Keywords: Active solar still, Brackisch water, desalination, fins, solar collector.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 804
2939 Numerical Simulation of Punching Shear of Flat Plates with Low Reinforcement

Authors: Fatema-Tuz-Zahura, Raquib Ahsan

Abstract:

Punching shear failure is usually the governing failure mode of flat plate structures. Punching failure is brittle in nature which induces more vulnerability to this type of structure. In the present study, a 3D finite element model of a flat plate with low reinforcement ratio and without any transverse reinforcement has been developed. Punching shear stress and the deflection data were obtained on the surface of the flat plate as well as through the thickness of the model from numerical simulations. The obtained data were compared with the experimental results. Variation of punching stress with respect to deflection as obtained from numerical results is found to be in good agreement with the experimental results; the range of variation of punching stress is within 5%. The numerical simulation shows an early and gradual onset of nonlinearity, whereas the same is late and abrupt as observed in the experimental results. The range of variation of punching stress for different slab thicknesses between experimental and numerical results is less than 15%. The developed numerical model is useful to complement available punching test series performed in the past. The results obtained from the numerical model will be helpful for designing retrofitting schemes of flat plates.

Keywords: Flat plate, finite element model, punching shear, reinforcement ratio.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1429
2938 Study and Evaluation of Added Stresses under Foundation due to Adjacent Structure

Authors: Alireza M. goltabar, Issa shooshpasha , Reza Shamstabar kami , Mostafa Habibi

Abstract:

Added stresses due to adjacent structure should be considered in foundation design and stress control in soil under the structure. This case is considered less than other cases in design and calculation whereas stresses in implementation are greater than analytical stress. Structure load are transmitted to earth by foundation and role of foundation is propagation of load on the continuous and half extreme soil. This act cause that, present stresses lessen to allowable strength of soil. Some researchers such as Boussinesq and westergaurd by using of some assumption studied on this issue, theorically. Target of this paper is study and evaluation of added stresses under structure due to adjacent structure. For this purpose, by using of assumption, theoric relation and numeral methods, effects of adjacent structure with 4 to 10 storeys on the main structure with 4 storeys are studied and effect of parameters and sensitivity of them are evaluated.

Keywords: stress, soil, adjacent structure, foundation, loading.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1454
2937 Development of Total Maximum Daily Load Using Water Quality Modelling as an Approach for Watershed Management in Malaysia

Authors: S. A. Che Osmi, W. M. F. Wan Ishak, H. Kim, M. A. Azman, M. A. Ramli

Abstract:

River is one of important water sources for many activities including industrial and domestic usage such as daily usage, transportation, power supply and recreational activities. However, increasing activities in a river has grown the sources of pollutant enters the water bodies, and degraded the water quality of the river. It becomes a challenge to develop an effective river management to ensure the water sources of the river are well managed and regulated. In Malaysia, several approaches for river management have been implemented such as Integrated River Basin Management (IRBM) program for coordinating the management of resources in a natural environment based on river basin to ensure their sustainability lead by Department of Drainage and Irrigation (DID), Malaysia. Nowadays, Total Maximum Daily Load (TMDL) is one of the best approaches for river management in Malaysia. TMDL implementation is regulated and implemented in the United States. A study on the development of TMDL in Malacca River has been carried out by doing water quality monitoring, the development of water quality model by using Environmental Fluid Dynamic Codes (EFDC), and TMDL implementation plan. The implementation of TMDL will help the stakeholders and regulators to control and improve the water quality of the river. It is one of the good approaches for river management in Malaysia.

Keywords: EFDC, river management, TMDL, water quality modelling.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1576
2936 Alleviation of Adverse Effects of Salt Stress on Soybean (Glycine max. L.) by Using Osmoprotectants and Organic Nutrients

Authors: Ayman El Sabagh, Sobhy Sorour, Abd Elhamid Omar, Adel Ragab, Mohammad Sohidul Islam, Celaleddin Barutçular, Akihiro Ueda, Hirofumi Saneoka

Abstract:

Salinity is one of the major factors limiting crop production in an arid environment. Despite its global importance soybean production suffer the problems of salinity stress causing damages at plant development. So it is implacable to either search for salinity enhancement of soybean plants. Therefore, in the current study we try to clarify the mechanism that might be involved in the ameliorating effects of osmo-protectants such as proline and glycine betaine as well as, compost application on soybean plants grown under salinity stress. The experiment was conducted under greenhouse conditions at the Graduate School of Biosphere Science Laboratory of Hiroshima University, Japan in 2011. The experiment was designed as a spilt-split plot based on randomized complete block design with four replications. The treatments could be summarized as follows; (i) salinity concentrations (0 and 15 mM), (ii) compost treatments (0 and 24 t ha-1) and (iii) the exogenous, proline and glycine betaine concentrations (0 mM and 25 mM) for each. Results indicated that salinity stress induced reduction in growth and physiological aspects (dry weight per plant, chlorophyll content, N and K+ content) of soybean plant compared with those of the unstressed plants. On the other hand, salinity stress led to increases in the electrolyte leakage ratio, Na and proline contents. Special attention was paid to, the tolerance against salt stress was observed, the improvement of salt tolerance resulted from proline, glycine betaine and compost were accompanied with improved K+, and proline accumulation. While, significantly decreased electrolyte leakage ratio and Na+ content. These results clearly demonstrate that harmful effect of salinity could reduce on growth aspects of soybean. Consequently, exogenous osmoprotectants combine with compost will effectively solve seasonal salinity stress problem and are a good strategy to increase salinity resistance of soybean in the drylands.

Keywords: Compost, glycine betaine, growth, proline, salinity tolerance, soybean.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 3229
2935 Growth and Stomatal Responses of Bread Wheat Genotypes in Tolerance to Salt Stress

Authors: Afrasyab Rahnama, Kazem Poustini, Reza Tavakkol-Afshari, Afshin Tavakoli

Abstract:

Plant growth is affected by the osmotic stress as well as toxicity of salt in leaves. In order to study of salt stress effects on stomatal conductance and growth rate and relationship between them as wells osmotic and Na+-specific effects on these traits, four bread wheat genotypes differing in salt tolerance were selected. Salinity was applied when the leaf 4 was fully expanded. Sodium (Na+) concentrations in flag leaf blade at 3 salinity levels (0, 100 and 200 mM NaCl) were measured. Salt-tolerant genotypes showed higher stomatal conductance and growth rate compared to salt-sensitive ones. After 10 and 20 days exposure to salt, stomatal conductance and relative growth rate were reduced, but the reduction was greater in sensitive genotypes. Growth rate was reduced severely in the first period (1-10 days) of salt commencements and it was due to osmotic effect of salt not Na+ toxicity. In the second period (11-20 days) after salt treatment growth reduced only when salt accumulated to toxic concentrations in the leaves. A positive relationship between stomatal conductance and relative growth rate showed that stomatal conductance can be a reliable indicator of growth rate, and finally can be considered as a sensitive indicator of the osmotic stress. It seems 20 days after salinity, the major effect of salt, especially at low to moderate salinity levels on growth properties was due to the osmotic effect of salt, not to Na+-specific effects within the plant.

Keywords: Osmotic stress, relative growth rate, stomatal conductance, wheat.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2285
2934 Effects of Irrigation Scheduling and Soil Management on Maize (Zea mays L.) Yield in Guinea Savannah Zone of Nigeria

Authors: I. Alhassan, A. M. Saddiq, A. G. Gashua, K. K. Gwio-Kura

Abstract:

The main objective of any irrigation program is the development of an efficient water management system to sustain crop growth and development and avoid physiological water stress in the growing plants. Field experiment to evaluate the effects of some soil moisture conservation practices on yield and water use efficiency (WUE) of maize was carried out in three locations (i.e. Mubi and Yola in the northern Guinea Savannah and Ganye in the southern Guinea Savannah of Adamawa State, Nigeria) during the dry seasons of 2013 and 2014. The experiment consisted of three different irrigation levels (7, 10 and 12 day irrigation intervals), two levels of mulch (mulch and un-mulched) and two tillage practices (no tillage and minimum tillage) arranged in a randomized complete block design with split-split plot arrangement and replicated three times. The Blaney-Criddle method was used for measuring crop evapotranspiration. The results indicated that seven-day irrigation intervals and mulched treatment were found to have significant effect (P>0.05) on grain yield and water use efficiency in all the locations. The main effect of tillage was non-significant (P<0.05) on grain yield and WUE. The interaction effects of irrigation and mulch were significant (P>0.05) on grain yield and WUE at Mubi and Yola. Generally, higher grain yield and WUE were recorded on mulched and seven-day irrigation intervals, whereas lower values were recorded on un-mulched with 12-day irrigation intervals. Tillage exerts little influence on the yield and WUE. Results from Ganye were found to be generally higher than those recorded in Mubi and Yola; it also showed that an irrigation interval of 10 days with mulching could be adopted for the Ganye area, while seven days interval is more appropriate for Mubi and Yola.

Keywords: Irrigation, maize, mulching, tillage, guinea savannah.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1091
2933 Physicochemical Parameters of Tap Water in Dhahran, Saudi Arabia: An Empirical Assessment

Authors: Ahmed A. Hassan, Bassam Tawabini

Abstract:

In this study, the physicochemical parameters of Dhahran tap water were assessed to determine its suitability for drinking purposes. A total of 45 water samples were collected from different locations. The results indicate temperature ranges of 19.76 to 22.86 °C, pH (6.5 to 8.23), dissolved oxygen (4.21 to 8.32 mg/L), conductivity (232 to 2586 uS/cm), turbidity (0.17 to 0.37 Nephelometric Turbidity unit (NTU)), total dissolved solids (93 to 1671 mg/L), total alkalinity (4.11 to 24.04 mg/L), calcium (0.02 to 164 mg/L), magnesium (0 .6 to 77.9 mg/L), chloride (32.7 to 568.7 mg/L), nitrate (0.02 to 3 mg/L), fluoride (0.001 to 0.591 mg/L), sodium (18.4 to 232 mg/L), potassium (0.5 to 26.4 mg/L), and sulphate (2.39 to 258 mg/L). The results were compared with the drinking water standards recommended by the World Health Organization (WHO) and the United States Environmental Protection Agency (USEPA). The study determined that though the levels of most of the physicochemical parameters comply with the standards, however, slight deviations exist. This is evident in the values of the physical parameters (conductivity and total dissolved solids), and the chemical parameters (sulphate, chloride, and sodium) recorded at a few sample sites.

Keywords: Physicochemical parameters, tap water, water quality, Dhahran.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 527
2932 Simulation of Increased Ambient Ozone to Estimate Nutrient Content and Genetic Change in Two Thai Soybean Cultivars

Authors: Orose Rugchati, Kanita Thanacharoenchanaphas

Abstract:

This research studied the simulation of increased ambient ozone to estimate nutrient content and genetic changes in two Thai soybean cultivars (Chiang Mai 60 and Srisumrong 1). Ozone stress conditions affected proteins and lipids. It was found that proteins decreased, but lipids increased. Srisumrong 1 cultivars were more sensitive to ozone stress than Chiang Mai 60 cultivars. The effect of ozone stress conditions on plant phenotype and genotype was analyzed using the AFLP technique for the 2 Thai soybean cultivars (Chiang Mai 60 and Srisumrong 1).

Keywords: simulation, ambient ozone estimate, nutrient content, genetic changes , Thai soybean

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1382
2931 A Topology for High Voltage Gain Half-Bridge Z-Source Inverter with Low Voltage Stress on Capacitors

Authors: M. Nageswara Rao

Abstract:

In this paper, a topology for high voltage gain half-bridge z-source inverter with low voltage stress on capacitors is proposed. The proposed inverter has only one impedance network. It can generate symmetric and asymmetric voltages with different magnitudes during both half-cycles. By selecting the duty cycle it can also produce conventional half-bridge inverter characteristics. It is used in special applications like, electrochemical and electro plating applications. Calculations of voltage ripple of capacitors, capacitors voltage stress inductors current ripple are presented. The proposed topology is simulated using PSCAD software and the simulated values are compared with the theoretical values.

Keywords: Half-bridge inverter, impedance network-source inverter, high voltage gain inverter, power system computer aided design.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 778
2930 Temperature Control of Industrial Water Cooler using Hot-gas Bypass

Authors: Jung-in Yoon, Seung-taek Oh, Seung-moon Baek, Jun-hyuk Choi, Jong-yeong Byun, Seok-kwon Jeong, Choon-guen Moon

Abstract:

In this study, we experiment on precise control outlet temperature of water from the water cooler with hot-gas bypass method based on PI control logic for machine tool. Recently, technical trend for machine tools is focused on enhancement of speed and accuracy. High speedy processing causes thermal and structural deformation of objects from the machine tools. Water cooler has to be applied to machine tools to reduce the thermal negative influence with accurate temperature controlling system. The goal of this study is to minimize temperature error in steady state. In addition, control period of an electronic expansion valve were considered to increment of lifetime of the machine tools and quality of product with a water cooler.

Keywords: Hot-gas bypass, Water cooler, PI control, Electronic Expansion Valve, Gain tuning

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 3160
2929 iDENTM Phones Automated Stress Testing

Authors: Wei Hoo Chong

Abstract:

System testing is actually done to the entire system against the Functional Requirement Specification and/or the System Requirement Specification. Moreover, it is an investigatory testing phase, where the focus is to have almost a destructive attitude and test not only the design, but also the behavior and even the believed expectations of the customer. It is also intended to test up to and beyond the bounds defined in the software/hardware requirements specifications. In Motorola®, Automated Testing is one of the testing methodologies uses by GSG-iSGT (Global Software Group - iDEN TM Subcriber Group-Test) to increase the testing volume, productivity and reduce test cycle-time in iDEN TM phones testing. Testing is able to produce more robust products before release to the market. In this paper, iHopper is proposed as a tool to perform stress test on iDEN TM phonse. We will discuss the value that automation has brought to iDEN TM Phone testing such as improving software quality in the iDEN TM phone together with some metrics. We will also look into the advantages of the proposed system and some discussion of the future work as well.

Keywords: Testing, automated testing, stress testing, software quality.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1491
2928 Effects of Drought on Yield and Some Yield Components of Chickpea

Authors: E. Ceyhan, M. Önder, A. Kahraman, R. Topak, M.K. Ateş, S. Karadas, M.A. Avcı

Abstract:

This research was conducted to determine responses of chickpeas to drought in different periods (early period, late period, no-irrigation, two times irrigation as control). The trial was made in “Randomized Complete Block Design" with three replications on 2010 and 2011 years in Konya-Turkey. Genotypes were consisted from 7 lines of ICARDA, 2 certified lines and 1 local population. The results showed that; as means of years and genotypes, early period stress showed highest (207.47 kg da-1) seed yield and it was followed by control (202.33 kg da-1), late period (144.64 kg da-1) and normal (106.93 kg da-1) stress applications. The genotypes were affected too much by drought and, the lowest seed was taken from non-irrigated plots. As the means of years and stress applications, the highest (196.01 kg da-1) yield was taken from genotype 22255. The reason of yield variation could be derived from different responses of genotypes to drought.

Keywords: Chickpea, drought, seed yield.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1959
2927 Managing City Pipe Leaks through Community Participation Using a Web and Mobile Application in South Africa

Authors: Mpai Mokoena, Nsenda Lukumwena

Abstract:

South Africa is one of the driest countries in the world and is facing a water crisis. In addition to inadequate infrastructure and poor planning, the country is experiencing high rates of water wastage due to pipe leaks. This study outlines the level of water wastage and develops a smart solution to efficiently manage and reduce the effects of pipe leaks, while monitoring the situation before and after fixing the pipe leaks. To understand the issue in depth, a literature review of journal papers and government reports was conducted. A questionnaire was designed and distributed to the general public. Additionally, the municipality office was contacted from a managerial perspective. The analysis from the study indicated that the majority of the citizens are aware of the water crisis and are willing to participate positively to decrease the level of water wasted. Furthermore, the response from the municipality acknowledged that more practical solutions are needed to reduce water wastage, and resources to attend to pipe leaks swiftly. Therefore, this paper proposes a specific solution for municipalities, local plumbers and citizens to minimize the effects of pipe leaks. The solution provides web and mobile application platforms to report and manage leaks swiftly. The solution is beneficial to the country in achieving water security and would promote a culture of responsibility toward water usage.

Keywords: Urban Distribution Networks, leak management, mobile application, responsible citizens, water crisis, water security.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 694
2926 Secondary Effects on Water Vapor Transport Properties Measured by Cup Method

Authors: Z. Pavlík, J. Fořt, J. Žumár, M. Pavlíková, R. Černý

Abstract:

The cup method is applied for the measurement of water vapor transport properties of porous materials worldwide. However, in practical applications the experimental results are often used without taking into account some secondary effects which can play an important role under specific conditions. In this paper, the effect of temperature on water vapor transport properties of cellular concrete is studied, together with the influence of sample thickness. At first, the bulk density, matrix density, total open porosity and sorption and desorption isotherms are measured for material characterization purposes. Then, the steady state cup method is used for determination of water vapor transport properties, whereas the measurements are performed at several temperatures and for three different sample thicknesses.

Keywords: Water vapor transport, cellular concrete, cup method, temperature, sample thickness.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1896
2925 Acceptance and Commitment Therapy for Work Stress: Variation in Perceived Group Process and Outcomes

Authors: William H. O'Brien, Erin Bannon, M.A., Heather McCarren, Eileen Delaney

Abstract:

Employees commonly encounter unpredictable and unavoidable work related stressors. Exposure to such stressors can evoke negative appraisals and associated adverse mental, physical, and behavioral responses. Because Acceptance and Commitment Therapy (ACT) emphasizes acceptance of unavoidable stressors and diffusion from negative appraisals, it may be particularly beneficial for work stress. Forty-five workers were randomly assigned to an ACT intervention for work stress (n = 21) or a waitlist control group (n = 24). The intervention consisted of two 3-hour sessions spaced one week apart. An examination of group process and outcomes was conducted using the Revised Sessions Rating Scale. Results indicated that the ACT participants reported that they perceived the intervention to be supportive, task focused, and without adverse therapist behaviors (e.g., feelings of being criticized or discounted). Additionally, the second session (values clarification and commitment to action) was perceived to be more supportive and task focused than the first session (mindfulness, defusion). Process ratings were correlated with outcomes. Results indicated that perceptions of therapy supportiveness and task focus were associated with reduced psychological distress and improved perceived physical health.

Keywords: Work stress, Acceptance and Commitment Therapy, therapy process.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2302
2924 Impacts of Climate Change on Water Resources of Greater Zab and Lesser Zab Basins, Iraq, Using Soil and Water Assessment Tool Model

Authors: Nahlah Abbas, Saleh A. Wasimi, Nadhir Al-Ansari

Abstract:

The Greater Zab and Lesser Zab are the major tributaries of Tigris River contributing the largest flow volumes into the river. The impacts of climate change on water resources in these basins have not been well addressed. To gain a better understanding of the effects of climate change on water resources of the study area in near future (2049-2069) as well as in distant future (2080-2099), Soil and Water Assessment Tool (SWAT) was applied. The model was first calibrated for the period from 1979 to 2004 to test its suitability in describing the hydrological processes in the basins. The SWAT model showed a good performance in simulating streamflow. The calibrated model was then used to evaluate the impacts of climate change on water resources. Six general circulation models (GCMs) from phase five of the Coupled Model Intercomparison Project (CMIP5) under three Representative Concentration Pathways (RCPs) RCP 2.6, RCP 4.5, and RCP 8.5 for periods of 2049-2069 and 2080-2099 were used to project the climate change impacts on these basins. The results demonstrated a significant decline in water resources availability in the future.

Keywords: Tigris River, climate change, water resources, SWAT.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1423
2923 Determination of Optimal Stress Locations in 2D–9 Noded Element in Finite Element Technique

Authors: Nishant Shrivastava, D. K. Sehgal

Abstract:

In Finite Element Technique nodal stresses are calculated through displacement as nodes. In this process, the displacement calculated at nodes is sufficiently good enough but stresses calculated at nodes are not sufficiently accurate. Therefore, the accuracy in the stress computation in FEM models based on the displacement technique is obviously matter of concern for computational time in shape optimization of engineering problems. In the present work same is focused to find out unique points within the element as well as the boundary of the element so, that good accuracy in stress computation can be achieved. Generally, major optimal stress points are located in domain of the element some points have been also located at boundary of the element where stresses are fairly accurate as compared to nodal values. Then, it is subsequently concluded that there is an existence of unique points within the element, where stresses have higher accuracy than other points in the elements. Therefore, it is main aim is to evolve a generalized procedure for the determination of the optimal stress location inside the element as well as at the boundaries of the element and verify the same with results from numerical experimentation. The results of quadratic 9 noded serendipity elements are presented and the location of distinct optimal stress points is determined inside the element, as well as at the boundaries. The theoretical results indicate various optimal stress locations are in local coordinates at origin and at a distance of 0.577 in both directions from origin. Also, at the boundaries optimal stress locations are at the midpoints of the element boundary and the locations are at a distance of 0.577 from the origin in both directions. The above findings were verified through experimentation and findings were authenticated. For numerical experimentation five engineering problems were identified and the numerical results of 9-noded element were compared to those obtained by using the same order of 25-noded quadratic Lagrangian elements, which are considered as standard. Then root mean square errors are plotted with respect to various locations within the elements as well as the boundaries and conclusions were drawn. After numerical verification it is noted that in a 9-noded element, origin and locations at a distance of 0.577 from origin in both directions are the best sampling points for the stresses. It was also noted that stresses calculated within line at boundary enclosed by 0.577 midpoints are also very good and the error found is very less. When sampling points move away from these points, then it causes line zone error to increase rapidly. Thus, it is established that there are unique points at boundary of element where stresses are accurate, which can be utilized in solving various engineering problems and are also useful in shape optimizations.

Keywords: Finite element, Lagrangian, optimal stress location, serendipity.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 633
2922 Solubility of Water in CO2 Mixtures at Pipeline Operation Conditions

Authors: Mohammad Ahmad, Sander Gersen, Erwin Wilbers

Abstract:

Carbon capture, transport and underground storage have become a major solution to reduce CO2 emissions from power plants and other large CO2 sources. A big part of this captured CO2 stream is transported at high pressure dense phase conditions and stored in offshore underground depleted oil and gas fields. CO2 is also transported in offshore pipelines to be used for enhanced oil and gas recovery. The captured CO2 stream with impurities may contain water that causes severe corrosion problems, flow assurance failure and might damage valves and instrumentations. Thus, free water formation should be strictly prevented. The purpose of this work is to study the solubility of water in pure CO2 and in CO2 mixtures under real pipeline pressure (90-150 bar) and temperature operation conditions (5-35°C). A set up was constructed to generate experimental data. The results show the solubility of water in CO2 mixtures increasing with the increase of the temperature or/and with the increase in pressure. A drop in water solubility in CO2 is observed in the presence of impurities. The data generated were then used to assess the capabilities of two mixture models: the GERG-2008 model and the EOS-CG model. By generating the solubility data, this study contributes to determine the maximum allowable water content in CO2 pipelines.

Keywords: Carbon capture and storage, water solubility, equation of states.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2914