Search results for: minimum mean squre error (MMSE)
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 2041

Search results for: minimum mean squre error (MMSE)

1621 Verification of Protocol Design using UML - SMV

Authors: Prashanth C.M., K. Chandrashekar Shet

Abstract:

In recent past, the Unified Modeling Language (UML) has become the de facto industry standard for object-oriented modeling of the software systems. The syntax and semantics rich UML has encouraged industry to develop several supporting tools including those capable of generating deployable product (code) from the UML models. As a consequence, ensuring the correctness of the model/design has become challenging and extremely important task. In this paper, we present an approach for automatic verification of protocol model/design. As a case study, Session Initiation Protocol (SIP) design is verified for the property, “the CALLER will not converse with the CALLEE before the connection is established between them ". The SIP is modeled using UML statechart diagrams and the desired properties are expressed in temporal logic. Our prototype verifier “UML-SMV" is used to carry out the verification. We subjected an erroneous SIP model to the UML-SMV, the verifier could successfully detect the error (in 76.26ms) and generate the error trace.

Keywords: Unified Modeling Language, Statechart, Verification, Protocol Design, Model Checking.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1855
1620 Two Iterative Algorithms to Compute the Bisymmetric Solution of the Matrix Equation A1X1B1 + A2X2B2 + ... + AlXlBl = C

Authors: A.Tajaddini

Abstract:

In this paper, two matrix iterative methods are presented to solve the matrix equation A1X1B1 + A2X2B2 + ... + AlXlBl = C the minimum residual problem l i=1 AiXiBi−CF = minXi∈BRni×ni l i=1 AiXiBi−CF and the matrix nearness problem [X1, X2, ..., Xl] = min[X1,X2,...,Xl]∈SE [X1,X2, ...,Xl] − [X1, X2, ..., Xl]F , where BRni×ni is the set of bisymmetric matrices, and SE is the solution set of above matrix equation or minimum residual problem. These matrix iterative methods have faster convergence rate and higher accuracy than former methods. Paige’s algorithms are used as the frame method for deriving these matrix iterative methods. The numerical example is used to illustrate the efficiency of these new methods.

Keywords: Bisymmetric matrices, Paige’s algorithms, Least square.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1393
1619 Earth Station Neural Network Control Methodology and Simulation

Authors: Hanaa T. El-Madany, Faten H. Fahmy, Ninet M. A. El-Rahman, Hassen T. Dorrah

Abstract:

Renewable energy resources are inexhaustible, clean as compared with conventional resources. Also, it is used to supply regions with no grid, no telephone lines, and often with difficult accessibility by common transport. Satellite earth stations which located in remote areas are the most important application of renewable energy. Neural control is a branch of the general field of intelligent control, which is based on the concept of artificial intelligence. This paper presents the mathematical modeling of satellite earth station power system which is required for simulating the system.Aswan is selected to be the site under consideration because it is a rich region with solar energy. The complete power system is simulated using MATLAB–SIMULINK.An artificial neural network (ANN) based model has been developed for the optimum operation of earth station power system. An ANN is trained using a back propagation with Levenberg–Marquardt algorithm. The best validation performance is obtained for minimum mean square error. The regression between the network output and the corresponding target is equal to 96% which means a high accuracy. Neural network controller architecture gives satisfactory results with small number of neurons, hence better in terms of memory and time are required for NNC implementation. The results indicate that the proposed control unit using ANN can be successfully used for controlling the satellite earth station power system.

Keywords: Satellite, neural network, MATLAB, power system.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1868
1618 Identification of Reusable Software Modules in Function Oriented Software Systems using Neural Network Based Technique

Authors: Sonia Manhas, Parvinder S. Sandhu, Vinay Chopra, Nirvair Neeru

Abstract:

The cost of developing the software from scratch can be saved by identifying and extracting the reusable components from already developed and existing software systems or legacy systems [6]. But the issue of how to identify reusable components from existing systems has remained relatively unexplored. We have used metric based approach for characterizing a software module. In this present work, the metrics McCabe-s Cyclometric Complexity Measure for Complexity measurement, Regularity Metric, Halstead Software Science Indicator for Volume indication, Reuse Frequency metric and Coupling Metric values of the software component are used as input attributes to the different types of Neural Network system and reusability of the software component is calculated. The results are recorded in terms of Accuracy, Mean Absolute Error (MAE) and Root Mean Squared Error (RMSE).

Keywords: Software reusability, Neural Networks, MAE, RMSE, Accuracy.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1868
1617 Noise-Improved Signal Detection in Nonlinear Threshold Systems

Authors: Youguo Wang, Lenan Wu

Abstract:

We discuss the signal detection through nonlinear threshold systems. The detection performance is assessed by the probability of error Per . We establish that: (1) when the signal is complete suprathreshold, noise always degrades the signal detection both in the single threshold system and in the parallel array of threshold devices. (2) When the signal is a little subthreshold, noise degrades signal detection in the single threshold system. But in the parallel array, noise can improve signal detection, i.e., stochastic resonance (SR) exists in the array. (3) When the signal is predominant subthreshold, noise always can improve signal detection and SR always exists not only in the single threshold system but also in the parallel array. (4) Array can improve signal detection by raising the number of threshold devices. These results extend further the applicability of SR in signal detection.

Keywords: Probability of error, signal detection, stochasticresonance, threshold system.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1436
1616 Optimal Design of Reference Node Placement for Wireless Indoor Positioning Systems in Multi-Floor Building

Authors: Kittipob Kondee, Chutima Prommak

Abstract:

In this paper, we propose an optimization technique that can be used to optimize the placements of reference nodes and improve the location determination performance for the multi-floor building. The proposed technique is based on Simulated Annealing algorithm (SA) and is called MSMR-M. The performance study in this work is based on simulation. We compare other node-placement techniques found in the literature with the optimal node-placement solutions obtained from our optimization. The results show that using the optimal node-placement obtained by our proposed technique can improve the positioning error distances up to 20% better than those of the other techniques. The proposed technique can provide an average error distance within 1.42 meters.

Keywords: Indoor positioning System, Optimization System design, Multi-Floor Building, Wireless Sensor Networks.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1983
1615 Simulating Discrete Time Model Reference Adaptive Control System with Great Initial Error

Authors: Bubaker M. F. Bushofa, Abdel Hafez A. Azab

Abstract:

This article is based on the technique which is called Discrete Parameter Tracking (DPT). First introduced by A. A. Azab [8] which is applicable for less order reference model. The order of the reference model is (n-l) and n is the number of the adjustable parameters in the physical plant. The technique utilizes a modified gradient method [9] where the knowledge of the exact order of the nonadaptive system is not required, so, as to eliminate the identification problem. The applicability of the mentioned technique (DPT) was examined through the solution of several problems. This article introduces the solution of a third order system with three adjustable parameters, controlled according to second order reference model. The adjustable parameters have great initial error which represent condition. Computer simulations for the solution and analysis are provided to demonstrate the simplicity and feasibility of the technique.

Keywords: Adaptive Control System, Discrete Parameter Tracking, Discrete Time Model.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1066
1614 Application of Feed-Forward Neural Networks Autoregressive Models in Gross Domestic Product Prediction

Authors: Ε. Giovanis

Abstract:

In this paper we present an autoregressive model with neural networks modeling and standard error backpropagation algorithm training optimization in order to predict the gross domestic product (GDP) growth rate of four countries. Specifically we propose a kind of weighted regression, which can be used for econometric purposes, where the initial inputs are multiplied by the neural networks final optimum weights from input-hidden layer after the training process. The forecasts are compared with those of the ordinary autoregressive model and we conclude that the proposed regression-s forecasting results outperform significant those of autoregressive model in the out-of-sample period. The idea behind this approach is to propose a parametric regression with weighted variables in order to test for the statistical significance and the magnitude of the estimated autoregressive coefficients and simultaneously to estimate the forecasts.

Keywords: Autoregressive model, Error back-propagation Feed-Forward neural networks, , Gross Domestic Product

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1420
1613 Evaluation of Stormwater Quantity and Quality Control through Constructed Mini Wet Pond: A Case Study

Authors: Y. S. Liew, K. A. Puteh Ariffin, M. A. Mohd Nor

Abstract:

One of the Best Management Practices (BMPs) promoted in Urban Stormwater Management Manual for Malaysia (MSMA) published by the Department of Irrigation and Drainage (DID) in 2001 is through the construction of wet ponds in new development projects for water quantity and quality control. Therefore, this paper aims to demonstrate a case study on evaluation of a constructed mini wet pond located at Sekolah Rendah Kebangsaan Seksyen 2, Puchong, Selangor, Malaysia in both stormwater quantity and quality aspect particularly to reduce the peak discharge by temporary storing and gradual release of stormwater runoff from an outlet structure or other release mechanism. The evaluation technique will be using InfoWorks Collection System (CS) as the numerical modeling approach for water quantity aspect. Statistical test by comparing the correlation coefficient (R2), mean error (ME), mean absolute error (MAE) and root mean square error (RMSE) were used to evaluate the model in simulating the peak discharge changes. Results demonstrated that there will be a reduction in peak flow at 11 % to 15% and time to peak flow is slower by 5 minutes through a wet pond. For water quality aspect, a survey on biological indicator of water quality carried out depicts that the pond is within the range of rather clean to clean water with the score of 5.3. This study indicates that a constructed wet pond with wetland facilities is able to help in managing water quantity and stormwater generated pollution at source, towards achieving ecologically sustainable development in urban areas.

Keywords: Wet pond, Retention Facilities, Best Management Practices (BMP), Urban Stormwater Management Manual for Malaysia (MSMA).

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2527
1612 Piezoelectric Transducer Modeling: with System Identification (SI) Method

Authors: Nora Taghavi, Ali Sadr

Abstract:

System identification is the process of creating models of dynamic process from input- output signals. The aim of system identification can be identified as “ to find a model with adjustable parameters and then to adjust them so that the predicted output matches the measured output". This paper presents a method of modeling and simulating with system identification to achieve the maximum fitness for transformation function. First by using optimized KLM equivalent circuit for PVDF piezoelectric transducer and assuming different inputs including: sinuside, step and sum of sinusides, get the outputs, then by using system identification toolbox in MATLAB, we estimate the transformation function from inputs and outputs resulted in last program. Then compare the fitness of transformation function resulted from using ARX,OE(Output- Error) and BJ(Box-Jenkins) models in system identification toolbox and primary transformation function form KLM equivalent circuit.

Keywords: PVDF modeling, ARX, BJ(Box-Jenkins), OE(Output-Error), System Identification.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2745
1611 Hardware Error Analysis and Severity Characterization in Linux-Based Server Systems

Authors: N. Georgoulopoulos, A. Hatzopoulos, K. Karamitsios, K. Kotrotsios, A. I. Metsai

Abstract:

Current server systems are responsible for critical applications that run in different infrastructures, such as the cloud, physical machines, and virtual machines. A common challenge that these systems face are the various hardware faults that may occur due to the high load, among other reasons, which translates to errors resulting in malfunctions or even server downtime. The most important hardware parts, that are causing most of the errors, are the CPU, RAM, and the hard drive - HDD. In this work, we investigate selected CPU, RAM, and HDD errors, observed or simulated in kernel ring buffer log files from GNU/Linux servers. Moreover, a severity characterization is given for each error type. Understanding these errors is crucial for the efficient analysis of kernel logs that are usually utilized for monitoring servers and diagnosing faults. In addition, to support the previous analysis, we present possible ways of simulating hardware errors in RAM and HDD, aiming to facilitate the testing of methods for detecting and tackling the above issues in a server running on GNU/Linux.

Keywords: hardware errors, Kernel logs, GNU/Linux servers, RAM, HDD, CPU

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 682
1610 Bit Error Rate Monitoring for Automatic Bias Control of Quadrature Amplitude Modulators

Authors: Naji Ali Albakay, Abdulrahman Alothaim, Isa Barshushi

Abstract:

The most common quadrature amplitude modulator (QAM) applies two Mach-Zehnder Modulators (MZM) and one phase shifter to generate high order modulation format. The bias of MZM changes over time due to temperature, vibration, and aging factors. The change in the biasing causes distortion to the generated QAM signal which leads to deterioration of bit error rate (BER) performance. Therefore, it is critical to be able to lock MZM’s Q point to the required operating point for good performance. We propose a technique for automatic bias control (ABC) of QAM transmitter using BER measurements and gradient descent optimization algorithm. The proposed technique is attractive because it uses the pertinent metric, BER, which compensates for bias drifting independently from other system variations such as laser source output power. The proposed scheme performance and its operating principles are simulated using OptiSystem simulation software for 4-QAM and 16-QAM transmitters.

Keywords: Automatic bias control, optical fiber communication, optical modulation, optical devices.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 564
1609 Analysis of Blind Decision Feedback Equalizer Convergence: Interest of a Soft Decision

Authors: S. Cherif, S. Marcos, M. Jaidane

Abstract:

In this paper the behavior of the decision feedback equalizers (DFEs) adapted by the decision-directed or the constant modulus blind algorithms is presented. An analysis of the error surface of the corresponding criterion cost functions is first developed. With the intention of avoiding the ill-convergence of the algorithm, the paper proposes to modify the shape of the cost function error surface by using a soft decision instead of the hard one. This was shown to reduce the influence of false decisions and to smooth the undesirable minima. Modified algorithms using the soft decision during a pseudo-training phase with an automatic switch to the properly tracking phase are then derived. Computer simulations show that these modified algorithms present better ability to avoid local minima than conventional ones.

Keywords: Blind DFEs, decision-directed algorithm, constant modulus algorithm, cost function analysis, convergence analysis, soft decision.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1882
1608 The First Ground Track Maintenance Manoeuvre of THEOS Spacecraft

Authors: Pornthep Navakitkanok, Ammarin Pimnoo, Seksan Jaturat

Abstract:

THEOS is the first earth observation spacecraft of Thailand which was launched on the 1st October 2008 and is currently operated by GISTDA. The transfer phase has been performed by Astrium Flight Dynamics team leading to a hand over to GISTDA teams starting mid-October 2008. The THEOS spacecraft-s orbit is LEO and has the same repetitivity (14+5/26) as the SPOT spacecraft, i.e. the same altitude of 822 km but it has a different mean local solar time (LST). Ground track maintenance manoeuvres are performed to maintain the ground track within a predefined control band around the reference ground track and the band is ±40 km for THEOS spacecraft. This paper presents the first ground track maintenance manoeuvre of THEOS spacecraft and the detailed results. In addition, it also includes one and a half year of operation as seen by GISTDA operators. It finally describes the foreseenable activities for the next orbit control manoeuvre (OCM) preparation.

Keywords: Orbit Control Manoeuvre, Ground Track Error, Local Solar Time Error, LEO, THEOS

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1453
1607 Optimal Convolutive Filters for Real-Time Detection and Arrival Time Estimation of Transient Signals

Authors: Michal Natora, Felix Franke, Klaus Obermayer

Abstract:

Linear convolutive filters are fast in calculation and in application, and thus, often used for real-time processing of continuous data streams. In the case of transient signals, a filter has not only to detect the presence of a specific waveform, but to estimate its arrival time as well. In this study, a measure is presented which indicates the performance of detectors in achieving both of these tasks simultaneously. Furthermore, a new sub-class of linear filters within the class of filters which minimize the quadratic response is proposed. The proposed filters are more flexible than the existing ones, like the adaptive matched filter or the minimum power distortionless response beamformer, and prove to be superior with respect to that measure in certain settings. Simulations of a real-time scenario confirm the advantage of these filters as well as the usefulness of the performance measure.

Keywords: Adaptive matched filter, minimum variance distortionless response, beam forming, Capon beam former, linear filters, performance measure.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1523
1606 Modeling of Reinforcement in Concrete Beams Using Machine Learning Tools

Authors: Yogesh Aggarwal

Abstract:

The paper discusses the results obtained to predict reinforcement in singly reinforced beam using Neural Net (NN), Support Vector Machines (SVM-s) and Tree Based Models. Major advantage of SVM-s over NN is of minimizing a bound on the generalization error of model rather than minimizing a bound on mean square error over the data set as done in NN. Tree Based approach divides the problem into a small number of sub problems to reach at a conclusion. Number of data was created for different parameters of beam to calculate the reinforcement using limit state method for creation of models and validation. The results from this study suggest a remarkably good performance of tree based and SVM-s models. Further, this study found that these two techniques work well and even better than Neural Network methods. A comparison of predicted values with actual values suggests a very good correlation coefficient with all four techniques.

Keywords: Linear Regression, M5 Model Tree, Neural Network, Support Vector Machines.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2035
1605 Optimum Shape and Design of Cooling Towers

Authors: A. M. El Ansary, A. A. El Damatty, A. O. Nassef

Abstract:

The aim of the current study is to develop a numerical tool that is capable of achieving an optimum shape and design of hyperbolic cooling towers based on coupling a non-linear finite element model developed in-house and a genetic algorithm optimization technique. The objective function is set to be the minimum weight of the tower. The geometric modeling of the tower is represented by means of B-spline curves. The finite element method is applied to model the elastic buckling behaviour of a tower subjected to wind pressure and dead load. The study is divided into two main parts. The first part investigates the optimum shape of the tower corresponding to minimum weight assuming constant thickness. The study is extended in the second part by introducing the shell thickness as one of the design variables in order to achieve an optimum shape and design. Design, functionality and practicality constraints are applied.

Keywords: B-splines, Cooling towers, Finite element, Genetic algorithm, Optimization

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 3256
1604 Data-Reusing Adaptive Filtering Algorithms with Adaptive Error Constraint

Authors: Young-Seok Choi

Abstract:

We present a family of data-reusing and affine projection algorithms. For identification of a noisy linear finite impulse response channel, a partial knowledge of a channel, especially noise, can be used to improve the performance of the adaptive filter. Motivated by this fact, the proposed scheme incorporates an estimate of a knowledge of noise. A constraint, called the adaptive noise constraint, estimates an unknown information of noise. By imposing this constraint on a cost function of data-reusing and affine projection algorithms, a cost function based on the adaptive noise constraint and Lagrange multiplier is defined. Minimizing the new cost function leads to the adaptive noise constrained (ANC) data-reusing and affine projection algorithms. Experimental results comparing the proposed schemes to standard data-reusing and affine projection algorithms clearly indicate their superior performance.

Keywords: Data-reusing, affine projection algorithm, error constraint, system identification.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1619
1603 The Predictability and Abstractness of Language: A Study in Understanding and Usage of the English Language through Probabilistic Modeling and Frequency

Authors: Revanth Sai Kosaraju, Michael Ramscar, Melody Dye

Abstract:

Accounts of language acquisition differ significantly in their treatment of the role of prediction in language learning. In particular, nativist accounts posit that probabilistic learning about words and word sequences has little to do with how children come to use language. The accuracy of this claim was examined by testing whether distributional probabilities and frequency contributed to how well 3-4 year olds repeat simple word chunks. Corresponding chunks were the same length, expressed similar content, and were all grammatically acceptable, yet the results of the study showed marked differences in performance when overall distributional frequency varied. It was found that a distributional model of language predicted the empirical findings better than a number of other models, replicating earlier findings and showing that children attend to distributional probabilities in an adult corpus. This suggested that language is more prediction-and-error based, rather than on abstract rules which nativist camps suggest.

Keywords: Abstractness, child psychology, language acquisition, prediction and error.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2096
1602 Development of a 3D Mathematical Model for a Doxorubicin Controlled Release System using Pluronic Gel for Breast Cancer Treatment

Authors: W. Kaowumpai, D. Koolpiruck, K. Viravaidya

Abstract:

Female breast cancer is the second in frequency after cervical cancer. Surgery is the most common treatment for breast cancer, followed by chemotherapy as a treatment of choice. Although effective, it causes serious side effects. Controlled-release drug delivery is an alternative method to improve the efficacy and safety of the treatment. It can release the dosage of drug between the minimum effect concentration (MEC) and minimum toxic concentration (MTC) within tumor tissue and reduce the damage of normal tissue and the side effect. Because an in vivo experiment of this system can be time-consuming and labor-intensive, a mathematical model is desired to study the effects of important parameters before the experiments are performed. Here, we describe a 3D mathematical model to predict the release of doxorubicin from pluronic gel to treat human breast cancer. This model can, ultimately, be used to effectively design the in vivo experiments.

Keywords: Breast Cancer, Doxorubicin, Controlled ReleaseSystem, Diffusion and Convection Equation.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1704
1601 Feature Selection and Predictive Modeling of Housing Data Using Random Forest

Authors: Bharatendra Rai

Abstract:

Predictive data analysis and modeling involving machine learning techniques become challenging in presence of too many explanatory variables or features. Presence of too many features in machine learning is known to not only cause algorithms to slow down, but they can also lead to decrease in model prediction accuracy. This study involves housing dataset with 79 quantitative and qualitative features that describe various aspects people consider while buying a new house. Boruta algorithm that supports feature selection using a wrapper approach build around random forest is used in this study. This feature selection process leads to 49 confirmed features which are then used for developing predictive random forest models. The study also explores five different data partitioning ratios and their impact on model accuracy are captured using coefficient of determination (r-square) and root mean square error (rsme).

Keywords: Housing data, feature selection, random forest, Boruta algorithm, root mean square error.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1715
1600 Input Variable Selection for RBFN-based Electric Utility's CO2 Emissions Forecasting

Authors: I. Falconett, K. Nagasaka

Abstract:

This study investigates the performance of radial basis function networks (RBFN) in forecasting the monthly CO2 emissions of an electric power utility. We also propose a method for input variable selection. This method is based on identifying the general relationships between groups of input candidates and the output. The effect that each input has on the forecasting error is examined by removing all inputs except the variable to be investigated from its group, calculating the networks parameter and performing the forecast. Finally, the new forecasting error is compared with the reference model. Eight input variables were identified as the most relevant, which is significantly less than our reference model with 30 input variables. The simulation results demonstrate that the model with the 8 inputs selected using the method introduced in this study performs as accurate as the reference model, while also being the most parsimonious.

Keywords: Correlation analysis, CO2 emissions forecasting, electric power utility, radial basis function networks.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1537
1599 Closely Parametrical Model for an Electrical Arc Furnace

Authors: Labar Hocine, Dgeghader Yacine, Kelaiaia Mounia Samira, Bounaya Kamel

Abstract:

To maximise furnace production it-s necessary to optimise furnace control, with the objectives of achieving maximum power input into the melting process, minimum network distortion and power-off time, without compromise on quality and safety. This can be achieved with on the one hand by an appropriate electrode control and on the other hand by a minimum of AC transformer switching. Electrical arc is a stochastic process; witch is the principal cause of power quality problems, including voltages dips, harmonic distortion, unbalance loads and flicker. So it is difficult to make an appropriate model for an Electrical Arc Furnace (EAF). The factors that effect EAF operation are the melting or refining materials, melting stage, electrode position (arc length), electrode arm control and short circuit power of the feeder. So arc voltages, current and power are defined as a nonlinear function of the arc length. In this article we propose our own empirical function of the EAF and model, for the mean stages of the melting process, thanks to the measurements in the steel factory.

Keywords: Modelling, electrical arc, melting, power, EAF, steel.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 3247
1598 The Study of Formal and Semantic Errors of Lexis by Persian EFL Learners

Authors: Mohammad J. Rezai, Fereshteh Davarpanah

Abstract:

Producing a text in a language which is not one’s mother tongue can be a demanding task for language learners. Examining lexical errors committed by EFL learners is a challenging area of investigation which can shed light on the process of second language acquisition. Despite the considerable number of investigations into grammatical errors, few studies have tackled formal and semantic errors of lexis committed by EFL learners. The current study aimed at examining Persian learners’ formal and semantic errors of lexis in English. To this end, 60 students at three different proficiency levels were asked to write on 10 different topics in 10 separate sessions. Finally, 600 essays written by Persian EFL learners were collected, acting as the corpus of the study. An error taxonomy comprising formal and semantic errors was selected to analyze the corpus. The formal category covered misselection and misformation errors, while the semantic errors were classified into lexical, collocational and lexicogrammatical categories. Each category was further classified into subcategories depending on the identified errors. The results showed that there were 2583 errors in the corpus of 9600 words, among which, 2030 formal errors and 553 semantic errors were identified. The most frequent errors in the corpus included formal error commitment (78.6%), which were more prevalent at the advanced level (42.4%). The semantic errors (21.4%) were more frequent at the low intermediate level (40.5%). Among formal errors of lexis, the highest number of errors was devoted to misformation errors (98%), while misselection errors constituted 2% of the errors. Additionally, no significant differences were observed among the three semantic error subcategories, namely collocational, lexical choice and lexicogrammatical. The results of the study can shed light on the challenges faced by EFL learners in the second language acquisition process.

Keywords: Collocational errors, lexical errors, Persian EFL learners, semantic errors.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1229
1597 Design and Performance Analysis of One Dimensional Zero Cross-Correlation Coding Technique for a Fixed Wavelength Hopping SAC-OCDMA

Authors: Satyasen Panda, Urmila Bhanja

Abstract:

This paper presents a SAC-OCDMA code with zero cross correlation property to minimize the Multiple Access Interface (MAI) as New Zero Cross Correlation code (NZCC), which is found to be more scalable compared to the other existing SAC-OCDMA codes. This NZCC code is constructed using address segment and data segment. In this work, the proposed NZCC code is implemented in an optical system using the Opti-System software for the spectral amplitude coded optical code-division multiple-access (SAC-OCDMA) scheme. The main contribution of the proposed NZCC code is the zero cross correlation, which reduces both the MAI and PIIN noises. The proposed NZCC code reveals properties of minimum cross-correlation, flexibility in selecting the code parameters and supports a large number of users, combined with high data rate and longer fiber length. Simulation results reveal that the optical code division multiple access system based on the proposed NZCC code accommodates maximum number of simultaneous users with higher data rate transmission, lower Bit Error Rates (BER) and longer travelling distance without any signal quality degradation, as compared to the former existing SAC-OCDMA codes.

Keywords: Cross Correlation, Optical Code Division Multiple Access, Spectral Amplitude Coding Optical Code Division Multiple Access, Multiple Access Interference, Phase Induced Intensity Noise, New Zero Cross Correlation code.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2243
1596 Continuous Wave Interference Effects on Global Position System Signal Quality

Authors: Fang Ye, Han Yu, Yibing Li

Abstract:

Radio interference is one of the major concerns in using the global positioning system (GPS) for civilian and military applications. Interference signals are produced not only through all electronic systems but also illegal jammers. Among different types of interferences, continuous wave (CW) interference has strong adverse impacts on the quality of the received signal. In this paper, we make more detailed analysis for CW interference effects on GPS signal quality. Based on the C/A code spectrum lines, the influence of CW interference on the acquisition performance of GPS receivers is further analysed. This influence is supported by simulation results using GPS software receiver. As the most important user parameter of GPS receivers, the mathematical expression of bit error probability is also derived in the presence of CW interference, and the expression is consistent with the Monte Carlo simulation results. The research on CW interference provides some theoretical gist and new thoughts on monitoring the radio noise environment and improving the anti-jamming ability of GPS receivers.

Keywords: GPS, CW interference, acquisition performance, bit error probability, Monte Carlo.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1881
1595 Soil Stress State under Tractive Tire and Compaction Model

Authors: Prathuang Usaborisut, Dithaporn Thungsotanon

Abstract:

Soil compaction induced by a tractor towing trailer becomes a major problem associated to sugarcane productivity. Soil beneath the tractor’s tire is not only under compressing stress but also shearing stress. Therefore, in order to help to understand such effects on soil, this research aimed to determine stress state in soil and predict compaction of soil under a tractive tire. The octahedral stress ratios under the tires were higher than one and much higher under higher draft forces. Moreover, the ratio was increasing with increase of number of tire’s passage. Soil compaction model was developed using data acquired from triaxial tests. The model was then used to predict soil bulk density under tractive tire. The maximum error was about 4% at 15 cm depth under lower draft force and tended to increase with depth and draft force. At depth of 30 cm and under higher draft force, the maximum error was about 16%.

Keywords: Draft force, soil compaction model, stress state, tractive tire.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1069
1594 Design and Performance Improvement of Three-Dimensional Optical Code Division Multiple Access Networks with NAND Detection Technique

Authors: Satyasen Panda, Urmila Bhanja

Abstract:

In this paper, we have presented and analyzed three-dimensional (3-D) matrices of wavelength/time/space code for optical code division multiple access (OCDMA) networks with NAND subtraction detection technique. The 3-D codes are constructed by integrating a two-dimensional modified quadratic congruence (MQC) code with one-dimensional modified prime (MP) code. The respective encoders and decoders were designed using fiber Bragg gratings and optical delay lines to minimize the bit error rate (BER). The performance analysis of the 3D-OCDMA system is based on measurement of signal to noise ratio (SNR), BER and eye diagram for a different number of simultaneous users. Also, in the analysis, various types of noises and multiple access interference (MAI) effects were considered. The results obtained with NAND detection technique were compared with those obtained with OR and AND subtraction techniques. The comparison results proved that the NAND detection technique with 3-D MQC\MP code can accommodate more number of simultaneous users for longer distances of fiber with minimum BER as compared to OR and AND subtraction techniques. The received optical power is also measured at various levels of BER to analyze the effect of attenuation.

Keywords: Cross correlation, three-dimensional optical code division multiple access, spectral amplitude coding optical code division multiple access, multiple access interference, phase induced intensity noise, three-dimensional modified quadratic congruence/modified prime code.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1529
1593 The New Semi-Experimental Method for Simulation of Turbine Flow Meters Rotation in the Transitional Flow

Authors: J. Tonkonogij, A. Pedišius, A. Stankevičius

Abstract:

The new semi-experimental method for simulation of the turbine flow meters rotation in the transitional flow has been developed. The method is based on the experimentally established exponential low of changing of dimensionless relative turbine gas meter rotation frequency and meter inertia time constant. For experimental evaluation of the meter time constant special facility has been developed. The facility ensures instant switching of turbine meter under test from one channel to the other channel with different flow rate and measuring the meter response. The developed method can be used for evaluation and predication of the turbine meters response and dynamic error in the transitional flow with any arbitrary law of flow rate changing. The examples of the method application are presented.

Keywords: Dynamic error, pulsing flow, numerical simulation, response, turbine gas meters.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2202
1592 The Link between Money Market and Economic Growth in Nigeria: Vector Error Correction Model Approach

Authors: Ehigiamusoe, Uyi Kizito

Abstract:

The paper examines the impact of money market on economic growth in Nigeria using data for the period 1980-2012. Econometrics techniques such as Ordinary Least Squares Method, Johanson’s Co-integration Test and Vector Error Correction Model were used to examine both the long-run and short-run relationship. Evidence from the study suggest that though a long-run relationship exists between money market and economic growth, but the present state of the Nigerian money market is significantly and negatively related to economic growth. The link between the money market and the real sector of the economy remains very weak. This implies that the market is not yet developed enough to produce the needed growth that will propel the Nigerian economy because of several challenges. It was therefore recommended that government should create the appropriate macroeconomic policies, legal framework and sustain the present reforms with a view to developing the market so as to promote productive activities, investments, and ultimately economic growth.

Keywords: Economic Growth, Investments, Money Market, Money Market Challenges, Money Market Instruments.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 8498