
World Academy of Science, Engineering and Technology
International Journal of Computer and Information Engineering

Vol:15, No:12, 2021


Abstract—Current server systems are responsible for critical

applications that run in different infrastructures, such as the cloud,
physical machines, and virtual machines. A common challenge that
these systems face are the various hardware faults that may occur due
to the high load, among other reasons, which translates to errors
resulting in malfunctions or even server downtime. The most important
hardware parts, that are causing most of the errors, are the CPU, RAM,
and the hard drive - HDD. In this work, we investigate selected CPU,
RAM, and HDD errors, observed or simulated in kernel ring buffer log
files from GNU/Linux servers. Moreover, a severity characterization
is given for each error type. Understanding these errors is crucial for
the efficient analysis of kernel logs that are usually utilized for
monitoring servers and diagnosing faults. In addition, to support the
previous analysis, we present possible ways of simulating hardware
errors in RAM and HDD, aiming to facilitate the testing of methods
for detecting and tackling the above issues in a server running on
GNU/Linux.

Keywords—Hardware errors, Kernel logs, GNU/Linux servers,

RAM, HDD, CPU.

I. INTRODUCTION
ODERN servers, including cloud systems and
supercomputers, are responsible for critical applications

with significant resource requirements. These intense
requirements, coupled with the aging of materials, are
significant factors that contribute to hardware faults in such
servers. These errors can lead to various events, from minor
malfunctions to critical errors that cause downtimes. The most
frequent errors occur due to faults in the CPU, the RAM and the
hard disk drive. For a robust and reliable server function, it is
crucial to analyze the above errors and their causes, with the
above being the subject of this work.

Even though the advancement of HDDs has been similar to
Moore’s law, doubling every two years, the demand for storage
from large organizations often surpasses their abilities,
especially when taking into account factors such as their cost [1].
The above, as well as the importance of the data that may be
stored in a server’s HDDs [2], constitutes the reliability of these
important. A plethora of errors can occur in a hard disk, which
should be addressed immediately. Usual examples of HDD
errors, either correctable or non-correctable, are the following
ones: repeated read/write error, non-accessible files and folders,
timeout errors, absence of data from various HDD sectors, disk
freeze during system boot etc.

Another important component of servers is the RAM

Nikolaos Georgoulopoulos and Alkis Hatzopoulos are with the Dept. of
Electrical and Computer Engineering, Aristotle University of Thessaloniki,
Greece (e-mails: ngeorgou@ece.auth.gr, alkis@ece.auth.gr).

memory. The operating system, the content of program
variables, as well as executables and filesystem structures, all
make use of the RAM. Overall, all the applications run on a
server rely on the above’s reliability execution [3]. Taking into
account various malfunctions that can occur, data in the random-
access memory can be wrongly altered, rending the memory
unable to function. Causes for the above malfunctions include
ionizing radiation, the aging of materials, etc. [4]-[6]. These
malfunctions, caused by the above mechanisms, call for the
utilization of DIMM modules in separate RAM chips, with the
aim of preserving the error correcting codes (ECCs). The
aforementioned correction codes can be used to correct some
errors, such as a single-bit error. We note that such an error is
called “correctable” (CE) in the relevant bibliography, while the
reverse is called an uncorrectable error (UE) [3].

The ECC metadata are exploited for identifying and
correcting the errors by a module called the Memory Controller.
However, the procedure of correcting the errors can introduce
further delays in a server system. Specifically, the procedure for
fixing an error requires a hardware exception, the machine check
exception (MCE), that he central processing unit is responsible
for calling [3]. It should be noted that memory errors can occur,
aside from the RAM, in units such as the memory controller
itself.

Finally, for the CPU, the dramatic increase of the number of
transistors according to Moore’s law [7], along with the increase
of the cache memory and bus speed, have raised the probability
of data corruption, caused by temporary or permanent faults.
Combined with the above, the increased adoption of cloud
computing systems, of which servers form a crucial component,
is increasing the chances for the introduction of CPU errors with
great severity, since the services provided can be critical to users
and organizations that depend on the cloud. At the same time, a
decrease of the time between MCEs can be observed [8], [9].

The subsystem of the CPU responsible for the recording and
the detection of CE and UE errors in each of the CPU cores and
the northbridge is called the Machine Check Architecture
(MCA). This splits the possible machine checks in two types:
the silent checks and the MCEs. The former includes errors that
are correctable and recorded in model specific registers (MSRs),
while the latter are errors that the system cannot correct by itself,
and therefore their appearance disrupts the whole system [8]. We
can observe a variety of CPU errors, including ECCs, cache-
related parity errors and errors of the system bus [10].

Konstantinos Karamitsios, Konstantinos Kotrotsios, and Alexandros I.
Metsai are with My Company Projects O.E., Thessaloniki, Greece (e-mail:
kk@mycompany.com.gr, kotrotsios@mycompany.com.gr,
alexandros.metsai@mycompany.com.gr).

Hardware Error Analysis and Severity
Characterization in Linux-Based Server Systems

N. Georgoulopoulos, A. Hatzopoulos, K. Karamitsios, K. Kotrotsios, A. I. Metsai

M

619International Scholarly and Scientific Research & Innovation 15(12) 2021 ISNI:0000000091950263

O
pe

n
Sc

ie
nc

e
In

de
x,

 C
om

pu
te

r
an

d
In

fo
rm

at
io

n
E

ng
in

ee
ri

ng
 V

ol
:1

5,
 N

o:
12

, 2
02

1
pu

bl
ic

at
io

ns
.w

as
et

.o
rg

/1
00

12
33

6.
pd

f

World Academy of Science, Engineering and Technology
International Journal of Computer and Information Engineering

Vol:15, No:12, 2021

We describe and analyze selected hard disk (HDD), RAM and
CPU errors, observed in kernel ring buffer log files of real-world
Linux servers, in Sections II, III and IV, respectively. The
following important properties are presented for each error type:
the nature of the error, the form of the error message in the
system logs, its cause, the error handling and, finally, possible
methods to simulate the error. With this work on the hardware
errors, we aim to facilitate the analysis of kernel logs, utilized
for hardware fault diagnosis and techniques for the detection of
these, combined with the system logs [11]-[13]. Moreover, we
contribute to the review of possible approaches of the simulation
of hardware errors in the aforementioned system components of
such a server system [14]-[18].

The family of GNU/Linux operating systems is used by the
majority of servers, cloud system, platforms, and data centers,
with alternative operating systems holding a much smaller
percentage [19]. We utilized two datasets of kernel logs for
producing our observations. The first one originates from ten
badly maintained servers that host websites, while the second set
comes from servers that are properly maintained and belong to
the IT Center of a large university (see Section VII). These error
handling approaches for each type of error were applied to
several of the available servers, with the goal of fixing these
issues. Finally, in Section V, we attempt a to provide a prolific
discussion for the selected error types and characterization of the
severity level is given for each error type. With the above taken
into account, we find it important to emphasize that any action
for triggering one of the selected hardware errors should not be
applied to a production server, but rather to test servers.

II. ANALYSIS OF HARD DISK DRIVE ERRORS
This section provides an analysis conducted for three separate

error types that can occur in the hard disk drives of servers: A)
an HDD write error, B) an unrecoverable read error – medium
error and, finally, C) a buffer I/O error. The main reasons we
selected these specific error types include the following two:
these errors are either frequently observed in kernel logs, and
therefore their collection and study are made easier, or their
occurrence can be simulated without significant effort, with the
goal of recording them as actual error messages in the kernel log
files.

A. HDD Write Error

1) Description and Causes
One of the most usual error messages that appear in servers

running on the GMU/Linux operating system, specifically in the
kernel or system log files, is the following HDD write error
message: “writing to ‘some_device’: No space left on device”.
This message’s purpose is to inform the user that there is no
more free space left in the hard disk, even though it may be
obvious to a user or a system administration that the disk is not
full. The cause of this type of error is not apparent immediately,
and can be attributed to three major causes leading to its
generation: a) a previously deleted file is being reserved by
another process, b) there are not enough inodes left in the disk
to allow for further allocation of space (note that inodes are

filesystem metadata that trace file-related information) and c)
bad blocks or sectors exist within the filesystem; possible causes
may be breakdowns of the filesystem or the deterioration of the
disk due to aging, which also causes the disk to malfunction.

2) Error Handling and Simulation
Below we demonstrate the possible ways to tackle an HDD

write error, depending on its cause of generation:
a) If there is a deleted file still reserved by another process,

the issue can be tackled by restarting this process through
the command line, using a GNU/Linux shell such as bash:

sudo systemctl restart <service_name>

b) If the disk has run out of free inodes, the command below

can be used to get the available inodes and evaluate if this
is actually the cause of the error:

sudo df -i /

In the case where no free inodes exist, the user or system

administrator can remove unnecessary files from the system
(e.g., from the trash or from temporary file folders) in order to
free some inodes and allow the server to continue to function as
normal.
c) Finally, for evaluating if the disk contains bad blocks or

sectors, the below command can be used:

sudo fsck -vcck <disk_location>

For the simulation of this error, we suggest using the
pseudodevice available in the path /dev/full, which will always
return the “ENOSPACE” error message when a system user
attempts to write upon it. An example of such a command is:

dd if=/dev/zero of=/dev/full

The above will output the error message: “dd: writing to

`/dev/full': No space left on device”.

B. Unrecoverable Read Error-Medium Error

1) Description and Causes
An unrecoverable read error – medium error in a hard disk

sector, which is also displayed as an error message in the kernel
log, can be interpreted as a read error, for retrieving a sector, that
could not be correct even through the system attempted to. This
meaning of this is that repeated reads and ECC mechanisms
could not retrieve a data block that is not corrupted. This is a
strong indication that the disk has deteriorated with the passage
of time and could require replacement. We display an instance
of this error, recoded in the kernel log, in Fig. 1. As for the
possible causes for these errors, they can be attributed to various
reasons. The aging of the HDD mentioned above can lead to a
lower tolerance to manufacturing malfunctions. Aside from this,
the magnetic sectors can naturally weaken. Even more, cosmic
radiation can be identified as a possible cause which can damage
the disk. It is obvious that the above reasons can introduce a
large degree of randomness in the occurrence of such errors,

620International Scholarly and Scientific Research & Innovation 15(12) 2021 ISNI:0000000091950263

O
pe

n
Sc

ie
nc

e
In

de
x,

 C
om

pu
te

r
an

d
In

fo
rm

at
io

n
E

ng
in

ee
ri

ng
 V

ol
:1

5,
 N

o:
12

, 2
02

1
pu

bl
ic

at
io

ns
.w

as
et

.o
rg

/1
00

12
33

6.
pd

f

World Academy of Science, Engineering and Technology
International Journal of Computer and Information Engineering

Vol:15, No:12, 2021

making the process of simulating these highly useful.

Fig. 1 Unrecoverable read error – medium error message in kernel log

2) Error Handling and Simulation
In the description of the error, we mentioned that frequent

appearances of this type indicated that the HDD is approaching
the end of its life, though its replacement can be further delayed
to reduce costs. A possible way for this is the execution of the
“fsck” command, that attempts to fix errors. Moreover, the
“smartmontools” package (S.M.A.R.T. Monitoring Tools) [14]
can be utilized for fixing a malfunctioning block with the
parallel monitoring of the reports that its two main utility
programs provide.

In order to trigger an error of this type, the scsi_debug module
[20] can be used. This module is available for all the latest
versions of the Linux kernel and supports the production of
multiple SCSI (Small Computer Serial Interface) error types
along with the usage of various parameters. As an example, the
following two commands will trigger an unrecoverable read
error – medium error:

sudo modprobe scsi_debug opts=2 every_nth=1

sudo dd if=/dev/sdb of=/dev/null

C. Buffer I/O Error Analysis

1) Description and Causes
This error occurs when a process requests a file stored in the

page cache. We display a buffer I/O error in Fig. 2. We notice
that the kernel log provides a warning for the user regarding
hardware errors in device dm-3 in logic block 0-7. Concerning
the case of this type of error, possible reasons include the
existence of defective blocks in the HDD or issues with the
wiring. In some rare cases, the buffer I/O error can be observed
large numbers of HDDs, where multiple errors on these could
imply a fault in the disk controller.

2) Error Handling and Simulation
For resolving a buffer I/O error and examining if the error is

due to a faulty disk or a faulty wiring, the “fsck” command or the
smartmontools package [14] are recommended. As for the
simulation of a buffer I/O error, this can be achieved with the
“dmsetup tool”, which can create a device mapper with the error
target as a parameter, to simulate such errors. An example of
such a command is given below (140 is the number of sectors
and /dev/loop0 is the original device):

dmsetup create test --table '0 140 error 1 0 /dev/loop0'

It is important to note that the generation of these errors

normally requires the termination of the server’s operation.
However, this can be tackled by using the below command:

sudo dmsetup remove test

Fig. 2 Buffer I/O error messages in kernel log

III. ANALYSIS OF RAM ERRORS
In this section, we analyze the three most common error types

of RAM memories: a) the out-of-memory error, b) the single-bit
ECC RAM error and, finally, c) the correctable memory read
error. These types of error were selected due to their frequent
occurrences in kernel log files, in the same manner as the hard
disk errors. Moreover, their appearance can be easily simulated,
so as to record them as actual error messages in in kernel logs.

A. Out-Of-Memory Error

1) Description and Causes
An out-of-memory (OOM) error can occur when the system

has fallen to low levels of available memory. In any server
running on the GNU/Linux operating system, this can lead to
“kernel panic”, a situation that the system will try to avoid [21].
In this manner, the OS will choose to kill a process as a method
for protecting the system. The process that is usually killed is the
one that has allocated the largest amount of memory. However,
these means of protection can cause issues, since the terminated
process could be important, either for the user or the system
itself. We demonstrate such an error in Fig. 3.

Fig. 3 OOM error message in kernel log

The main causes leading to the introduction of OOM errors

are two. The first is attributed to the low capacity in RAM
memory for the requirements of the server. As an example, for a
server that is meant to handle a high load of services, if its RAM
is not sufficient then it is most possible that OOM errors will
appear frequently. The second, and harder to detect, causes are
possible memory leaks, either from terminated applications and
zombie processes, or from processes that are still running,
reserving in this way unnecessary resources. These leaks add up
and cause the memory allocation to approach its limit.

2) Error Handling and Simulation
Various methods have been proposed for tackling OOM

errors. The first and most obvious one is the increase of the total
RAM memory of the server, so as to suffice for the actual

621International Scholarly and Scientific Research & Innovation 15(12) 2021 ISNI:0000000091950263

O
pe

n
Sc

ie
nc

e
In

de
x,

 C
om

pu
te

r
an

d
In

fo
rm

at
io

n
E

ng
in

ee
ri

ng
 V

ol
:1

5,
 N

o:
12

, 2
02

1
pu

bl
ic

at
io

ns
.w

as
et

.o
rg

/1
00

12
33

6.
pd

f

World Academy of Science, Engineering and Technology
International Journal of Computer and Information Engineering

Vol:15, No:12, 2021

requirements. Aside from the above, the evaluation of the
memory usage of the system can be performed though shell
commands like “ps aux” and “free -mt”. As mentioned above,
when the system is running out of memory, the process using
most of the RAM is identified and considered for termination.
Lastly, terminating any stopped processes can be also utilized as
a solution, since they are still reserving resources. This can be
achieved by running the shell command “jobs -ps” to identify
the processes IDs of stopped processes/jobs, and the proceeding
to kill these using the command “kill -9 <pid>”.

To simulate this error, one can trigger it manually by running
the command:

echo f > /proc/sysrq-trigger

This will call the OOM killer process, which will terminate a

process with high memory demands. This will result in the
creation of a memory exhaustion event and an OOM error
message production in the kernel log. This information will be
similar to the bellow message:

localhost kernel: Out of memory: Kill process 3356 (gnome-
shell) score 59 or sacrifice child
localhost kernel: Killed process 3356 (ibus-daemon), UID 0,
total-vm:458136kB, anon-rss:1024kB, file-rss:648kB, shmem-
rss:0kB

B. Single-bit ECC RAM Error

1) Description and Causes
This error message means that a single bit error occurred in a

DIMM module of the RAM, and that the ECC mechanism has
been triggered to fix the issue. We provide an example of such
an error in Fig. 4. We note that if this error occurs frequently in
a specific DIMM module, then this could imply that the DIMM
has been damaged. In any case, these errors do not affect the
system severely, since they can be continuously addressed and
corrected. Even more, depending on memory settings, the
memory controller module could deactivate the defective
DIMM.

Fig. 4 Single-bit ECC RAM error message in kernel log

2) Error Handling and Simulation
As mentioned previously, the frequent occurrence of single-

bit ECC errors for a specific DIMM can imply a gradual decline
of this DIMM. If this actually the case, various actions can be
performed to tackle the problem. First, it can be examined if the
DIMM module is correctly connected to its case. Second, the
case can be cleared from any traces of dust that can affect its

performance. Third, the gold finger connections at the edges of
the DIMM can be examined to make sure that they provide
proper connectivity. Finally, if none of the above fixes the
frequent occurrence of the single-bit ECC errors, it is
recommended to replace the DIMM.

As for the possible causes leading to the introduction of this
type of error, these can be due to various random factors. To
simulate and manually trigger such an error, an old server
computer can be used, since its DIMM module of the RAM and
its connections with the case will most definitely have degraded,
making the occurrences of single-bit ECC RAM errors are
highly probable.

C. Correctable Memory Read Error

1) Description and Causes
The occurrence of a correctable memory read error signifies

that an error occurred which was corrected from the Error
Detection and Correction (EDAC) mechanism of the device
[15]. In Fig. 5, we provide an example of this error occurrence,
taken from the kernel log. In this case, this message clarifies that
a correctable error appeared in DIMM 0 and channel 0 of the
memory controller, where EDAC mechanism detected and
corrected it.

Fig. 5 Correctable memory read error message in kernel log

It is noted by several manufacturers that even a significant

number of correctable memory read errors does not damage the
RAM [22]. In any case, this is strong indication that the RAM is
slowly deteriorating and may cease to operate. As with many
similar errors, the main cause for these errors is the aging of the
materials, which will lead to failure given enough time.

2) Error Handling and Simulation
Frequent occurrences of correctable memory read errors

during small periods of time usually imply the failure of a
DIMM module, with the maximum number for normal operation
varying between manufacturers. There are two main approaches
for addressing these issues. The first one is the detection of the
error-occurring point in the memory. This can be achieved
through investigating the memory controller file, which can be
found at the absolute path “/sys/devices/system/edac/mc/mc*”.
This file can inform the user about the row or the DIMM module
at which the error appeared, as well as about the number of
correctable and uncorrectable errors that have occurred. For
example, using the following command, we can show
information about “ce_count”, which corresponds to the number
of correctable errors:

622International Scholarly and Scientific Research & Innovation 15(12) 2021 ISNI:0000000091950263

O
pe

n
Sc

ie
nc

e
In

de
x,

 C
om

pu
te

r
an

d
In

fo
rm

at
io

n
E

ng
in

ee
ri

ng
 V

ol
:1

5,
 N

o:
12

, 2
02

1
pu

bl
ic

at
io

ns
.w

as
et

.o
rg

/1
00

12
33

6.
pd

f

World Academy of Science, Engineering and Technology
International Journal of Computer and Information Engineering

Vol:15, No:12, 2021

ls -s /sys/devices/system/edac/mc/mc0

Part of the output is shown as:

0 ce_count 0 csrow1 0 csrow4 0 csrow7 0 reset_counters 0
size_mb

An alternative solution for the appearance of these errors is

the preventive maintenance and replacement of a part of DIMMs
that encounter these memory read errors. This action can also
reduce the possibility of uncorrectable errors and kernel panic
events.

For simulating a correctable memory read error, the Error
INJection (EINJ) mechanism of the Linux kernel can be used
[17]. An example script for triggering the error is given as:

cd /sys/kernel/debug/apei/einj
See which errors can be injected
cat available_error_type
Set memory address for injection
echo 0x01234560 > param
Mask 0xfffffffffffff000 - anywhere in this page
echo $((-1 << 12)) > param2
Choose memory CE
echo 0x8 > error_type
Perform the injection
echo 1 > error_inject

IV. ANALYSIS OF CPU ERRORS
In this section we analyze the main three types of CPU errors:

the CPU temperature error, the VB data ECC or parity error and
the Lx BTB multi-match error. The CPU constitutes one of the
most reliable parts of the system [24], but it is also the most
critical part of the hardware. In some cases, the CPU can produce
a variety of errors that can affect the performance of server. We
selected the following CPU error types since their appearance
inside our kernel log dataset was more frequent than other types
of such errors. Moreover, they are different regarding their
nature and cause. It is important to note that there is no
straightforward method for the simulation of these CPU errors.

A. CPU Temperature Error Analysis

1) Description and Causes
This error specifies that the CPU is overheating and activates

a mechanism which causes an MCE exception. If this error
persists, then so does the overheating of the core, an issue which
can lead to permanent damage in the hardware. We provide an
example of a CPU temperature error message in Fig. 6, as
observed in a kernel log file. Usual causes for overheating issues
leading to the appearance of the CPU temperature error include:
a problematic CPU heat sink, b) malfunction of the CPU fan, c)
a defective thermal pipe, d) an insufficient or aged thermal paste
and e) CPU overclocking.

Fig. 6 CPU temperature error message in kernel log

2) Error Handling
Methods for addressing CPU errors, with regard to their

cause, include a) cleaning the CPU for accumulated dust, b)
installing a thermal management tool [23] for effectively
monitoring the CPU’s temperature, c) updating the BIOS and d)
replacement of the thermal paste, fan, heat sink, etc. As
mentioned, simulating CPU errors is not a straightforward
process.

B. VB Data ECC or Parity Error Analysis

1) Description and Causes
A VB data ECC or parity error specify that the CPU cache

diagnosed a parity error and proceeded to correct it
automatically. We demonstrate an example of parity error in
cache L2 in Fig. 7. Although the parity error in a cache can easily
be corrected, frequent occurrences of this error denote that the
CPU has begun to malfunction. Various causes can be attributed:
a) the CPU may suffer random faults due to radiation strikes, b)
the CPU may be underfunctioning due to low power
consumption, overheating or overclocking, c) the CPU has
begun to break down due to physical decline and aging and,
finally, d) dust or dirt inside the CPU fan are causing
overheating.

2) Error Handling
We present various methods for tackling a parity error in a

cache, depending on its cause. First, inspecting the voltage in the
BIOS can be performed, should it not meet the required criteria.
In such case, either a replacement of the voltage supply can be
conducted, or a motherboard check can be performed for
defective capacitances. Second, for cases of high temperature,
cleaning the CPU fan and replacing the thermal paste can also
be performed. Third, reduction of overclocking or SMALL
INCREASES IN THE SUPPLIED POWER CAN ALSO
RESOLVE THE issue. Last, if none of the above improves the
situation, replacing the CPU is advised.

Fig. 7. VB data ECC or parity error message in kernel log

C. Lx BTB Multi-Match Error Analysis

1) Description and Causes
An Lx BTB multi-match error in Instruction Fetch Unit is

considered harmless and could be omitted, since it can be easily

623International Scholarly and Scientific Research & Innovation 15(12) 2021 ISNI:0000000091950263

O
pe

n
Sc

ie
nc

e
In

de
x,

 C
om

pu
te

r
an

d
In

fo
rm

at
io

n
E

ng
in

ee
ri

ng
 V

ol
:1

5,
 N

o:
12

, 2
02

1
pu

bl
ic

at
io

ns
.w

as
et

.o
rg

/1
00

12
33

6.
pd

f

World Academy of Science, Engineering and Technology
International Journal of Computer and Information Engineering

Vol:15, No:12, 2021

corrected. However, the accumulation of large numbers of such
errors could drive the MCA threshold counter to overflow,
resulting in thresholding interrupts. In Fig. 8 we provide an
example of a multi-match error in the Instruction Fetch Unit, as
recorded in the kernel log. For cases where this error is rarely
detected by the system, it is probably attributed to sporadic
random faults. However, in cases where this error appears
frequently, it could signify issues due to the overclocking of the
RAM.

Fig. 8. Example of an L1 BTB multi-match error message in kernel

log

2) Error Handling
When this error is generated frequently during a small period,

proper clocking of the RAM, in case it has been overclocked,
can cause the error to disappear. Alternative solutions include
clearing the Counter Present bit of MCA_MISC0 of Instruction
Fetch bank, to block the MCA thresholding mechanism from
producing several interrupts due to a multi-match error. Aside
from that, updating the BIOS firmware to comply with the
specifications of the manufacturer can resolve the error.

V. DISCUSSION AND SEVERITY CHARACTERIZATION
From the analysis of the selected CPU, RAM and HDD errors

in GNU/Linux based server systems we can gather useful
insights. First, simulating these hardware errors is only possible
for the ones that concern the HDD and RAM, and not for the
ones related to the CPU. This highlights the need of mechanisms
that facilitate the simulation of such errors, with the introduction
of newer error injection utilities. Second, the CPU errors have a
larger degree of randomness than the ones that concern the HDD
and RAM. Furthermore, with regard to the handling of the
errors, we successfully applied all of the proposed approaches to
various servers of our computing infrastructure, leading to the
disappearance of the error messages in the kernel logs. In
addition to this, the correction mechanism of the GNU/Linux
operating system managed to catch and fix all the correctable
hardware errors that appeared. Finally, this analysis can provide
a guide for future fault diagnosis schemes and methods for
predicting hardware failures, such as methods based on machine
learning and deep learning.

Characterization of the severity level is attempted for the
selected hardware errors presented in Sections II, III and IV.
Three categories of severity are considered: notice, medium-
level and critical. In Table I, the severity level for each selected
HW error is displayed. The HDD write error, single-bit ECC
RAM error and Lx BTB multi-match error are characterized as
notice errors, because there is not a significant negative impact
in the system due to their appearance, while minimum attention
is needed from the operator to handle them. The buffer I/O error,

correctable memory read error and CPU temperature error are
classified as medium-level errors, as there is medium impact to
a server system and larger error handling effort than notice errors
is required. Finally, the unrecoverable read error – medium
error, OOM error and VB data ECC or parity error are
considered as critical errors, as they can have a big impact in the
proper system operation and the support team might need
additional hardware or even to replace certain hardware parts
due to their deterioration.

TABLE I

SEVERITY LEVEL OF THE SELECTED HW ERRORS
Error Type Severity Level

[HDD] HDD write error
[RAM] single-bit ECC RAM error
[CPU] Lx BTB multi-match error

Notice

[HDD] Buffer I/O error
[RAM] correctable memory read error

[CPU] CPU temperature error
Medium Level

[HDD] unrecoverable read error – medium error
[RAM] OOM error

[CPU] VB data ECC or parity error
Critical

VI. CONCLUSIONS
In this work, we presented an analysis of hardware errors that

concern the HDD, RAM, and CPU in GNU/Linux based server
systems. The causes of each error were described, as well as
possible ways to simulate HDD and RAM errors to facilitate
their study and the development of methods to overcome these.
Furthermore, we provided error handling methods which we
successfully tested on our servers. Finally, a severity
characterization for each error was introduced depending on the
potential impact to a server system and the actions required for
fixing an issue. The overall analysis can assist the users for
deeper analysis of kernel log files. For future work, hardware
failure prediction techniques based on deep learning will be
implemented and possible analysis and severity characterization
of more HW error types will be considered.

ACKNOWLEDGMENT
This work has been co-funded by the European Union and

Greek national funds through the Operational Program
Competitiveness, Entrepreneurship and Innovation, under the
call RESEARCH – CREATE – INNOVATE (project code:
T2EDK-00168). The IT Center mentioned in the introduction
belongs to the Aristotle University of Thessaloniki (AUTh) High
Performance Computing Infrastructure and Resources.

REFERENCES
[1] B. David (July 1, 2015). “Prices for Data Storage Equipment and the State

of IT Innovation”. The Federal Reserve Board FEDS Notes, 2015
[2] G. Amvrosiadis, A. Oprea and B. Schroeder, “Practical scrubbing: Getting

to the bad sector at the right time”, IEEE/IFIP International Conference
on Dependable Systems and Networks (DSN 2012), pp. 1-12, 2012.

[3] J. Meza, Q. Wu, S. Kumar and O. Mutlu, “Revisiting Memory Errors in
Large-Scale Production Data Centers: Analysis and Modeling of New
Trends from the Field”, 45th Annual IEEE/IFIP International Conference
on Dependable Systems and Networks, pp. 415-426, 2015.

[4] T. C. May and M. H. Woods, “Alpha-Particle-Induced Soft Errors in
Dynamic Memories”, IEEE Transactions on Electron Devices, 1979.

[5] C. Constantinescu, “Trends and Challenges in VLSI Circuit Reliability”,
IEEE Micro, 2003.

624International Scholarly and Scientific Research & Innovation 15(12) 2021 ISNI:0000000091950263

O
pe

n
Sc

ie
nc

e
In

de
x,

 C
om

pu
te

r
an

d
In

fo
rm

at
io

n
E

ng
in

ee
ri

ng
 V

ol
:1

5,
 N

o:
12

, 2
02

1
pu

bl
ic

at
io

ns
.w

as
et

.o
rg

/1
00

12
33

6.
pd

f

World Academy of Science, Engineering and Technology
International Journal of Computer and Information Engineering

Vol:15, No:12, 2021

[6] P.-F. Chia, S.-J. Wen and S. Baeg, “New DRAM HCI Qualification
Method Emphasizing on Repeated Memory Access”, IRW, 2010.

[7] B. G. Streetman, S. Banerjee, “Solid state electronic devices”, Boston:
Pearson. p. 341, 2016.

[8] A. Kleen, “Machine check handling on linux”, SUSE Labs, 2004.
[9] N. Pandit, Z. Kalbarczyk and R. K. Iyer, “Effectiveness of machine checks

for error diagnostics”, 2009 IEEE/IFIP International Conference on
Dependable Systems & Networks, pp. 578-583, 2009.

[10] Intel Corporation, “Machine Check Architecture”, in Intel® 64 and IA-32
Architectures Software Developer’s Manual Volume 3B: System
Programming Guide, Part 2, 2018.

[11] A. Das, F. Mueller, C. Siegel and A. Vishnu, “Desh: Deep Learning for
System Health Prediction of Lead Times to Failure in HPC.”, Proceedings
of the 27th International Symposium on High-Performance Parallel and
Distributed Computing - HPDC ’18, 2018.

[12] I. Giurgiu, J. Szabo, D. Wiesmann and J. Bird, “Predicting DRAM
reliability in the field with machine learning”, Proceedings of the 18th
ACM/IFIP/USENIX Middleware Conference on Industrial Track -
Middleware ’17, 2017.

[13] X. Sun et al., “System-level hardware failure prediction using deep
learning”, 56th ACM/IEEE Design Automation Conference (DAC), pp.
1-6, 2019.

[14] E. Nemeth, G. Snyder, T.R. Hein, B. Whaley “Unix and Linux System
Administration Handbook”. Pearson Education. p. 366, 2010.

[15] S. M. Hancock, “Tru64 UNIX troubleshooting: diagnosing and correcting
system problems”, Digital Press, 2002.

[16] The kernel development community, “Error Detection And Correction
(EDAC) Devices” https://www.kernel.org/doc/html/v4.14/driver-
api/edac.html, 2020.

[17] APEI Error INJection,
https://www.kernel.org/doc/Documentation/acpi/apei/einj.txt.

[18] Memtest86+, www.memtest.org.
[19] "Usage of operating systems for websites". W3Techs. Technologies,

Operating Systems, 7 March 2015.
[20] Scsi_debug adapter driver for Linux,

http://sg.danny.cz/sg/sdebug26.html.
[21] G. Kroah-Hartman, “Linux kernel in a nutshell”, O'Reilly Media Inc., p.

59, 2007.
[22] Oracle, “Troubleshooting DIMM Problems”,

https://docs.oracle.com/cd/E19121-01/sf.x4250/820-4213-
11/dimms.html.

[23] “Linux Thermal Daemon Monitors and Controls Temperature in Tablets,
Laptops”, https://www.linux.com/news/linux-thermal-daemon-monitors-
and-controls-temperature-tablets-laptops/.

[24] E. B. Nightingale, J. Douceur and V. Orgovan, “Cycles, Cells and Platters:
An Empirical Analysis of Hardware Failures on a Million Consumer
PCs”, Proceedings of EuroSys 2011, 2011.

Powered by TCPDF (www.tcpdf.org)

625International Scholarly and Scientific Research & Innovation 15(12) 2021 ISNI:0000000091950263

O
pe

n
Sc

ie
nc

e
In

de
x,

 C
om

pu
te

r
an

d
In

fo
rm

at
io

n
E

ng
in

ee
ri

ng
 V

ol
:1

5,
 N

o:
12

, 2
02

1
pu

bl
ic

at
io

ns
.w

as
et

.o
rg

/1
00

12
33

6.
pd

f

http://www.tcpdf.org

