Search results for: Root of Trust
117 Modeling Oxygen-transfer by Multiple Plunging Jets using Support Vector Machines and Gaussian Process Regression Techniques
Authors: Surinder Deswal
Abstract:
The paper investigates the potential of support vector machines and Gaussian process based regression approaches to model the oxygen–transfer capacity from experimental data of multiple plunging jets oxygenation systems. The results suggest the utility of both the modeling techniques in the prediction of the overall volumetric oxygen transfer coefficient (KLa) from operational parameters of multiple plunging jets oxygenation system. The correlation coefficient root mean square error and coefficient of determination values of 0.971, 0.002 and 0.945 respectively were achieved by support vector machine in comparison to values of 0.960, 0.002 and 0.920 respectively achieved by Gaussian process regression. Further, the performances of both these regression approaches in predicting the overall volumetric oxygen transfer coefficient was compared with the empirical relationship for multiple plunging jets. A comparison of results suggests that support vector machines approach works well in comparison to both empirical relationship and Gaussian process approaches, and could successfully be employed in modeling oxygen-transfer.Keywords: Oxygen-transfer, multiple plunging jets, support vector machines, Gaussian process.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1637116 Detection of Concrete Reinforcement Damage Using Piezoelectric Materials - Analytical and Experimental Study
Authors: C. P. Providakis, G. M. Angeli, M. J. Favvata, N. A. Papadopoulos, C. E. Chalioris, C. G. Karayannis
Abstract:
An effort for the detection of damages in the reinforcement bars of reinforced concrete members using PZTs is presented. The damage can be the result of excessive elongation of the steel bar due to steel yielding or due to local steel corrosion. In both cases the damage is simulated by considering reduced diameter of the rebar along the damaged part of its length. An integration approach based on both electromechanical admittance methodology and guided wave propagation technique is used to evaluate the artificial damage on the examined longitudinal steel bar. Two actuator PZTs and a sensor PZT are considered to be bonded on the examined steel bar. The admittance of the Sensor PZT is calculated using COMSOL 3.4a. Fast Furrier Transformation for a better evaluation of the results is employed. An effort for the quantification of the damage detection using the root mean square deviation (RMSD) between the healthy condition and damage state of the sensor PZT is attempted. The numerical value of the RSMD yields a level for the difference between the healthy and the damaged admittance computation indicating this way the presence of damage in the structure. Experimental measurements are also presented.
Keywords: Concrete reinforcement, damage detection, electromechanical admittance, experimental measurements, finite element method, guided waves, PZT.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2653115 Application of Extreme Learning Machine Method for Time Series Analysis
Authors: Rampal Singh, S. Balasundaram
Abstract:
In this paper, we study the application of Extreme Learning Machine (ELM) algorithm for single layered feedforward neural networks to non-linear chaotic time series problems. In this algorithm the input weights and the hidden layer bias are randomly chosen. The ELM formulation leads to solving a system of linear equations in terms of the unknown weights connecting the hidden layer to the output layer. The solution of this general system of linear equations will be obtained using Moore-Penrose generalized pseudo inverse. For the study of the application of the method we consider the time series generated by the Mackey Glass delay differential equation with different time delays, Santa Fe A and UCR heart beat rate ECG time series. For the choice of sigmoid, sin and hardlim activation functions the optimal values for the memory order and the number of hidden neurons which give the best prediction performance in terms of root mean square error are determined. It is observed that the results obtained are in close agreement with the exact solution of the problems considered which clearly shows that ELM is a very promising alternative method for time series prediction.Keywords: Chaotic time series, Extreme learning machine, Generalization performance.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 3518114 Forecasting 24-Hour Ahead Electricity Load Using Time Series Models
Authors: Ramin Vafadary, Maryam Khanbaghi
Abstract:
Forecasting electricity load is important for various purposes like planning, operation and control. Forecasts can save operating and maintenance costs, increase the reliability of power supply and delivery systems, and correct decisions for future development. This paper compares various time series methods to forecast 24 hours ahead of electricity load. The methods considered are the Holt-Winters smoothing, SARIMA Modeling, LSTM Network, Fbprophet and Tensorflow probability. The performance of each method is evaluated by using the forecasting accuracy criteria namely, the Mean Absolute Error and Root Mean Square Error. The National Renewable Energy Laboratory (NREL) residential energy consumption data are used to train the models. The results of this study show that SARIMA model is superior to the others for 24 hours ahead forecasts. Furthermore, a Bagging technique is used to make the predictions more robust. The obtained results show that by Bagging multiple time-series forecasts we can improve the robustness of the models for 24 hour ahead electricity load forecasting.
Keywords: Bagging, Fbprophet, Holt-Winters, LSTM, Load Forecast, SARIMA, tensorflow probability, time series.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 482113 Examining the Perceived Usefulness of ICTs for Learning about Indigenous Foods
Authors: K. M. Ngcobo, S. D. Eyono Obono
Abstract:
Science and technology has a major impact on many societal domains such as communication, medicine, food, transportation, etc. However, this dominance of modern technology can have a negative unintended impact on indigenous systems, and in particular on indigenous foods. This problem serves as a motivation to this study whose aim is to examine the perceptions of learners on the usefulness of Information and Communication Technologies (ICTs) for learning about indigenous foods. This aim will be subdivided into two types of research objectives. The design and identification of theories and models will be achieved using literature content analysis. The objective on the empirical testing of such theories and models will be achieved through the survey of Hospitality studies learners from different schools in the iLembe and Umgungundlovu Districts of the South African Kwazulu-Natal province. SPSS is used to quantitatively analyze the data collected by the questionnaire of this survey using descriptive statistics and Pearson correlations after the assessment of the validity and the reliability of the data. The main hypothesis behind this study is that there is a connection between the demographics of learners, their perceptions on the usefulness of ICTs for learning about indigenous foods, and the following personality and eLearning related theories constructs: Computer self-efficacy, Trust in ICT systems, and Conscientiousness; as suggested by existing studies on learning theories. This hypothesis was fully confirmed by the survey conducted by this study except for the demographic factors where gender and age were not found to be determinant factors of learners’ perceptions on the usefulness of ICTs for learning about indigenous foods.
Keywords: E-learning, Indigenous Foods, Information and Communication Technologies, Learning Theories, Personality.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2231112 Energy Density Increasing in the Channel of Super-High Pressure Megaampere Discharge due to Resonance of Different Type Oscillations of the Channel
Authors: Ph. G. Rutberg, A. V. Budin, M. E. Pinchuk, A. A. Bogomaz, A. G. Leks, S. Yu. Losev, andA. A. Pozubenkov
Abstract:
Discharges in hydrogen, ignited by wire explosion, with current amplitude up to 1.5 MA were investigated. Channel diameter oscillations were observed on the photostreaks. Voltage and current curves correlated with the photostreaks. At initial gas pressure of 5-35 MPa the oscillation period was proportional to square root of atomic number of the initiating wire material. These oscillations were associated with aligned magnetic and gas-kinetic pressures. At initial pressure of 80-160 MPa acoustic pressure fluctuations on the discharge chamber wall were increased up to 150 MPa and there were the growth of voltage fluctuations on the discharge gap up to 3 kV simultaneously with it. In some experiments it was observed abrupt increase in the oscillation amplitude, which can be caused by the resonance of the acoustic oscillations in discharge chamber volume and the oscillations connected with alignment of the gaskinetic pressure and the magnetic pressure, as far as frequencies of these oscillations are close to each other in accordance with the estimates and the experimental data. Resonance of different type oscillations can produce energy density increasing in the discharge channel. Thus, the appropriate initial conditions in the experiment allow to increase the energy density in the discharge channel
Keywords: High-current gas discharges, high pressure hydrogen, discharge channel oscillations.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1439111 Software Maintenance Severity Prediction for Object Oriented Systems
Authors: Parvinder S. Sandhu, Roma Jaswal, Sandeep Khimta, Shailendra Singh
Abstract:
As the majority of faults are found in a few of its modules so there is a need to investigate the modules that are affected severely as compared to other modules and proper maintenance need to be done in time especially for the critical applications. As, Neural networks, which have been already applied in software engineering applications to build reliability growth models predict the gross change or reusability metrics. Neural networks are non-linear sophisticated modeling techniques that are able to model complex functions. Neural network techniques are used when exact nature of input and outputs is not known. A key feature is that they learn the relationship between input and output through training. In this present work, various Neural Network Based techniques are explored and comparative analysis is performed for the prediction of level of need of maintenance by predicting level severity of faults present in NASA-s public domain defect dataset. The comparison of different algorithms is made on the basis of Mean Absolute Error, Root Mean Square Error and Accuracy Values. It is concluded that Generalized Regression Networks is the best algorithm for classification of the software components into different level of severity of impact of the faults. The algorithm can be used to develop model that can be used for identifying modules that are heavily affected by the faults.Keywords: Neural Network, Software faults, Software Metric.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1574110 Analytical Authentication of Butter Using Fourier Transform Infrared Spectroscopy Coupled with Chemometrics
Authors: M. Bodner, M. Scampicchio
Abstract:
Fourier Transform Infrared (FT-IR) spectroscopy coupled with chemometrics was used to distinguish between butter samples and non-butter samples. Further, quantification of the content of margarine in adulterated butter samples was investigated. Fingerprinting region (1400-800 cm–1) was used to develop unsupervised pattern recognition (Principal Component Analysis, PCA), supervised modeling (Soft Independent Modelling by Class Analogy, SIMCA), classification (Partial Least Squares Discriminant Analysis, PLS-DA) and regression (Partial Least Squares Regression, PLS-R) models. PCA of the fingerprinting region shows a clustering of the two sample types. All samples were classified in their rightful class by SIMCA approach; however, nine adulterated samples (between 1% and 30% w/w of margarine) were classified as belonging both at the butter class and at the non-butter one. In the two-class PLS-DA model’s (R2 = 0.73, RMSEP, Root Mean Square Error of Prediction = 0.26% w/w) sensitivity was 71.4% and Positive Predictive Value (PPV) 100%. Its threshold was calculated at 7% w/w of margarine in adulterated butter samples. Finally, PLS-R model (R2 = 0.84, RMSEP = 16.54%) was developed. PLS-DA was a suitable classification tool and PLS-R a proper quantification approach. Results demonstrate that FT-IR spectroscopy combined with PLS-R can be used as a rapid, simple and safe method to identify pure butter samples from adulterated ones and to determine the grade of adulteration of margarine in butter samples.
Keywords: Adulterated butter, margarine, PCA, PLS-DA, PLS-R, SIMCA.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 777109 Analyzing the Prospects and Challenges in Implementing the Legal Framework for Competition Regulation in Nigeria
Authors: Oluchukwu P. Obioma, Amarachi R. Dike
Abstract:
Competition law promotes market competition by regulating anti-competitive conduct by undertakings. There is a need for a third party to regulate the market for efficiency and supervision, since, if the market is left unchecked, it may be skewed against the consumers and the economy. Competition law is geared towards the protection of consumers from economic exploitation. It is the duty of every rational government to optimally manage its economic system by employing the best regulatory practices over the market to ensure it functions effectively and efficiently. The Nigerian government has done this by enacting the Federal Competition and Consumer Protection Act, 2018 (FCCPA). This is a comprehensive legal framework with the objective of governing competition issues in Nigeria. Prior to its enactment, the competition law regime in Nigeria was grossly inadequate despite Nigeria being the biggest economy in Africa. This latest legislation has become a bold step in the right direction. This study will use the doctrinal methodology in analyzing the FCCPA, 2018 in order to discover the extent to which the Act will guard against anti-competitive practices and promote competitive markets for the benefit of the Nigerian economy and consumers. The study finds that although the FCCPA, 2018 provides for the regulation of competition in Nigeria, there is a need to effectively tackle the challenges to the implementation of the Act and the development of anti-trust jurisprudence in Nigeria. This study concludes that incisive implementation of competition law in Nigeria will help protect consumers and create a conducive environment for economic growth, development, and protection of consumers from obnoxious competition practices.Keywords: Anti-competitive practices, competition law, competition regulation, consumer protection.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 771108 Wasp Venom Peptides may play a role in the Pathogenesis of Acute Disseminated Encephalomyelitis in Humans: A Structural Similarity Analysis
Authors: Permphan Dharmasaroja
Abstract:
Acute disseminated encephalomyelitis (ADEM) has been reported to develop after a hymenoptera sting, but its pathogenesis is not known in detail. Myelin basic protein (MBP)- specific T cells have been detected in the blood of patients with ADEM, and a proportion of these patients develop multiple sclerosis (MS). In an attempt to understand the mechanisms underlying ADEM, molecular mimicry between hymenoptera venom peptides and the human immunodominant MBP peptide was scrutinized, based on the sequence and structural similarities, whether it was the root of the disease. The results suggest that the three wasp venom peptides have low sequence homology with the human immunodominant MBP residues 85-99. Structural similarity analysis among the three venom peptides and the MS-related HLA-DR2b (DRA, DRB1*1501)-associated immunodominant MHC binding/TCR contact residues 88-93, VVHFFK showed that hyaluronidase residues 7-12, phospholipase A1 residues 98-103, and antigen 5 residues 109-114 showed a high degree of similarity 83.3%, 100%, and 83.3% respectively. In conclusion, some wasp venom peptides, particularly phospholipase A1, may potentially act as the molecular motifs of the human 3HLA-DR2b-associated immunodominant MBP88-93, and possibly present a mechanism for induction of wasp sting-associated ADEM.Keywords: central nervous system, Hymenoptera, myelin basicprotein, molecular mimicry.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1621107 Exploiting Two Intelligent Models to Predict Water Level: A Field Study of Urmia Lake, Iran
Authors: Shahab Kavehkar, Mohammad Ali Ghorbani, Valeriy Khokhlov, Afshin Ashrafzadeh, Sabereh Darbandi
Abstract:
Water level forecasting using records of past time series is of importance in water resources engineering and management. For example, water level affects groundwater tables in low-lying coastal areas, as well as hydrological regimes of some coastal rivers. Then, a reliable prediction of sea-level variations is required in coastal engineering and hydrologic studies. During the past two decades, the approaches based on the Genetic Programming (GP) and Artificial Neural Networks (ANN) were developed. In the present study, the GP is used to forecast daily water level variations for a set of time intervals using observed water levels. The measurements from a single tide gauge at Urmia Lake, Northwest Iran, were used to train and validate the GP approach for the period from January 1997 to July 2008. Statistics, the root mean square error and correlation coefficient, are used to verify model by comparing with a corresponding outputs from Artificial Neural Network model. The results show that both these artificial intelligence methodologies are satisfactory and can be considered as alternatives to the conventional harmonic analysis.
Keywords: Water-Level variation, forecasting, artificial neural networks, genetic programming, comparative analysis.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2331106 The Effect of Soil in the Allelopathic Potential of Artemisia herba-alba and Oudneya africana Crude Powder on Growth of Weeds
Authors: Salhi Nesrine, Salama M. El-Darier, Halilat M. El-Taher
Abstract:
The present study aimed to investigate the effect of two type of soil (clay and sandy soils) in the potential allelopathic effects of Artemisia herba-alba, Oudneya africana crude powder (0, 1, 3 and 6%) on some growth parameters of two weeds (Bromus tectorum and Melilotus indica) under laboratory conditions (pot experiment).
The experimental findings have reported that the donor species crude powder concentrations were suppressing to shoot length (SL), root length (RL) and the leaf number (LN)) in both soil types and caused a gradual reduction particularly when they are high. However, the reduction degree was varied and species, concentration dependent. The suppressive effect of the two donors on the two weedy species was in the following order Melilotus indica > Bromus tectorum. Generally, the growth parameters of two recipient species were significantly decreased with the increase of each of the donor species crude powder concentration levels. Concerning the type of soil stoical analyses indicated that significant difference between clay and sandy soils.
Keywords: Allelopathy Soil, Artemisia herba-alba, Oudneya africana, growth, weeds.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2092105 Modeling Residential Electricity Consumption Function in Malaysia: Time Series Approach
Authors: L. L. Ivy-Yap, H. A. Bekhet
Abstract:
As the Malaysian residential electricity consumption continued to increase rapidly, effective energy policies, which address factors affecting residential electricity consumption, is urgently needed. This study attempts to investigate the relationship between residential electricity consumption (EC), real disposable income (Y), price of electricity (Pe) and population (Po) in Malaysia for 1978-2011 period. Unlike previous studies on Malaysia, the current study focuses on the residential sector, a sector that is important for the contemplation of energy policy. The Phillips-Perron (P-P) unit root test is employed to infer the stationarity of each variable while the bound test is executed to determine the existence of co-integration relationship among the variables, modelled in an Autoregressive Distributed Lag (ARDL) framework. The CUSUM and CUSUM of squares tests are applied to ensure the stability of the model. The results suggest the existence of long-run equilibrium relationship and bidirectional Granger causality between EC and the macroeconomic variables. The empirical findings will help policy makers of Malaysia in developing new monitoring standards of energy consumption. As it is the major contributing factor in economic growth and CO2 emission, there is a need for more proper planning in Malaysia to attain future targets in order to cut emissions.
Keywords: Co-integration, Elasticity, Granger causality, Malaysia, Residential electricity consumption.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 4101104 Time and Frequency Domain Analysis of Heart Rate Variability and their Correlations in Diabetes Mellitus
Authors: P. T. Ahamed Seyd, V. I. Thajudin Ahamed, Jeevamma Jacob, Paul Joseph K
Abstract:
Diabetes mellitus (DM) is frequently characterized by autonomic nervous dysfunction. Analysis of heart rate variability (HRV) has become a popular noninvasive tool for assessing the activities of autonomic nervous system (ANS). In this paper, changes in ANS activity are quantified by means of frequency and time domain analysis of R-R interval variability. Electrocardiograms (ECG) of 16 patients suffering from DM and of 16 healthy volunteers were recorded. Frequency domain analysis of extracted normal to normal interval (NN interval) data indicates significant difference in very low frequency (VLF) power, low frequency (LF) power and high frequency (HF) power, between the DM patients and control group. Time domain measures, standard deviation of NN interval (SDNN), root mean square of successive NN interval differences (RMSSD), successive NN intervals differing more than 50 ms (NN50 Count), percentage value of NN50 count (pNN50), HRV triangular index and triangular interpolation of NN intervals (TINN) also show significant difference between the DM patients and control group.Keywords: Autonomic nervous system, diabetes mellitus, frequency domain and time domain analysis, heart rate variability.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 3110103 Multi-Linear Regression Based Prediction of Mass Transfer by Multiple Plunging Jets
Abstract:
The paper aims to compare the performance of vertical and inclined multiple plunging jets and to model and predict their mass transfer capacity by multi-linear regression based approach. The multiple vertical plunging jets have jet impact angle of θ = 90O; whereas, multiple inclined plunging jets have jet impact angle of θ = 60O. The results of the study suggests that mass transfer is higher for multiple jets, and inclined multiple plunging jets have up to 1.6 times higher mass transfer than vertical multiple plunging jets under similar conditions. The derived relationship, based on multi-linear regression approach, has successfully predicted the volumetric mass transfer coefficient (KLa) from operational parameters of multiple plunging jets with a correlation coefficient of 0.973, root mean square error of 0.002 and coefficient of determination of 0.946. The results suggests that predicted overall mass transfer coefficient is in good agreement with actual experimental values; thereby, suggesting the utility of derived relationship based on multi-linear regression based approach and can be successfully employed in modeling mass transfer by multiple plunging jets.
Keywords: Mass transfer, multiple plunging jets, multi-linear regression.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2199102 Comparison of Artificial Neural Network and Multivariate Regression Methods in Prediction of Soil Cation Exchange Capacity
Authors: Ali Keshavarzi, Fereydoon Sarmadian
Abstract:
Investigation of soil properties like Cation Exchange Capacity (CEC) plays important roles in study of environmental reaserches as the spatial and temporal variability of this property have been led to development of indirect methods in estimation of this soil characteristic. Pedotransfer functions (PTFs) provide an alternative by estimating soil parameters from more readily available soil data. 70 soil samples were collected from different horizons of 15 soil profiles located in the Ziaran region, Qazvin province, Iran. Then, multivariate regression and neural network model (feedforward back propagation network) were employed to develop a pedotransfer function for predicting soil parameter using easily measurable characteristics of clay and organic carbon. The performance of the multivariate regression and neural network model was evaluated using a test data set. In order to evaluate the models, root mean square error (RMSE) was used. The value of RMSE and R2 derived by ANN model for CEC were 0.47 and 0.94 respectively, while these parameters for multivariate regression model were 0.65 and 0.88 respectively. Results showed that artificial neural network with seven neurons in hidden layer had better performance in predicting soil cation exchange capacity than multivariate regression.Keywords: Easily measurable characteristics, Feed-forwardback propagation, Pedotransfer functions, CEC.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2210101 Profitability Assessment of Granite Aggregate Production and the Development of a Profit Assessment Model
Authors: Melodi Mbuyi Mata, Blessing Olamide Taiwo, Afolabi Ayodele David
Abstract:
The purpose of this research is to create empirical models for assessing the profitability of granite aggregate production in Akure, Ondo state aggregate quarries. In addition, an Artificial Neural Network (ANN) model and multivariate predicting models for granite profitability were developed in the study. A formal survey questionnaire was used to collect data for the study. The data extracted from the case study mine for this study include granite marketing operations, royalty, production costs, and mine production information. The following methods were used to achieve the goal of this study: descriptive statistics, MATLAB 2017, and SPSS16.0 software in analyzing and modeling the data collected from granite traders in the study areas. The ANN and Multi Variant Regression models' prediction accuracy was compared using a coefficient of determination (R2), Root Mean Square Error (RMSE), and mean square error (MSE). Due to the high prediction error, the model evaluation indices revealed that the ANN model was suitable for predicting generated profit in a typical quarry. More quarries in Nigeria's southwest region and other geopolitical zones should be considered to improve ANN prediction accuracy.
Keywords: National development, granite, profitability assessment, ANN models.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 81100 Growth and Mineral Content of Mokara chark kuan Pink Orchid as Affected by Allelopathic Lantana camara Weed
Authors: M. Nashriyah, A. R. Shamsiah, M. Salmah, S. Misman, M. N. Maizatul Akmam, M. Y. Jamaliah, M. Mazleha
Abstract:
Growth and mineral nutrient elemental content were studied in Mokara chark kuan pink terrestrial orchid and wild Lantana camara weed agroecosystem. The treated subplots were encircled with L. camara plants and sprayed weekly with L. camara 10% leaf aqueous extract. Allelopathic interactions were possible through extensive invading root of L. camara plants into the treated orchid subplots and weekly L. camara leaf aqueous extract sprayings. Orchid growth was not significantly different in between the control and treated plots, but chlorosis and yellowish patches of leaves were observed in control orchid leaves. Nitrogen content in L. camara leaf was significantly higher than in orchid leaf, the order of importance of mineral nutrient contents in L. camara leaf was K>Mg>Na>N. In treated orchid leaf, the order of importance was N>K>Mg>Na. Orchid leaf N content from the treated plot was higher than control, but Mg and Na contents were almost similar.Keywords: Growth, Lantana camara, mineral nutrient elements, Mokara chark kuan pink orchid.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 192599 Development of Prediction Models of Day-Ahead Hourly Building Electricity Consumption and Peak Power Demand Using the Machine Learning Method
Authors: Dalin Si, Azizan Aziz, Bertrand Lasternas
Abstract:
To encourage building owners to purchase electricity at the wholesale market and reduce building peak demand, this study aims to develop models that predict day-ahead hourly electricity consumption and demand using artificial neural network (ANN) and support vector machine (SVM). All prediction models are built in Python, with tool Scikit-learn and Pybrain. The input data for both consumption and demand prediction are time stamp, outdoor dry bulb temperature, relative humidity, air handling unit (AHU), supply air temperature and solar radiation. Solar radiation, which is unavailable a day-ahead, is predicted at first, and then this estimation is used as an input to predict consumption and demand. Models to predict consumption and demand are trained in both SVM and ANN, and depend on cooling or heating, weekdays or weekends. The results show that ANN is the better option for both consumption and demand prediction. It can achieve 15.50% to 20.03% coefficient of variance of root mean square error (CVRMSE) for consumption prediction and 22.89% to 32.42% CVRMSE for demand prediction, respectively. To conclude, the presented models have potential to help building owners to purchase electricity at the wholesale market, but they are not robust when used in demand response control.
Keywords: Building energy prediction, data mining, demand response, electricity market.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 220498 Effect of Various Concentrations of Humic Acid on Growth and Development of Eggplant Seedlings in Tissue Cultures at Low Nutrient Level
Authors: Kullanart Obsuwan, Suluck Namchote, Natdhera Sanmanee, Kamolchanok Panishkan, Sirichai Dharmvanij
Abstract:
Humic acids (HAs) have been shown to activate some ion uptakes along with stimulating the lateral roots at effective concentration of micronutrients. However, the effects of HA on ion adsorption by plant roots are not easily explainable due to the varieties of HAs that differ from origins. Therefore, this study was aimed to investigate the effect of various concentrations of HA obtained from the compost derived from mix manures and some agricultural wastes on the growth of eggplant seedlings (Solanum melongena L. cv. Chao Praya) in tissue cultures at low nutrient level. Egg plant seeds were surfaced sterilized and germinated in ½ Murashige and Skoog medium (MS) without HA added or in ¼ MS supplemented with 0, 25, 50, 75 and 100 ppm of HAs. Then, they were cultured for 4 weeks under the controlled environment. The results showed that seedlings grown on ¼MS supplemented with HAs at the concentration of 25 and 50 ppm had the average plant heights (2.49 and 2.28 cm, respectively) higher than the other treatments. Both treatments also significantly showed the maximum average fresh and dry weights (p<0.05). Also the later yielded the highest average number of leaves and the longest average root length (p<0.05). However, there was no statistically different in the number of roots among treatments (p>0.05). This suggested that HAs at the concentration of 25 and 50 ppm could improve the growth of egg plant seedlings in tissue cultures at low nutrient level (¼ MS).Keywords: growth, seedling, humic acid, fresh weght, dry weight, tissue culture
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 249797 Perceived Risks in Business-to-Consumer Online Contracts: An Empirical Study in Saudi Arabia
Authors: Shaya Alshahrani
Abstract:
Perceived risks play a major role in consumer intentions, behaviors, attitudes, and decisions about online shopping in the KSA. This paper investigates the influence of six perceived risk dimensions on Saudi consumers: product risk, information risk, financial risk, privacy and security risk, delivery risk, and terms and conditions risk empirically. To ensure the success of this study, a random survey was distributed to reflect the consumers’ perceived risk and to enable the generalization of the results. Data were collected from 323 respondents in the Kingdom of Saudi Arabia (KSA): 50 who had never shopped online and 273 who had done so. The results indicated that all six risks influenced the respondents’ perceptions of online shopping. The non-online shoppers perceived financial and delivery risks as the most significant barriers to online shopping. This was followed closely by performance, information, and privacy and security risks. Terms and conditions were perceived as less significant. The online consumers considered delivery and performance risks to be the most significant influences on internet shopping. This was followed closely by information and terms and conditions. Financial and privacy and security risks were perceived as less significant. This paper argues that introducing adequate legal solutions to addressing related problems arising from this study is an urgent need. This may enhance consumer trust in the KSA online market, increase consumers’ intentions regarding online shopping, and improve consumer protection.
Keywords: Perceived risk, consumer protection, online shopping, Saudi Arabia, online contracts, e-commerce.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 91796 On Pooling Different Levels of Data in Estimating Parameters of Continuous Meta-Analysis
Authors: N. R. N. Idris, S. Baharom
Abstract:
A meta-analysis may be performed using aggregate data (AD) or an individual patient data (IPD). In practice, studies may be available at both IPD and AD level. In this situation, both the IPD and AD should be utilised in order to maximize the available information. Statistical advantages of combining the studies from different level have not been fully explored. This study aims to quantify the statistical benefits of including available IPD when conducting a conventional summary-level meta-analysis. Simulated meta-analysis were used to assess the influence of the levels of data on overall meta-analysis estimates based on IPD-only, AD-only and the combination of IPD and AD (mixed data, MD), under different study scenario. The percentage relative bias (PRB), root mean-square-error (RMSE) and coverage probability were used to assess the efficiency of the overall estimates. The results demonstrate that available IPD should always be included in a conventional meta-analysis using summary level data as they would significantly increased the accuracy of the estimates.On the other hand, if more than 80% of the available data are at IPD level, including the AD does not provide significant differences in terms of accuracy of the estimates. Additionally, combining the IPD and AD has moderating effects on the biasness of the estimates of the treatment effects as the IPD tends to overestimate the treatment effects, while the AD has the tendency to produce underestimated effect estimates. These results may provide some guide in deciding if significant benefit is gained by pooling the two levels of data when conducting meta-analysis.
Keywords: Aggregate data, combined-level data, Individual patient data, meta analysis.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 173995 Tourist Satisfaction and Loyalty toward Service Quality of the Online Tourism Enterprises
Authors: Wanida Suwunniponth
Abstract:
The objectives of this research paper were to study the expectation and satisfaction of tourists in five tourism service quality dimensions, namely, website quality, service ability, trust ability, customer empathy, and responsiveness to customer and also to study the influences of satisfaction affecting loyalty toward quality service of the online tourism enterprises located in Bangkok Thailand. This research utilized both quantitative and qualitative research methods. In terms of quantitative method, a questionnaire was used as a tool to collect data from 400 tourists who were using in online travel services. Statistics analysis included descriptive statistics, t-test and Multiple Regression Analysis. In terms of qualitative analysis, an in-depth interview and content analysis were used along with 10 individual management levels of e-commerce enterprises.
The results revealed that the respondents had higher expectations than their level of satisfaction in all five categories. However, the respondents were more satisfied with online travel services than without online service. The demographic factors such as gender and age had no influence on the level of satisfaction whereas the demographic factors of education, occupation, and income had influenced the level of satisfaction. The test results also indicated that the level of satisfaction from responsiveness to customer had the highest influence on the loyalty of tourists who used online travel. The level of satisfaction from customer empathy had the highest influence on the tourists to recommend others to use online travel services. Also, the level of satisfaction from service ability had the highest influence on tourists to take an actual trip.
Keywords: Satisfaction, Loyalty, Service Quality, Online Tourism Enterprises.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 387894 A Business-to-Business Collaboration System That Promotes Data Utilization While Encrypting Information on the Blockchain
Authors: Hiroaki Nasu, Ryota Miyamoto, Yuta Kodera, Yasuyuki Nogami
Abstract:
To promote Industry 4.0 and Society 5.0 and so on, it is important to connect and share data so that every member can trust it. Blockchain (BC) technology is currently attracting attention as the most advanced tool and has been used in the financial field and so on. However, the data collaboration using BC has not progressed sufficiently among companies on the supply chain of the manufacturing industry that handle sensitive data such as product quality, manufacturing conditions, etc. There are two main reasons why data utilization is not sufficiently advanced in the industrial supply chain. The first reason is that manufacturing information is top secret and a source for companies to generate profits. It is difficult to disclose data even between companies with transactions in the supply chain. Blockchain mechanism such as Bitcoin using Public Key Infrastructure (PKI) requires plaintext to be shared between companies in order to verify the identity of the company that sent the data. Another reason is that the merits (scenarios) of collaboration data between companies are not specifically specified in the industrial supply chain. For these problems, this paper proposes a Business to Business (B2B) collaboration system using homomorphic encryption and BC technique. Using the proposed system, each company on the supply chain can exchange confidential information on encrypted data and utilize the data for their own business. In addition, this paper considers a scenario focusing on quality data, which was difficult to collaborate because it is top-secret. In this scenario, we show an implementation scheme and a benefit of concrete data collaboration by proposing a comparison protocol that can grasp the change in quality while hiding the numerical value of quality data.
Keywords: Business to business data collaboration, industrial supply chain, blockchain, homomorphic encryption.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 81693 On the Allopatry of National College Entrance Exam in China: The Root, Policy and Strategy
Authors: Shi Zhang
Abstract:
This paper aims to introduce the allopatry of national college entrance examination which allow migrant students enter senior high schools and take college entrance exam where they live, identifies the reasons affect the implementation of this policy in the Chinese context. Most of China’s provinces and municipalities recently have announced new policies regarding national college entrance exams for non-local students. The paper conducts SWOT analysis reveals the opportunities, strength, weakness and challenges of the scheme, so as to discuss the implementation strategies from the perspectives of idea and institution. The research findings imply that the government should take a more positive attitude toward relaxing the allopatry of NCEE policy restrictions, and promote the reform household registration policy and NCEE policy with synchronous operations. Higher education institutions should explore the diversification of enrollment model; the government should issue the authority of universities and colleges to select elite migrant students beyond the restrictions of NCEE. To suit reform policies to local conditions, the big cities such as Beijing, Shanghai and Guangzhou should publish related compensate measures for children of migrant workers access to higher vocational colleges with tuition fee waivered.
Keywords: College entrance examination, higher education, education policy, education equality.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 267992 People Critical Success Factors of IT/IS Implementation: Malaysian Perspectives
Authors: Aziz, Nur Mardhiyah, Salleh, Hafez
Abstract:
Implementing Information Technology/ Information System (IT/IS) is critical for every industry as its potential benefits have been to motivate many industries including the Malaysian construction industry to invest in it. To successfully implement IT/IS has become the major concern for every organisation. Identifying the critical success factors (CSFs) has become the main agenda for researchers, academicians and practitioners due to the wide number of failures reported. This research paper seeks to identify the CSFs that influence the successful implementation of IT/IS in construction industry in Malaysia. Limited factors relating to people issue will be highlighted here to showcase some as it becomes one of the major contributing factors to the failure. Three (3) organisations have participated in this study. Semi-structured interviews are employed as they offer sufficient flexibility to ensure that all relevant factors are covered. Several key issues contributing to successful implementations of IT/IS are identified. The results of this study reveal that top management support, communication, user involvement, IT staff roles and responsibility, training/skills, leader/ IT Leader, organisation culture, knowledge/ experience, motivation, awareness, focus and ambition, satisfaction, teamwork/ collaboration, willingness to change, attitude, commitment, management style, interest in IT, employee behaviour towards collaborative environment, trust, interpersonal relationship, personal characteristic and competencies are significantly associated with the successful implementations of IT/IS. It is anticipated that this study will create awareness and contribute to a better understanding amongst construction industry players and will assist them to successfully implement IT/IS.Keywords: critical success factors, construction industry , IT/IS, people
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 266891 Analysis of Noodle Production Process at Yan Hu Food Manufacturing: Basis for Production Improvement
Authors: Rhadinia Tayag-Relanes, Felina C. Young
Abstract:
This study was conducted to analyze the noodle production process at Yan Hu Food Manufacturing for the basis of production improvement. The study utilized the Plan, Do, Check, Act (PDCA) approach and record review in the gathering of data for the calendar year 2019, specifically from August to October, focusing on the noodle products miki, canton, and misua. A causal-comparative research design was employed to establish cause-effect relationships among the variables, using descriptive statistics and correlation to compute the data gathered. The findings indicate that miki, canton, and misua production have distinct cycle times and production outputs in every set of its production processes, as well as varying levels of wastage. The company has not yet established a formal allowable rejection rate for wastage; instead, this paper used a 1% wastage limit. We recommended the following: machines used for each process of the noodle product must be consistently maintained and monitored; an assessment of all the production operators should be conducted by assessing their performance statistically based on the output and the machine performance; a root cause analysis must be conducted to identify solutions to production issues; and, an improved recording system for input and output of the production process of each noodle product should be established to eliminate the poor recording of data.
Keywords: Production, continuous improvement, process, operations, Plan, Do, Check, Act approach.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2390 Effect of VA-Mycorrhiza on Growth and Yield of Sunflower (Helianthus annuus L.) at Different Phosphorus Levels
Authors: Hossein Soleimanzadeh
Abstract:
The effect of seed inoculation by VA- mycorrhiza and different levels of phosphorus fertilizer on growth and yield of sunflower (Azargol cultivar) was studied in experiment farm of Islamic Azad University, Karaj Branch during 2008 growing season. The experiment treatments were arranged in factorial based on a complete randomized block design with three replications. Four phosphorus fertilizer levels of 25%, 50% 75% and 100% P recommended with two levels of Mycorrhiza: with and without Mycorrhiza (control) were assigned in a factorial combination. Results showed that head diameter, number of seeds in head, seed yield and oil yield were significantly higher in inoculated plants than in non-inoculated plants. Head diameter, number of seeds in head, 1000 seeds weight, biological yield, seed yield and oil yield increased with increasing P level above 75% P recommended in non-inoculated plants, whereas no significant difference was observed between 75% and 100% P recommended. The positive effect of mycorrhizal inoculation decreased with increasing P levels due to decreased percent root colonization at higher P levels. According to the results of this experiment, application of mycorrhiza in present of 50% P recommended had an appropriate performance and could increase seed yield and oil production to an acceptable level, so it could be considered as a suitable substitute for chemical phosphorus fertilizer in organic agricultural systems.Keywords: phosphorus fertilizer, seed yield, sunflower, VA-mycorrhiza
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 231489 Selecting the Best Sub-Region Indexing the Images in the Case of Weak Segmentation Based On Local Color Histograms
Authors: Mawloud Mosbah, Bachir Boucheham
Abstract:
Color Histogram is considered as the oldest method used by CBIR systems for indexing images. In turn, the global histograms do not include the spatial information; this is why the other techniques coming later have attempted to encounter this limitation by involving the segmentation task as a preprocessing step. The weak segmentation is employed by the local histograms while other methods as CCV (Color Coherent Vector) are based on strong segmentation. The indexation based on local histograms consists of splitting the image into N overlapping blocks or sub-regions, and then the histogram of each block is computed. The dissimilarity between two images is reduced, as consequence, to compute the distance between the N local histograms of the both images resulting then in N*N values; generally, the lowest value is taken into account to rank images, that means that the lowest value is that which helps to designate which sub-region utilized to index images of the collection being asked. In this paper, we make under light the local histogram indexation method in the hope to compare the results obtained against those given by the global histogram. We address also another noteworthy issue when Relying on local histograms namely which value, among N*N values, to trust on when comparing images, in other words, which sub-region among the N*N sub-regions on which we base to index images. Based on the results achieved here, it seems that relying on the local histograms, which needs to pose an extra overhead on the system by involving another preprocessing step naming segmentation, does not necessary mean that it produces better results. In addition to that, we have proposed here some ideas to select the local histogram on which we rely on to encode the image rather than relying on the local histogram having lowest distance with the query histograms.
Keywords: CBIR, Color Global Histogram, Color Local Histogram, Weak Segmentation, Euclidean Distance.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 172888 In vitro Culture Medium Sterilization by Chemicals and Essential Oils without Autoclaving and Growth of Chrysanthemum Nodes
Authors: Wittaya Deein, Chockpisit Thepsithar, Aree Thongpukdee
Abstract:
Plant tissue culture is an important in vitro technology applied for agricultural and industrial production. A sterile condition of culture medium is one of the main aspects. The alternative technique for medium sterilization to replace autoclaving was carried out. For sterilization of plant tissue culture medium without autoclaving, ten commercial pure essential oils and 5 disinfectants were tested. Each essential oil or disinfectant was added to a 20-mL Murashige and Skoog (MS) medium before medium was solidified in a 120-mL container, kept for 2 weeks before evaluating sterile conditions. Treated media, supplemented with essential oils or disinfectants, were compared to control medium, autoclaved at 121 degree Celsius for 15 min. Sterile conditions of MS medium were found 100% from betel oil or clove oil (18 mL/20 mL medium), cinnamon oil (36 mL/20 mL medium), lavender oil or holy basil oil (108 mL/20 mL medium), and lemon oil or tea tree oil or turmeric oil (252 mL/20 mL medium), compared to 100% sterile condition from autoclaved medium. For disinfectants, 2% iodine + 2.4% potassium iodide, 2% merbromine solution, 10% povidone-iodine, 6% sodium hypochlorite or 0.1% thimerosal at 36 mL/20 mL medium provided 100% sterile conditions. Furthermore, growth of new shoots from chrysanthemum node explants on treated media (fresh weight, shoot length, root length and number of node) were also reported and discussed in the comparison of those on autoclaved medium.
Keywords: Chrysanthemum, disinfectants, essential oils, MS medium, sterilizing agents, sterilization of medium without autoclaving.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 5717