Analytical Authentication of Butter Using Fourier Transform Infrared Spectroscopy Coupled with Chemometrics
Authors: M. Bodner, M. Scampicchio
Abstract:
Fourier Transform Infrared (FT-IR) spectroscopy coupled with chemometrics was used to distinguish between butter samples and non-butter samples. Further, quantification of the content of margarine in adulterated butter samples was investigated. Fingerprinting region (1400-800 cm–1) was used to develop unsupervised pattern recognition (Principal Component Analysis, PCA), supervised modeling (Soft Independent Modelling by Class Analogy, SIMCA), classification (Partial Least Squares Discriminant Analysis, PLS-DA) and regression (Partial Least Squares Regression, PLS-R) models. PCA of the fingerprinting region shows a clustering of the two sample types. All samples were classified in their rightful class by SIMCA approach; however, nine adulterated samples (between 1% and 30% w/w of margarine) were classified as belonging both at the butter class and at the non-butter one. In the two-class PLS-DA model’s (R2 = 0.73, RMSEP, Root Mean Square Error of Prediction = 0.26% w/w) sensitivity was 71.4% and Positive Predictive Value (PPV) 100%. Its threshold was calculated at 7% w/w of margarine in adulterated butter samples. Finally, PLS-R model (R2 = 0.84, RMSEP = 16.54%) was developed. PLS-DA was a suitable classification tool and PLS-R a proper quantification approach. Results demonstrate that FT-IR spectroscopy combined with PLS-R can be used as a rapid, simple and safe method to identify pure butter samples from adulterated ones and to determine the grade of adulteration of margarine in butter samples.
Keywords: Adulterated butter, margarine, PCA, PLS-DA, PLS-R, SIMCA.
Digital Object Identifier (DOI): doi.org/1
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 786References:
[1] H. Deelstra, D. Thorburn Burns, M. J. Walker, “The adulteration of food, lessons from the past, with reference to butter, margarine and fraud,” Eur Food Res. Technol., vol. 239, pp. 725-744, 2014.
[2] S. Esslinger, J. Riedl, C. Fauhl-Hassek, “Potential and limitations of non-targeted fingerprinting for authentication of food in official control,” Food Res. Intern., vol. 60, pp. 189-204, 2014.
[3] F. L. Acar, “Traité des Falsifications des substances médicamenteuses et alimentaires et les moyens de les reconnaître,” Impr de L.J. De Cort, Fossé-aux-Crapaux, Anvers., pp. 239–240, 1848.
[4] N. A. Fadzlillah, Y. B. Che Man, A. Rohman, I. Amin, M. Shuhaimi, A. Khatib, “Authentication analysis of butter from beef fat using Fourier Transform Infrared (FTIR) spectroscopy coupled with chemometrics,” Int. Food Res. J., vol. 20, pp. 1383-1388, 2013.
[5] J. Spink, D. C. Moyer, “Defining the Public Health Threat of Food Fraud,” J. Food Sci., vol. 76, pp. 157-163, 2011.
[6] G. P. Danezis, A. S. Tsagkaris, F. Camin, V. Brusic, C. A. Georgiou, “Food authentication: Techniques, trends & emerging approaches,” Trends in Anal. Chem., vol. 85, pp. 123-132, 2016.
[7] E. Hong, S. Y. Lee, J. Y. Jeong, J. M. Park, B. H. Kim, K. Kwon, H. S. Chun, “Modern analytical methods for the detection of food fraud and adulteration by food category,” J. Sci. Food Agric., vol. 97, pp. 3877-3896, 2017.
[8] R. Karoui, J. De Baerdemaeker, “A review of the analytical methods coupled with chemometric tools for the determination of the quality and identity of dairy products,” Food Chem., vol. 102, pp. 621-640, 2007.
[9] K. Jin-Man, K. Ha-Jung, P. Jung-Min, “Determination of Milk Fat Adulteration with Vegetable Oils and Animal Fats by Gas Chromatographic Analysis,” J. Food Sci., vol. 80, pp. 1945-1951, 2015.
[10] R. Lamanna, A. Braca, E. Di Paolo, G. Imparato, “Identification of milk mixtures by 1H NMR profiling,” Magn. Resons. Chem., vol. 49, pp. 22-26, 2011.
[11] M. H. Moh, Y. B. Che Man, F.R. van de Voort, W. J. W. Abdullah, “Determination of peroxide value in thermally oxidized crude palm oil by near infrared spectroscopy,” J. Am. Oil Chem. Soc., vol. 76, pp. 19-23, 1999.
[12] G. Yildiz, R. L. Wehling, S.L. Cuppett, “Methods for determining oxidation of vegetable oils by near-infrared spectroscopy,” J. Am. Oil Chem. Soc., vol. 78, pp. 495-502, 2001.
[13] M. Manfredi, E. Robotti, F. Quasso, E. Mazzucco, G. Calabrese, E. Marengo, “Fast classification of hazelnut cultivars through portable infrared spectroscopy and chemometrics,” Spectrochimi. Acta A Mol. Biomol. Spectrosc., vol. 189, pp. 427-435, 2018.
[14] T. F. Kumosinski, H. M. Farrell, “Determination of the global secondary structure of proteins by Fourier transform infrared (FTIR) spectroscopy,” Trends Food Sci. Technol., vol. 4, pp. 169-175, 1993.
[15] B. Horn, S. Esslinger, M. Pfister, C. Fauhl-Hassek, J. Riedl, “Non-targeted detection of paprika adulteration using mid-infrared spectroscopy and one-class classification – Is it data preprocessing that makes the performance?,” Food Chem., vol. 257, pp. 112-119, 2018.
[16] C. A. Nunes, “Vibrational spectroscopy and chemometrics to assess authenticity, adulteration and intrinsic quality parameters of edible oils and fats,” Food Res. Int., vol. 60, pp. 255-261, 2014.
[17] N. Dupuy, L. Duponchel, J.P. Huvenne, B. Sombret, P. Legrand, “Classification of edible fats and oils by principal component analysis of Fourier transform infrared spectra,” Food Chem., vol. 51, pp. 245-251, 1996.
[18] M. Estekia, J. Simal-Gandarab, Z. Shahsavaria, S. Zandbaafa, E. Dashtakia, H. Yvan Vander, “A review on the application of chromatographic methods, coupled to chemometrics, for food authentication,” Food control., vol. 93, pp. 165-182, 2018.
[19] D. Granato, J. S. Santos, G. B. Escher, B. L. Ferreira, R. M. Maggio, “Use of principal component analysis (PCA) and hierarchical cluster analysis (HCA) for multivariate association between bioactive compounds and functional properties in foods: A critical perspective,” Trends in Food Sci. Technol., vol. 72, pp. 83-90, 2018.
[20] K. Javidnia, M. Parish, S. Karimi, B. Hemmateenejad, “Discrimination of edible oils and fats by combination of multivariate pattern recognition and FT-IR spectroscopy: A comparative study between different modeling methods,” Spectrochimi. Acta A Mol. Biomol. Spectrosc., vol. 104, pp. 175-181, 2013.
[21] L. Lenhardt, R. Bro, I. Zeković, T. Dramićanin, M. D. Dramićanin, “Fluorescence spectroscopy coupled with PARAFAC and PLS DA for characterization and classification of honey,” Food Chem., vol. 175, pp. 284-291, 2015.
[22] P. S. Sampaio, A. Soares, A. Castanho, A. S. Almeida, J. Oliveira, C. Brites, “Optimization of rice amylose determination by NIR-spectroscopy using PLS chemometrics algorithm,” Food Chem., vol. 242, pp. 196-204, 2018.
[23] L. Bertacchi, M. Cocchi, M. Li Vigni, A. Marchetti, E. Salvatore, S. Sighinolfi, M. Silvestri, C. Durante, “The impact of chemometrics on food traceability,” Data Handl. Sci. Technol., vol. 28, pp. 371-410, 2013.
[24] D. M. A. N. Luykx, S. M. van Ruth, “An overview of analytical methods for determining the geographical origin of food products,” Food Chem., vol. 107, pp. 897–911, 2008.
[25] R. Goodacre, E. Anklam, “Fourier Transform Infrared Spectroscopy and Chemometrics as a Tool for the Rapid Detection of Other Vegetable Fats Mixed in Cocoa Butter,” J. Am. Oil Chem. Soc., vol. 78, pp. 993-1000, 2001.
[26] H. Yang, J. Irudayaraj, M. M. Paradkar, “Discriminant analysis of edible oils and fats by FTIR, FT-NIR and FT-Raman spectroscopy,” Food Chem., vol. 93, pp. 25-32, 2005.
[27] M. Bassbasi, M. De Luca, G Ioele, A. Oussama, G. Ragno, “Prediction of the geographical origin of butters by partial least square discriminant analysis (PLS-DA) applied to infrared spectroscopy (FTIR) data,” J. Food Comp. Anal., vol. 33, pp. 210-215, 2014.
[28] N. Koca, N. A. Kocaoglu-Vurma, W. P. Harper, L. E. Rodriguez-Saona, “Application of temperature-controlled attenuated total reflectance-mid-infrared (ATR-MIR) spectroscopy for rapid estimation of butter adulteration,” Food Chem., vol. 121, pp. 778-782, 2010.
[29] F. Mabood, G. Abbas, F. Jabeen, Z. Naureen, A. Al-Harrasi, A. M. Hamaed, J. Hussain, M. Al-Nabhani, M. S. Al Shukaili, A. Khan, S. Manzoor, “Robust new NIRS coupled with multivariate methods for the detection and quantification of tallow adulteration in clarified butter samples,” Food Addit. Contam. Part A., vol. 35, pp. 404-411, 2018.
[30] N. A. Fadzlillah, Y. B. Che Man, A. Rohman, I. Amin, M. Shuhaimi, A. Khatib, “Application of FTIR-ATR spectroscopy with multivariate analysis for rapid estimation of butter adulteration,” J. Oleo Scie., vol. 62, pp. 555-562, 2013.
[31] N. A. Fadzlillah, Y. B. Che Man, I. Amin, R. Arieff Salleh, M. Y. Farawahidah, M. Shuhaimi, A. Khatib, “FTIR-ATR Spectroscopy Based Metabolite Fingerprinting as A Direct Determination of Butter Adulterated With Lard,” Int. J. Food Prop., vol. 18, pp. 372-379, 2015.
[32] A. Nedeljković, P. Rösch, J. Popp, J. Miočinović, M. Radovanović, P. Pudja, “Raman Spectroscopy as a Rapid Tool for Quantitative Analysis of Butter Adulterated with Margarine,” Food Anal. Methods, vol. 9, pp. 1315-1320, 2016.
[33] S. Lohumi, H. Lee, M. S. Kim, J. Qin, B. K. Cho, “Through-packaging analysis of butter adulteration using line-scan spatially offset Raman spectroscopy,” Anal. Bioanal. Chem., vol. 410, pp. 5663-5673, 2018.
[34] A. F. Nurrulhidayah, A. Rohman, I. Amin, M. Shuhaimi, A. Khatib, “Analysis of chicken fat as adulterant in butter using fourier transform infrared spectroscopy and chemometrics,” Grasas y Aceites, vol. 64, pp. 349-355, 2013.
[35] M. D. Guillén, N. Cabo, “Infrared spectroscopy in the study of edible oils and fats,” J. Sci. Food Agric., vol. 75, pp. 1-11, 1997.
[36] R. Trevethan, “Sensitivity, Specificity, and Predictive Values: Foundations, Pliabilities, and Pitfalls in Research and Practice,” Front. Public Health, vol. 5, pp. 307, 2017.