Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 30855
Wasp Venom Peptides may play a role in the Pathogenesis of Acute Disseminated Encephalomyelitis in Humans: A Structural Similarity Analysis

Authors: Permphan Dharmasaroja


Acute disseminated encephalomyelitis (ADEM) has been reported to develop after a hymenoptera sting, but its pathogenesis is not known in detail. Myelin basic protein (MBP)- specific T cells have been detected in the blood of patients with ADEM, and a proportion of these patients develop multiple sclerosis (MS). In an attempt to understand the mechanisms underlying ADEM, molecular mimicry between hymenoptera venom peptides and the human immunodominant MBP peptide was scrutinized, based on the sequence and structural similarities, whether it was the root of the disease. The results suggest that the three wasp venom peptides have low sequence homology with the human immunodominant MBP residues 85-99. Structural similarity analysis among the three venom peptides and the MS-related HLA-DR2b (DRA, DRB1*1501)-associated immunodominant MHC binding/TCR contact residues 88-93, VVHFFK showed that hyaluronidase residues 7-12, phospholipase A1 residues 98-103, and antigen 5 residues 109-114 showed a high degree of similarity 83.3%, 100%, and 83.3% respectively. In conclusion, some wasp venom peptides, particularly phospholipase A1, may potentially act as the molecular motifs of the human 3HLA-DR2b-associated immunodominant MBP88-93, and possibly present a mechanism for induction of wasp sting-associated ADEM.

Keywords: Hymenoptera, Central nervous system, myelin basicprotein, molecular mimicry

Digital Object Identifier (DOI):

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1283


[1] A.P. Kohm, K.G. Fuller, and S.D. Miller, "Mimicking the way to autoimmunity: an evolving theory of sequence and structural homology," Trends. Microbiol., vol. 11, pp. 101-105, Mar. 2003.
[2] L. Klee and R. Zand, "Probable epitopes: Relationship between myelin basic protein antigenic determinants and viral and bacterial proteins." Neuroinformatics, vol. 2, pp. 59-70, Mar. 2004.
[3] E.D. Means, K.D. Barron, and B.J. Van Dyne, "Nervous system lesions after sting by yellow jacket. A case report." Neurology, vol. 23, pp. 881- 890, Aug. 1973.
[4] P. Likittanasombut, R. Witoonpanich, and K. Viranuvatti, "Encephalomyeloradiculopathy associated with wasp sting." J. Neurol. Neurosurg. Psychiatry, vol. 74, pp. 134-135, Jan. 2003.
[5] C. Boz, S. Velioglu, and M. Ozmenoglu, "Acute disseminated encephalomyelitis." Neuro. Sci., vol. 23, pp. 313-315, Feb. 2003.
[6] A. Pohl-Koppe, S.K. Burchett, E.A. Thiele, and D.A. Hafler, "Myelin basic protein reactive Th2 T cells are found in acute disseminated encephalomyelitis." J. Neuroimmunol., vol. 91, pp. 19-27, Nov. 1998.
[7] T.P. King, G. Lu, M. Gonzales, N. Qian, and L. Soldatova, "Yellow jacket venom allergens, hyaluronidase and phospholipase: sequence similarity and antigenic cross-reactivity with their hornet and wasp homologs and possible implication for clinical allergy." J. Allergy. Clin. Immunol., vol. 98, pp. 588-600, Sep. 1996.
[8] S. Brocke, A. Gaur, C. Piercy, A. Gautam, K. Gijbels, C.G. Fathman, and L. Steinman, "Induction of relapsing paralysis in experimental autoimmune encephalomyelitis by bacterial superantigen." Nature, vol. 365, pp. 642-644, Oct. 1993.
[9] S. Schwarz, A. Mohr, M. Knauth, B. Wildemann, and B. Storch- Hagenlocher, "Acute disseminated encephalomyelitis: A follow-up study of 40 adult patients." Neurology, vol. 56, pp. 1313-1318, May 2001.
[10] R. Martin, D. Jaraquemada, M. Flerlage, J. Richert, J. Whitaker, E.O. Long, D.E. McFarlin, and H.F. McFarland, "Fine specificity and HLA restriction of myelin basic protein-specific cytotoxic T cell lines from multiple sclerosis patients and healthy individuals." J. Immunol., vol. 145, pp. 540-548, July 1990.
[11] K.W. Wucherpfennig, A. Sette, S. Sourthwood, C. Oseroff, M. Matsui, J.L. Strominger, D.A. Hafler, "Structural requirements for binding of an immunodominant myelin basic protein peptide to DR2 isotypes and its recognition by human T cell clones." J. Exp. Med., vol. 179, pp. 279- 290, Jan. 1994.
[12] K.W. Wucherpfennig, I. Catz, S. Hausmann, J.L. Strominger, L. Steinman, and K.G. Warren, (1997) ÔÇ×Recognition of the immunodominant myelin basic protein peptide by autoantibodies and HLA-DR2 restricted T cell clones from multiple sclerosis patients: identify of key contact residues in the B cell and T cell epitopes." J. Clin. Invest., vol. 100, pp. 1114-1122, Sep. 1997.
[13] B. Gran, B. Hemmer, and R. Martin, "Molecular mimicry and multiple sclerosis- a possible role for degenerate T cell recognition in the induction of autoimmune responses." J. Neural. Transm. Suppl., vol. 55, pp. 19-31, 1999.
[14] The UniProt Consortium, "The Universal Protein Resource (UniProt)." Nucleic. Acids. Res., vol. 36, pp. D190-D195, Jan. 2008.
[15] X. Huang, and W. Miller, "A time-efficient, linear-space local similarity algorithm." Adv. Appl. Math., vol. 12, pp. 337-357, Sep. 1991.
[16] K.W. Wucherpfennig, and J.L. Strominger, "Molecular mimicry in T cell-mediated autoimmunity: viral peptides activate human T cell clones specific for myelin basic protein." Cell, vol. 80, pp. 695-705, Mar. 1995.
[17] K.J. Smith, J. Pyrdol, L. Gauthier, D.C. Wiley, and K.W. Wucherpfennig, "Crystal structure of HLA-DR2 (DRA*0101, DRB1*1501) complexed with a peptide from human myelin basic protein." J. Exp. Med., vol. 188, pp. 1511-1520, Oct. 1998.
[18] Z. Markovic-Housley, G. Miglierini, L. Soldatova, P.J. Rizkallah, U. M├╝ller, and T. Schirmer, "Crystal structure of hyaluronidase, a major allergen of bee venom." Structure, vol. 8, pp. 1025-1035, Oct. 2000.
[19] A. Henriksen, T.P. King, O. Mirza, R.I. Monsalve, K. Meno, H. Ipsen, J.N. Larsen, M. Gajhede, and M.D. Spangfort, "Major venom allergen of yellow jackets, Ves v 5: structural characterization of a pathogenesisrelated protein superfamily." Proteins, vol. 45, pp. 438-448, Dec. 2001.
[20] N. Guex, and M.C. Peitsch, "SWISS-MODEL and the Swiss- PdbViewer: An environment for comparative protein modeling." Electrophoresis, vol. 18, pp. 2714-2723, Dec. 1997.
[21] K. Gerritse, C. Deen, M. Fasbender, R. Ravid, W. Boersma, and E. Claassen, "The involvement of specific anti myelin basic protein antibody-forming cells in multiple sclerosis immunopathology." J. Neuroimmunol., vol. 49, pp. 153-159, Jan. 1994.
[22] Y. Li, H. Li, R. Martin, and R.A. Mariuzza, "Structural basis for the binding of an immunodominant peptide from myelin basic protein in different registers by two HLA-DR2 proteins." J. Mol. Biol., vol. 304, pp. 177-188, Nov. 2000.
[23] L.K. Skov, U. Seppala, J.J. Coen, N. Crickmore, T.P. King, R. Monsalve, J.S. Kastrup, M.D. Spangfort, and M. Gajhede, "Structure of recombinant Ves v 2 at 2.0 Angstrom resolution: structural analysis of an allergenic hyaluronidase from wasp venom." Acta. Crystallogr., vol. 62, pp. 595-604, 2006.
[24] A. Ben-Nun, H. Wekerle, and I.R. Cohen, "The rapid isolation of clonable antigen specific T lymphocyte lines capable of mediating autoimmune encephalitis." Eur. J. Immunol., vol. 11, pp. 195-199, 1981.
[25] A.M. Gautam, C.B. Lock, D.E. Smilek, C.L. Pearson, L. Steinman, and H.O. McDevitt, "Minimum structural requirements for peptide presentation by major histocompatibility complex class II molecules: implication in induction of autoimmunity." Proc. Natl. Acad. Sci. USA., vol. 91, pp. 767-771, 1994.