Search results for: Material Point Method
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 10687

Search results for: Material Point Method

10267 Evaluation of Eulerian and Lagrangian Method in Analysis of Concrete Gravity Dam Including Dam Water Foundation Interaction

Authors: L. Khan mohammadi, J. Vaseghi Amiri, B. Navayi neya , M. Davoodi

Abstract:

Because of the reservoir effect, dynamic analysis of concrete dams is more involved than other common structures. This problem is mostly sourced by the differences between reservoir water, dam body and foundation material behaviors. To account for the reservoir effect in dynamic analysis of concrete gravity dams, two methods are generally employed. Eulerian method in reservoir modeling gives rise to a set of coupled equations, whereas in Lagrangian method, the same equations for dam and foundation structure are used. The Purpose of this paper is to evaluate and study possible advantages and disadvantages of both methods. Specifically, application of the above methods in the analysis of dam-foundationreservoir systems is leveraged to calculate the hydrodynamic pressure on dam faces. Within the frame work of dam- foundationreservoir systems, dam displacement under earthquake for various dimensions and characteristics are also studied. The results of both Lagrangian and Eulerian methods in effects of loading frequency, boundary condition and foundation elasticity modulus are quantitatively evaluated and compared. Our analyses show that each method has individual advantages and disadvantages. As such, in any particular case, one of the two methods may prove more suitable as presented in the results section of this study.

Keywords: Lagrangian method, Eulerian method, Earthquake, Concrete gravity dam

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1815
10266 Experimentation on Piercing with Abrasive Waterjet

Authors: Johan Fredin, Anders Jönsson

Abstract:

Abrasive waterjet cutting (AWJ) is a highly efficient method for cutting almost any type of material. When holes shall be cut the waterjet first needs to pierce the material.This paper presents a vast experimental analysis of piercing parameters effect on piercing time. Results from experimentation on feed rates, work piece thicknesses, abrasive flow rates, standoff distances and water pressure are also presented as well as studies on three methods for dynamic piercing. It is shown that a large amount of time and resources can be saved by choosing the piercing parameters in a correct way. The large number of experiments puts demands on the experimental setup. An automated experimental setup including piercing detection is presented to enable large series of experiments to be carried out efficiently.

Keywords: Waterjet cutting, Piercing, Experimentation

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2447
10265 The Use of Process-Oriented Methods of Calculation to Determine the Costs of Logistics Processes

Authors: Tomas Cechura, Michal Simon

Abstract:

The aim of this paper is to create a proposal for determining the costs of logistics processes by using process-oriented calculation methods. The traditional approach is that logistics costs are part of manufacturing overhead which is usually calculated as a percentage surcharge. Therefore in the traditional approach it is not obvious where and in which activities costs were incurred. So it is impossible to trace logistics costs to products. Our point of view is trying to fix or at least improve this issue. Another benefit of applying the process approach is identification of logistics processes which are otherwise part of manufacturing overhead. In the first part this paper describes the development of process-oriented methods over time. The next part shows the possibility of implementing the process-oriented method called Prozesskostenrechnung to logistics processes. The conclusion summarizes advantages and disadvantages of using this method in logistics.

Keywords: Cost, logistics, calculation, process-oriented method.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1595
10264 A Stereo Vision System for Top View Book Scanners

Authors: Erik Lilienblum, Robert Niese, Bernd Michaelis

Abstract:

This paper proposes a novel stereo vision technique for top view book scanners which provide us with dense 3d point clouds of page surfaces. This is a precondition to dewarp bound volumes independent of 2d information on the page. Our method is based on algorithms, which normally require the projection of pattern sequences with structured light. We use image sequences of the moving stripe lighting of the top view scanner instead of an additional light projection. Thus the stereo vision setup is simplified without losing measurement accuracy. Furthermore we improve a surface model dewarping method through introducing a difference vector based on real measurements. Although our proposed method is hardly expensive neither in calculation time nor in hardware requirements we present good dewarping results even for difficult examples.

Keywords: stereo vision, 3d surface reconstruction, dewarpingdocuments, book scanner

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1588
10263 A Character Detection Method for Ancient Yi Books Based on Connected Components and Regressive Character Segmentation

Authors: Xu Han, Shanxiong Chen, Shiyu Zhu, Xiaoyu Lin, Fujia Zhao, Dingwang Wang

Abstract:

Character detection is an important issue for character recognition of ancient Yi books. The accuracy of detection directly affects the recognition effect of ancient Yi books. Considering the complex layout, the lack of standard typesetting and the mixed arrangement between images and texts, we propose a character detection method for ancient Yi books based on connected components and regressive character segmentation. First, the scanned images of ancient Yi books are preprocessed with nonlocal mean filtering, and then a modified local adaptive threshold binarization algorithm is used to obtain the binary images to segment the foreground and background for the images. Second, the non-text areas are removed by the method based on connected components. Finally, the single character in the ancient Yi books is segmented by our method. The experimental results show that the method can effectively separate the text areas and non-text areas for ancient Yi books and achieve higher accuracy and recall rate in the experiment of character detection, and effectively solve the problem of character detection and segmentation in character recognition of ancient books.

Keywords: Computing methodologies, interest point, salient region detections, image segmentation.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 866
10262 Evaluation of Low-Reducible Sinter in Blast Furnace Technology by Mathematical Model Developed at Centre ENET, VSB – Technical University of Ostrava

Authors: S. Jursová, P. Pustějovská, S. Brožová, J. Bilík

Abstract:

The paper deals with possibilities of interpretation of iron ore reducibility tests. It presents a mathematical model developed at Centre ENET, VŠB – Technical University of Ostrava, Czech Republic for an evaluation of metallurgical material of blast furnace feedstock such as iron ore, sinter or pellets. According to the data from the test, the model predicts its usage in blast furnace technology and its effects on production parameters of shaft aggregate. At the beginning, the paper sums up the general concept and experience in mathematical modelling of iron ore reduction. It presents basic equation for the calculation and the main parts of the developed model. In the experimental part, there is an example of usage of the mathematical model. The paper describes the usage of data for some predictive calculation. There are presented material, method of carried test of iron ore reducibility. Then there are graphically interpreted effects of used material on carbon consumption, rate of direct reduction and the whole reduction process.

Keywords: Blast furnace technology, iron ore reduction, mathematical model, prediction of iron ore reduction.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1991
10261 Application of Formal Methods for Designing a Separation Kernel for Embedded Systems

Authors: Kei Kawamorita, Ryouta Kasahara, Yuuki Mochizuki, Kenichiro Noguchi

Abstract:

A separation-kernel-based operating system (OS) has been designed for use in secure embedded systems by applying formal methods to the design of the separation-kernel part. The separation kernel is a small OS kernel that provides an abstract distributed environment on a single CPU. The design of the separation kernel was verified using two formal methods, the B method and the Spin model checker. A newly designed semi-formal method, the extended state transition method, was also applied. An OS comprising the separation-kernel part and additional OS services on top of the separation kernel was prototyped on the Intel IA-32 architecture. Developing and testing of a prototype embedded application, a point-of-sale application, on the prototype OS demonstrated that the proposed architecture and the use of formal methods to design its kernel part are effective for achieving a secure embedded system having a high-assurance separation kernel.

Keywords: B method, embedded systems, extended state transition, formal methods, separation kernel, Spin.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1925
10260 A Microcontroller Implementation of Constrained Model Predictive Control

Authors: Amira Kheriji Abbes, Faouzi Bouani, Mekki Ksouri

Abstract:

Model Predictive Control (MPC) is an established control technique in a wide range of process industries. The reason for this success is its ability to handle multivariable systems and systems having input, output or state constraints. Neverthless comparing to PID controller, the implementation of the MPC in miniaturized devices like Field Programmable Gate Arrays (FPGA) and microcontrollers has historically been very small scale due to its complexity in implementation and its computation time requirement. At the same time, such embedded technologies have become an enabler for future manufacturing enterprisers as well as a transformer of organizations and markets. In this work, we take advantage of these recent advances in this area in the deployment of one of the most studied and applied control technique in the industrial engineering. In this paper, we propose an efficient firmware for the implementation of constrained MPC in the performed STM32 microcontroller using interior point method. Indeed, performances study shows good execution speed and low computational burden. These results encourage to develop predictive control algorithms to be programmed in industrial standard processes. The PID anti windup controller was also implemented in the STM32 in order to make a performance comparison with the MPC. The main features of the proposed constrained MPC framework are illustrated through two examples.

Keywords: Embedded software, microcontroller, constrainedModel Predictive Control, interior point method, PID antiwindup, Keil tool, C/Cµ language.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2798
10259 A Three-Dimensional TLM Simulation Method for Thermal Effect in PV-Solar Cells

Authors: R. Hocine, A. Boudjemai, A. Amrani, K. Belkacemi

Abstract:

Temperature rising is a negative factor in almost all systems. It could cause by self heating or ambient temperature. In solar photovoltaic cells this temperature rising affects on the behavior of cells. The ability of a PV module to withstand the effects of periodic hot-spot heating that occurs when cells are operated under reverse biased conditions is closely related to the properties of the cell semi-conductor material.

In addition, the thermal effect also influences the estimation of the maximum power point (MPP) and electrical parameters for the PV modules, such as maximum output power, maximum conversion efficiency, internal efficiency, reliability, and lifetime. The cells junction temperature is a critical parameter that significantly affects the electrical characteristics of PV modules. For practical applications of PV modules, it is very important to accurately estimate the junction temperature of PV modules and analyze the thermal characteristics of the PV modules. Once the temperature variation is taken into account, we can then acquire a more accurate MPP for the PV modules, and the maximum utilization efficiency of the PV modules can also be further achieved.

In this paper, the three-Dimensional Transmission Line Matrix (3D-TLM) method was used to map the surface temperature distribution of solar cells while in the reverse bias mode. It was observed that some cells exhibited an inhomogeneity of the surface temperature resulting in localized heating (hot-spot). This hot-spot heating causes irreversible destruction of the solar cell structure. Hot spots can have a deleterious impact on the total solar modules if individual solar cells are heated. So, the results show clearly that the solar cells are capable of self-generating considerable amounts of heat that should be dissipated very quickly to increase PV module's lifetime.

Keywords: Thermal effect, Conduction, Heat dissipation, Thermal conductivity, Solar cell, PV module, Nodes, 3D-TLM.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2347
10258 Semi-Supervised Outlier Detection Using a Generative and Adversary Framework

Authors: Jindong Gu, Matthias Schubert, Volker Tresp

Abstract:

In many outlier detection tasks, only training data belonging to one class, i.e., the positive class, is available. The task is then to predict a new data point as belonging either to the positive class or to the negative class, in which case the data point is considered an outlier. For this task, we propose a novel corrupted Generative Adversarial Network (CorGAN). In the adversarial process of training CorGAN, the Generator generates outlier samples for the negative class, and the Discriminator is trained to distinguish the positive training data from the generated negative data. The proposed framework is evaluated using an image dataset and a real-world network intrusion dataset. Our outlier-detection method achieves state-of-the-art performance on both tasks.

Keywords: Outlier detection, generative adversary networks, semi-supervised learning.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1074
10257 Nonlinear Finite Element Modeling of Deep Beam Resting on Linear and Nonlinear Random Soil

Authors: M. Seguini, D. Nedjar

Abstract:

An accuracy nonlinear analysis of a deep beam resting on elastic perfectly plastic soil is carried out in this study. In fact, a nonlinear finite element modeling for large deflection and moderate rotation of Euler-Bernoulli beam resting on linear and nonlinear random soil is investigated. The geometric nonlinear analysis of the beam is based on the theory of von Kàrmàn, where the Newton-Raphson incremental iteration method is implemented in a Matlab code to solve the nonlinear equation of the soil-beam interaction system. However, two analyses (deterministic and probabilistic) are proposed to verify the accuracy and the efficiency of the proposed model where the theory of the local average based on the Monte Carlo approach is used to analyze the effect of the spatial variability of the soil properties on the nonlinear beam response. The effect of six main parameters are investigated: the external load, the length of a beam, the coefficient of subgrade reaction of the soil, the Young’s modulus of the beam, the coefficient of variation and the correlation length of the soil’s coefficient of subgrade reaction. A comparison between the beam resting on linear and nonlinear soil models is presented for different beam’s length and external load. Numerical results have been obtained for the combination of the geometric nonlinearity of beam and material nonlinearity of random soil. This comparison highlighted the need of including the material nonlinearity and spatial variability of the soil in the geometric nonlinear analysis, when the beam undergoes large deflections.

Keywords: Finite element method, geometric nonlinearity, material nonlinearity, soil-structure interaction, spatial variability.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1944
10256 Design of a Carbon Silicon Electrode for Iontophoresis Treatment towards Alopecia

Authors: Q. Wei, D. G. Hwang, Z. Mohy-Udin, D. H. Shin, J. H. Park, M. Y. Kang, J. H. Cho

Abstract:

This study presents design of a carbon silicon electrode for iontophorsis treatment towards alopecia. The alopecia is a medical description means loss of hair from the body. For solving this problem, the drug need to be delivered into the scalp, therefore, the iontophoresis was chosen to use in this treatment. However, almost common electrodes of iontophoresis device are made with metal material, the electrodes could give patients hurt when they using it, and it is hard to avoid the hair for attaching the hair. For this reason, an electrode is made with silicon material to decrease the hurt from the electrodes, and the carbon material is mixed in it for increasing conductance. The several cones with stainless material on the electrode make the electrode is able to void hair to attach the affected part. According to the results of a vivo-experiment, the carbon silicon electrode showed a good performance and in treatment comfortably.

Keywords: Carbon silicon, drug delivery system, iontophoresis

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1706
10255 Report of Happiness in the Iranian Educational System: A Qualitative Research

Authors: Babak Shamshiri, Najme Dastouri

Abstract:

The purpose of this study is to understand the current situation of happiness in the Iranian educational system from the perspective of students, teachers and educational administrators. This research is done in qualitative paradigm. Data collection is done by in-depth interview method. Research participants were selected purposively according to sampling rules, with maximum variation and reaching the saturation point. According to most participants in this study, schools in Iran are not usually happy. This lack of happiness is associated with and related to the educational system, curriculum, teaching method, physical environment of schools and their facilities.

Keywords: Happiness, Iran, educational system, qualitative study.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 898
10254 Destination of the Solid Waste Generated at the Agricultural Products Wholesale Market in Brazil

Authors: C de Almeida, I. M. Dal Fabbro

Abstract:

The Brazilian Agricultural Products Wholesale Market fits well as example of residues generating system, reaching 750 metric tons per month of total residues, from which 600 metric tons are organic material and 150 metric tons are recyclable materials. Organic material is basically composed of fruit, vegetables and flowers leftovers from the products commercialization. The recyclable compounds are generate from packing material employed in the commercialization process. This research work devoted efforts in carrying quantitative analysis of the residues generated in the agricultural enterprise at its final destination. Data survey followed the directions implemented by the Residues Management Program issued by the agricultural enterprise. It was noticed from that analysis the necessity of changing the logistics applied to the recyclable material collecting process. However, composting process was elected as the organic compounds destination which is considered adequate for a material composed of significant percentage of organic matter far higher than wood, cardboard and plastics contents.

Keywords: Composting, environment, recycling, solid waste.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2020
10253 Development of Nondestructive Imaging Analysis Method Using Muonic X-Ray with a Double-Sided Silicon Strip Detector

Authors: I-Huan Chiu, Kazuhiko Ninomiya, Shin’ichiro Takeda, Meito Kajino, Miho Katsuragawa, Shunsaku Nagasawa, Atsushi Shinohara, Tadayuki Takahashi, Ryota Tomaru, Shin Watanabe, Goro Yabu

Abstract:

In recent years, a nondestructive elemental analysis method based on muonic X-ray measurements has been developed and applied for various samples. Muonic X-rays are emitted after the formation of a muonic atom, which occurs when a negatively charged muon is captured in a muon atomic orbit around the nucleus. Because muonic X-rays have a higher energy than electronic X-rays due to the muon mass, they can be measured without being absorbed by a material. Thus, estimating the two-dimensional (2D) elemental distribution of a sample became possible using an X-ray imaging detector. In this work, we report a non-destructive imaging experiment using muonic X-rays at Japan Proton Accelerator Research Complex. The irradiated target consisted of a polypropylene material, and a double-sided silicon strip detector, which was developed as an imaging detector for astronomical obervation, was employed. A peak corresponding to muonic X-rays from the carbon atoms in the target was clearly observed in the energy spectrum at an energy of 14 keV, and 2D visualizations were successfully reconstructed to reveal the projection image from the target. This result demonstrates the potential of the nondestructive elemental imaging method that is based on muonic X-ray measurement. To obtain a higher position resolution for imaging a smaller target, a new detector system will be developed to improve the statistical analysis in further research.

Keywords: DSSD, muon, muonic X-ray, imaging, non-destructive analysis

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1259
10252 Experimental Study of Flow Effects of Solid Particles’ Size in Porous Media

Authors: S. Akridiss, E. El Tabach, K. Chetehouna, N. Gascoin, M. S. Kadiri

Abstract:

Transpiration cooling combined to regenerative cooling is a technique that could be used to cool the porous walls of the future ramjet combustion chambers; it consists of using fuel that will flow through the pores of the porous material consisting of the chamber walls, as coolant. However, at high temperature, the fuel is pyrolysed and generates solid coke particles inside the porous materials. This phenomenon can lead to a significant decrease of the material permeability and can affect the efficiency of the cooling system. In order to better understand this phenomenon, an experimental laboratory study was undertaken to determine the transport and deposition of particles in a sintered porous material subjected to steady state flow. The test bench composed of a high-pressure autoclave is used to study the transport of different particle size (35

Keywords: Experimental study, permeability, porous material, suspended particles.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 833
10251 Assessment of Material Type, Diameter, Orientation and Closeness of Fibers in Vulcanized Reinforced Rubbers

Authors: Ali Osman Güney, Bahattin Kanber

Abstract:

In this work, the effect of material type, diameter, orientation and closeness of fibers on the general performance of reinforced vulcanized rubbers are investigated using finite element method with experimental verification. Various fiber materials such as hemp, nylon, polyester are used for different fiber diameters, orientations and closeness. 3D finite element models are developed by considering bonded contact elements between fiber and rubber sheet interfaces. The fibers are assumed as linear elastic, while vulcanized rubber is considered as hyper-elastic. After an experimental verification of finite element results, the developed models are analyzed under prescribed displacement that causes tension. The normal stresses in fibers and shear stresses between fibers and rubber sheet are investigated in all models. Large deformation of reinforced rubber sheet also represented with various fiber conditions under incremental loading. A general assessment is achieved about best fiber properties of reinforced rubber sheets for tension-load conditions.

Keywords: Fiber properties, finite element method, tension-load condition, reinforced vulcanized rubbers.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 921
10250 Unsteady Free Convection Flow Over a Three-Dimensional Stagnation Point With Internal Heat Generation or Absorption

Authors: Mohd Ariff Admon, Abdul Rahman Mohd Kasim, Sharidan Shafie

Abstract:

This paper considers the effect of heat generation proportional l to (T - T∞ )p , where T is the local temperature and T∞ is the ambient temperature, in unsteady free convection flow near the stagnation point region of a three-dimensional body. The fluid is considered in an ambient fluid under the assumption of a step change in the surface temperature of the body. The non-linear coupled partial differential equations governing the free convection flow are solved numerically using an implicit finite-difference method for different values of the governing parameters entering these equations. The results for the flow and heat characteristics when p ≤ 2 show that the transition from the initial unsteady-state flow to the final steadystate flow takes place smoothly. The behavior of the flow is seen strongly depend on the exponent p.

Keywords: Free convection, Boundary layer flow, Stagnationpoint, Heat generation

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2260
10249 ANN Based Model Development for Material Removal Rate in Dry Turning in Indian Context

Authors: Mangesh R. Phate, V. H. Tatwawadi

Abstract:

This paper is intended to develop an artificial neural network (ANN) based model of material removal rate (MRR) in the turning of ferrous and nonferrous material in a Indian small-scale industry. MRR of the formulated model was proved with the testing data and artificial neural network (ANN) model was developed for the analysis and prediction of the relationship between inputs and output parameters during the turning of ferrous and nonferrous materials. The input parameters of this model are operator, work-piece, cutting process, cutting tool, machine and the environment.

The ANN model consists of a three layered feedforward back propagation neural network. The network is trained with pairs of independent/dependent datasets generated when machining ferrous and nonferrous material. A very good performance of the neural network, in terms of contract with experimental data, was achieved. The model may be used for the testing and forecast of the complex relationship between dependent and the independent parameters in turning operations.

Keywords: Field data based model, Artificial neural network, Simulation, Convectional Turning, Material removal rate.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1970
10248 Physico-chemical State of the Air at the Stagnation Point during the Atmospheric Reentry of a Spacecraft

Authors: Rabah Haoui

Abstract:

Hypersonic flows around spatial vehicles during their reentry phase in planetary atmospheres are characterized by intense aerothermal phenomena. The aim of this work is to analyze high temperature flows around an axisymmetric blunt body taking into account chemical and vibrational non-equilibrium for air mixture species. For this purpose, a finite volume methodology is employed to determine the supersonic flow parameters around the axisymmetric blunt body, especially at the stagnation point and along the wall of spacecraft for several altitudes. This allows the capture shock wave before a blunt body placed in supersonic free stream. The numerical technique uses the Flux Vector Splitting method of Van Leer. Here, adequate time stepping parameter, along with CFL coefficient and mesh size level are selected to ensure numerical convergence, sought with an order of 10-8

Keywords: Chemical kinetic, dissociation, finite volumes, frozen, hypersonic flow, non-equilibrium, Reactive flow, supersonicflow , vibration.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1853
10247 Determining the Workability of the New Metallurgical Materials

Authors: Ondrej Dupala, Josef Brychta, Robert Cep, Adam Janasek

Abstract:

The aim of this paper is to experimentally discover the workability coefficient of the Inconel 718 material by using a slide turning machining. Two different types of cutting inserts, one made of carbide and the other one made of ceramic, are being used. The purpose is to compare measured results and recommend the appropriate materials and cutting parameters for a machining of the Inconel 718. Furthermore, the durability of inserts with the chosen wear criterion is being compared for different cutting speeds. Machinability of these materials is a crucial characteristic as it allows us to shorten the technological cycle time and increase the machining productivity. And this is of great importance from an economic point of view.

Keywords: Workability, Inconel 718, Turning Machining, Durability.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1643
10246 A New Voting Approach to Texture Defect Detection Based on Multiresolutional Decomposition

Authors: B. B. M. Moasheri, S. Azadinia

Abstract:

Wavelets have provided the researchers with significant positive results, by entering the texture defect detection domain. The weak point of wavelets is that they are one-dimensional by nature so they are not efficient enough to describe and analyze two-dimensional functions. In this paper we present a new method to detect the defect of texture images by using curvelet transform. Simulation results of the proposed method on a set of standard texture images confirm its correctness. Comparing the obtained results indicates the ability of curvelet transform in describing discontinuity in two-dimensional functions compared to wavelet transform

Keywords: Curvelet, Defect detection, Wavelet.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1574
10245 Effects of Silicon Oxide Filler Material and Fibre Orientation on Erosive Wear of GF/EP Composites

Authors: M. Bagci, H. Imrek, Omari M. Khalfan

Abstract:

Materials added to the matrix help improving operating properties of a composite. This experimental study has targeted to investigate this aim where Silicon Oxide particles were added to glass fibre and epoxy resin at an amount of 15% to the main material to obtain a sort of new composite material. Erosive wear behavior of epoxy-resin dipped composite materials reinforced with glass fibre and Silicon Oxide under three different impingement angles (30°, 60° and 90°), three different impact velocities (23, 34 and 53 m/s), two different angular Aluminum abrasive particle sizes (approximately 200 and 400 μm) and the fibre orientation of 45° (45/-45) were investigated. In the test results, erosion rates were obtained as functions of impingement angles, impact velocities, particle sizes and fibre orientation. Moreover, materials with addition of Silicon Oxide filler material exhibited lower wear as compared to neat materials with no added filler material. In addition, SEM views showing worn out surfaces of the test specimens were scrutinized.

Keywords: Erosive wear, fibre orientation, GF/EP, silicon oxide.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2562
10244 An Alternative Proof for the NP-completeness of Top Right Access point-Minimum Length Corridor Problem

Authors: Priyadarsini P.L.K, Hemalatha T.

Abstract:

In the Top Right Access point Minimum Length Corridor (TRA-MLC) problem [1], a rectangular boundary partitioned into rectilinear polygons is given and the problem is to find a corridor of least total length and it must include the top right corner of the outer rectangular boundary. A corridor is a tree containing a set of line segments lying along the outer rectangular boundary and/or on the boundary of the rectilinear polygons. The corridor must contain at least one point from the boundaries of the outer rectangle and also the rectilinear polygons. Gutierrez and Gonzalez [1] proved that the MLC problem, along with some of its restricted versions and variants, are NP-complete. In this paper, we give a shorter proof of NP-Completeness of TRA-MLC by findig the reduction in the following way.

Keywords: NP-complete, 2-connected planar graph, Grid embedding of a plane graph.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1284
10243 Measurement of Systemic Power Efficiency of Microwave Heating Application

Authors: Yi He, Nutdechatorn Puangngernmak, Suramate Chalermwisutkul

Abstract:

Microwave heating process has been developed about sixty years while measurement system has also progressed. Because of irradiation of high frequency of microwave, researchers have been utilized many costly technical instrument measuring parameters to evaluate the performance of microwave heating system. Therefore, this paper is intended to present an easier and feasible efficiency measurement method. It can help inspecting efficiency of microwave heating system with good accuracy, while the method can also give reference to optimizing procedure for microwave heating system for various load material

Keywords: measurement, microwave heating system, systemic power efficiency

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1847
10242 Response Surface Based Optimization of Toughness of Hybrid Polyamide 6 Nanocomposites

Authors: E. Hajizadeh, H. Garmabi

Abstract:

Toughening of polyamide 6 (PA6)/ Nanoclay (NC) nanocomposites with styrene-ethylene/butadiene-styrene copolymer (SEBS) using maleated styrene-ethylene/butadiene-styrene copolymer (mSEBS)/ as a compatibilizer were investigated by blending them in a co-rotating twin-screw extruder. Response surface method of experimental design was used for optimizing the material and processing parameters. Effect of four factors, including SEBS, mSEBS and NC contents as material variables and order of mixing as a processing factor, on toughness of hybrid nanocomposites were studied. All the prepared samples showed ductile behavior and low temperature Izod impact toughness of some of the hybrid nanocomposites demonstrated 900% improvement compared to the PA6 matrix while the modulus showed maximum enhancement of 20% compared to the pristine PA6 resin.

Keywords: Hybrid nanocomposites, PA6, SEBS rubber, toughness.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1624
10241 Biaxial Testing of Fabrics - A Comparison of Various Testing Methodologies

Authors: O.B. Ozipek, E. Bozdag, E. Sunbuloglu, A. Abdullahoglu, E. Belen, E. Celikkanat

Abstract:

In textile industry, besides the conventional textile products, technical textile goods, that have been brought external functional properties into, are being developed for technical textile industry. Especially these products produced with weaving technology are widely preferred in areas such as sports, geology, medical, automotive, construction and marine sectors. These textile products are exposed to various stresses and large deformations under typical conditions of use. At this point, sufficient and reliable data could not be obtained with uniaxial tensile tests for determination of the mechanical properties of such products due to mainly biaxial stress state. Therefore, the most preferred method is a biaxial tensile test method and analysis. These tests and analysis is applied to fabrics with different functional features in order to establish the textile material with several characteristics and mechanical properties of the product. Planar biaxial tensile test, cylindrical inflation and bulge tests are generally required to apply for textile products that are used in automotive, sailing and sports areas and construction industry to minimize accidents as long as their service life. Airbags, seat belts and car tires in the automotive sector are also subject to the same biaxial stress states, and can be characterized by same types of experiments. In this study, in accordance with the research literature related to the various biaxial test methods are compared. Results with discussions are elaborated mainly focusing on the design of a biaxial test apparatus to obtain applicable experimental data for developing a finite element model. Sample experimental results on a prototype system are expressed.

Keywords: Biaxial Stress, Bulge Test, Cylindrical Inflation, Fabric Testing, Planar Tension.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 4150
10240 Hybrid Method Using Wavelets and Predictive Method for Compression of Speech Signal

Authors: Karima Siham Aoubid, Mohamed Boulemden

Abstract:

The development of the signal compression algorithms is having compressive progress. These algorithms are continuously improved by new tools and aim to reduce, an average, the number of bits necessary to the signal representation by means of minimizing the reconstruction error. The following article proposes the compression of Arabic speech signal by a hybrid method combining the wavelet transform and the linear prediction. The adopted approach rests, on one hand, on the original signal decomposition by ways of analysis filters, which is followed by the compression stage, and on the other hand, on the application of the order 5, as well as, the compression signal coefficients. The aim of this approach is the estimation of the predicted error, which will be coded and transmitted. The decoding operation is then used to reconstitute the original signal. Thus, the adequate choice of the bench of filters is useful to the transform in necessary to increase the compression rate and induce an impercevable distortion from an auditive point of view.

Keywords: Compression, linear prediction analysis, multiresolution analysis, speech signal.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1337
10239 Dynamic Clustering Estimation of Tool Flank Wear in Turning Process using SVD Models of the Emitted Sound Signals

Authors: A. Samraj, S. Sayeed, J. E. Raja., J. Hossen, A. Rahman

Abstract:

Monitoring the tool flank wear without affecting the throughput is considered as the prudent method in production technology. The examination has to be done without affecting the machining process. In this paper we proposed a novel work that is used to determine tool flank wear by observing the sound signals emitted during the turning process. The work-piece material we used here is steel and aluminum and the cutting insert was carbide material. Two different cutting speeds were used in this work. The feed rate and the cutting depth were constant whereas the flank wear was a variable. The emitted sound signal of a fresh tool (0 mm flank wear) a slightly worn tool (0.2 -0.25 mm flank wear) and a severely worn tool (0.4mm and above flank wear) during turning process were recorded separately using a high sensitive microphone. Analysis using Singular Value Decomposition was done on these sound signals to extract the feature sound components. Observation of the results showed that an increase in tool flank wear correlates with an increase in the values of SVD features produced out of the sound signals for both the materials. Hence it can be concluded that wear monitoring of tool flank during turning process using SVD features with the Fuzzy C means classification on the emitted sound signal is a potential and relatively simple method.

Keywords: Fuzzy c means, Microphone, Singular ValueDecomposition, Tool Flank Wear.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1898
10238 MAS Simulations of Optical Antenna Structures

Authors: K.Tavzarashvili, G.Ghvedashili

Abstract:

A semi-analytic boundary discretization method, the Method of Auxiliary Sources (MAS) is used to analyze Optical Antennas consisting of metallic parts. In addition to standard dipoletype antennas, consisting of two pieces of metal, a new structure consisting of a single metal piece with a tiny groove in the center is analyzed. It is demonstrated that difficult numerical problems are caused because optical antennas exhibit strong material dispersion, loss, and plasmon-polariton effects that require a very accurate numerical simulation. This structure takes advantage of the Channel Plasmon-Polariton (CPP) effect and exhibits a strong enhancement of the electric field in the groove. Also primitive 3D antenna model with spherical nano particles is analyzed.

Keywords: optical antenna, channel plasmon-polariton, computational physics, Method of Auxiliary Sources

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1914