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Abstract—In many outlier detection tasks, only training data
belonging to one class, i.e., the positive class, is available. The
task is then to predict a new data point as belonging either to
the positive class or to the negative class, in which case the
data point is considered an outlier. For this task, we propose a
novel corrupted Generative Adversarial Network (CorGAN). In the
adversarial process of training CorGAN, the Generator generates
outlier samples for the negative class, and the Discriminator is trained
to distinguish the positive training data from the generated negative
data. The proposed framework is evaluated using an image dataset
and a real-world network intrusion dataset. Our outlier-detection
method achieves state-of-the-art performance on both tasks.

Keywords—Outlier detection, generative adversary networks,
semi-supervised learning.

I. INTRODUCTION

THREE main approaches for outlier detection have been

discussed in literature [1]. The first one is based

on supervised classification and requires labeled data from

both the positive class and the negative class. The second

one is based on unsupervised learning such as clustering,

and models data from one or both classes. The third one

uses semi-supervised learning to detects outliers using only

data from the positive class. Semi-supervised learning has

gained increasing attention in recent years, with One-class

classification (OCC) being a popular example. The term

”One-class classification” was introduced in [2]. Other authors

use the term Outlier Detection [3], Novelty Detection [4] or

Concept Learning [5]. These terms are used interchangeably

in this paper, even though they have specific meanings in other

works. OCC can be used not only in machine monitoring

tasks but also in many others, e.g., Text mining [6], Sentiment

Analysis [7] and IT security [8].

OCC is relevant for many industrial applications. Consider

image-based monitoring systems for product fault detection

where a classifier should detect when the manufacturing

process starts to behave abnormally. Images from the positive

class are easy to obtain by measuring the normal operations of

the machine. However, data with negative labels are typically

very limited, or even totally unavailable and a classifier needs

to be built only on positive training data.

Although many solutions for OCC have been proposed in

the last several years, conducting robust outlier detection in

high-dimensional spaces with high performance remains a
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challenging task. Neural Networks with deep architecture are

well known for THEIR ability to manipulate high-dimensional

data. They achieve state-of-art results in speech recognition,

visual object recognition, object detection as well as many

other application domains [9]. OCC solutions based on

the strong modeling capacity of deep networks have been

proposed in several recent works [10]-[12]. Reference [11]

learns a mapping from the data space to a lower-dimensional

feature space where the complex distribution is difficult

to model accurately. Unfortunately, the restricted density

estimation model used in [11] has shown suboptimal

performance, if the actual distribution is complex.

A Generative Adversary Networks (GANs) [13] is based

on two functional modules. The Discriminator is trained

to distinguish the real data from generated data, and the

Generator generates data to fool the Discriminator. The

Generator thereof is cable of accurately modeling complex

distributions. Recently, the adversary process is also explored

in outlier detection tasks [14]-[16]. Although GANs have high

modeling capacity, usually, the convergence of the training

process of GANs cannot be guaranteed in practice. Our

proposed model requires no strict convergence of the training

process since the Generator is used to generate only outliers

instead of high-quality samples from the real data distribution.

The core contribution of this work is to investigate the

leverage of the generated negative data from GANs. The

basic idea is to stop the training of the GAN modules before

convergence, to ensure that the Generator keeps generating

samples of the negative class (outliers). Furthermore, we

propose a new objective function for training the GAN.

With the new objective function, the Generator is able to

keep generating various negative samples near the distribution

boundary of the positive class.

The next section reviews related work. In Section III,

we describe our models and provide a justification for our

design choice. We first introduce and analyze an intuitive

Early-Stopping based solution which motivates a solution that

provides better performance. Section IV presents experiments,

analyzes the results and compares the performance with

state-of-the-art methods. The last section concludes our paper

and describes future work.

II. RELATED WORK

The main approaches for outlier detection can be

categorized into five classes [17]. Probabilistic approaches

estimate the generative probability density function (pdf) of

the data from the positive class. The boundaries of normality in
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the data space are defined by the resultant distribution together

with a specified threshold, and an unseen sample is tested

whether it comes from the same distribution or not. Popular

choices for modelling the pdf are Gaussian Mixture Models

(GMMs) [18], [19] and Kernel Density Estimators [20]-[22].

Probabilistic approaches require so solve complete density

estimation problems in the feature space. If the data in feature

space are high dimensional, huge amounts of data are required

to fit the model, due to the curse of dimensionality. Another

well-known approach, the Reconstruction-based approach,

first trains a model to minimize the reconstruction error of

training data with positive labels. Then, the trained model

assigns an outlier score, the distance between the input

representation vector and the output of the model, for each

test example. References [23], [24] reviews most of the neural

network-based methods. Additionally, a principal component

analysis (PCA) can also be used detect outliers [25].

The Distance-based approach, e.g., Nearest neighbour-based

methods [26], [27] and Clustering-based methods [28],

[29], avoids estimating the pdf explicitly, but it requires a

well-defined distance/similarity measure, which is especially

difficult to define in high-dimensional space. Another approach

is domain-based, which creates the boundary based on the

structure of normal data without considering the density

of the positive class. One-class SVM [30] and Support

vector data description (SVDD) [31] are two basic examples.

However, the choice of an appropriate kernel function is

not easy, and the search for n appropriate one determines

the computational cost. Moreover, the hyperparameters that

control the tightness of the boundary are also difficult to select.

Lastly, Information-theoretic approaches try to distinguish

normal data from outliers by computing the information

content of the dataset using an information measure. Similarly,

the selection of appropriate information-theoretic measure is

challenging.

The approaches described above learn from available

positive samples only. Approaches that learn from both

target samples and artificial outliers are have also been

investigated. Reference [32], [33] generate outliers subject to

a predefined distribution. The strong assumptions about the

outlier data distribution in these approaches may be violated

in real datasets [34]. Reference [35] proposes a method

for generating artificial outliers, uniformly distributed in a

hypersphere. However, in high-dimensional data space, their

proposed technique is not feasible anymore because it is

though to get a confident estimate of the target volume due

to the large difference in volume of the target and outlier

class. Reference [36] extends the given dataset by generating

outlier examples distributed around the positive class. The

approach first finds boundary points explicitly using SVM,

which is computationally expensive. Then it generates negative

examples only around positive class data using a distance

measure, which is infeasible in high-dimensional spaces.

The recently proposed generative adversary networks

(GANs) are able to model complex distributions, and are

thus suitable for complex OCC. AnoGAN [14] models the

normal data distribution using the Generator and identify the

outliers by finding the minimal reconstruction error from the

latent space. The search in latent space is computationally

expensive. To avoid the costly search process, [16] computes

the corresponding latent representation directly using the

jointly trained encoder. Reference [15] proposes to generate

both positive samples and negative sample for open-category

classification. The generation and categorization process is

based on a derivative-free optimization. Our proposed CorGan

keeps generating negative examples around the positive class.

Moreover, the model requires no strict convergence of training

process.

III. GENERATING OUTLIERS USING GANS

An overview of our framework is shown in Fig. 1. The

outlier detection process consists of three steps, namely,

training the GAN, training the classifier and training the

detection process. In this work, we focus on adapting the

Generator in GANs to generate desired outlier samples. We

first describe three desired properties of the generated samples:

P1) The generated samples belong to the negative class.
P2) The generated samples distribute around the subspace

of the positive class (i.e. near the boundary between the
positive and the negative classes).

P3) The generated samples are mutually separated in data
space.

The original Generative Adversary Network (GAN) is a

framework for training generative models via an adversarial

process [13]. The framework consists of two components,

a generative model (Generator G) and a discriminative

model (Discriminator D). The framework has been analyzed

from various viewpoints, based on its Energy function,

Class probability estimation, Divergence Minimisation, Ratio

Matching and Moment Matching [37]-[40]. All annotations

used in this paper are listed in Appendix V-A.

From the perspective of Divergence Minimisation, the

Discriminator in GANs provides information about the

relationship between the generative model distribution qθ(x)
and the data distribution p(x), e.g., divergence or the density

ratio. The Generator minimizes the divergence of the two

distributions. The divergence of G reaches the minimum when

density ratio is 1, namely qθ(x) = p(x).
From the perspective of Class probability estimation, the D

estimates the probability that a sample came from the training

data rather than the Generator. The D is trained to distinguish

samples in training data from generated samples by assigning

a high probability to the former and a low probability to

the latter. Contrarily, the objective of G is to maximize the

probability of D making a mistake. Thus, after convergence,

the found solution can be interpreted as a Nash-equilibrium.

In case of the convergence, the G is capable of generating

samples from data distribution p(x). The D always outputs

the same probability values for both training samples and

generated samples, and it cannot distinguish them anymore.

Note that, after complete convergence, the generated samples

of this original GAN do not satisfy the property 1 because

they belong to the positive class (i.e. subject to p(x)). The idea

pursued in this paper is to stop training GAN earlier before

convergence.

World Academy of Science, Engineering and Technology
International Journal of Computer and Information Engineering

 Vol:12, No:10, 2018 

892International Scholarly and Scientific Research & Innovation 12(10) 2018 ISNI:0000000091950263

O
pe

n 
Sc

ie
nc

e 
In

de
x,

 C
om

pu
te

r 
an

d 
In

fo
rm

at
io

n 
E

ng
in

ee
ri

ng
 V

ol
:1

2,
 N

o:
10

, 2
01

8 
pu

bl
ic

at
io

ns
.w

as
et

.o
rg

/1
00

09
67

4.
pd

f



(a) Step1: Training the
Generator and the Discriminator

of a GAN

(b) Step2: Training a Classifier
on the real positve data and the

generated negative data

(c) Step3: Detecting outliers
using the trained Classifier

Fig. 1 Overview of our approach: A framework to detect unseen outliers is shown, which is composed of three steps. Blue blocks mean that the parameters
of the model will be updated, and grey blocks mean that the model is only used for inferences without updating their parameters. Yellow blocks are loss

functions of the training process. The green block indicates the anomaly scores of the test sample

A. Early Stopping in GANs

In early training epochs (i.e., before convergence), the G
is not able to generate data that follows the data distribution

p(x). In other words, the distributions generated by from G
are different from the distribution of training datasets. After

stopping the training process of GAN, we generate negative

samples using the G and build another traditional binary

classifier on the training data with positive labels and the

generated data with negative labels. Since qθ(x) �= p(x), the

classifier can separate them well.

We illustrate and analyze this solution on the MNIST

dataset. The task setting follows [16], where 10 different

datasets are generated from MNIST by successively making

each digit class an anomaly and treating the remaining 9 digits

as positive examples. The training set consists of 80% of the

normal data, and the test set consists of the remaining 20%

of normal data and all of the anomalous data. The model is

trained only with normal data and tested with both normal and

anomalous data. The performance of the model is evaluated

with the measure of area under the precision-recall curve

(AUPRC) since the dataset is imbalanced. The classifier is

trained for 50 epochs. The architectures and hyperparameters

of GAN and the classifier are listed in Appendix V-B.

The performance of this solution is shown in Fig. 2. In Fig.

2a, the x-axis indicates the stopped epoch. The ten horizontal

rows correspond to the 10 aforementioned datasets, and the

digit in the right side of each row means the anomaly class.

In each row, the heights of the bars are the AUPRC scores. As

shown in all ten datasets, the later we stop training the GAN,

the more the performance decreases. In Fig. 2b, the generated

images from different training epochs are shown. In the later

epochs, some generated images can be categorized as positive

samples. After several training epochs of the GAN, parts of the

generated samples are from data distribution. As a result for

the classifier in step 2, the number of false negative samples

increase on the test dataset. The performance drops if training

is terminated later.

The performance of the Early-Stopping based solution

strongly depends on the stopped epoch. Since no negative

sample is available in the task, it is difficult to define a

meaningful stopping criterion. In the following subsection, we

introduce a novel CorGAN, which is able to keep generating

samples during the training process that satisfy the three

desired properties.

B. CorGANs Model

In this subsection, we introduce the new objective of

CorGAN and justify the design choice. We will show how

the new objective updates the Generator so that it can keep

generating samples with the desired properties. The two

component of CorGAN are described as follows:

As in the original GAN, the Discriminator D in CorGAN

maps the input (i.e. the training samples or the generated

samples) to a single scalar, which represents the probability

that the input came from the training datasets instead of the

Generator G. The target value of the D is 1 for the samples

from the training dataset and 0 for samples generated by the

G. The D is trained to minimize the cost V(D):

max
D

V (D) = Ex∼p(x)[− log(D(x))]

+ Ez∼pz(z)[− log(1−D(G(z, θ)))]
(1)

The objective of the Discriminator specified of the CorGAN

is the same as that in the original GAN. For the fixed G, the

optimal Discriminator [13] is

D∗
G =

p(x)

p(x) + qθ(x)
(2)

The objective of the Generator in the CorGAN aims to the

minimize the following function:

min
G

V (G) = Ex∼p(x)[log(D(x))]

+ Ez∼pz(z)[log(1−D(G(z, θ)))]−
λ log(Ez∼pz(z)[D(G(z, θ))− Ez′∼pz(z)[D(G(z′, θ))]])

(3)

where the first two terms are the same as in the original

GAN, the third term is a penalty term that specifies A SECOND

goal for the Generator (maximizing the distance between two
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(a) The performance in different stopped epochs of GAN (b) The generated images in different training epochs of GAN

Fig. 2 The performance of the ealry-stopping solution and the images generated by the GAN model

generated examples), and λ is a hyperparameter. The penalty

term aims only to push generated samples away from each

other. The hyper-parameter will not have a great impact on

the final detection performance. Next, we analyze how the

three aforementioned properties are satisfied by the generated

sample with the specified objective function.

In case of the optimal Discriminator, the objective function

of the Generator can be reformulated as follows, by

substituting (2) into (3):

min
G

V (G) = Ex∼p[log(D
∗
G(x))] + Ez∼pz(z)[log(1−D∗

G(z))]

− λ log(Ez∼pz(z)[D
∗
G(z)− Ez′∼pz(z)[D

∗
G(z

′)]])

= Ex∼p[log(D
∗
G(x))] + Ex∼qθ [log(1−D∗

G(x))]

− λ log(Ex∼qθ [D
∗
G(x)− Ex′∼qθ [D

∗
G(x

′)]])

= Ex∼p[log(
p(x)

p(x) + qθ(x)
)] + Ex∼qθ [log(1−

p(x)

p(x) + qθ(x)
)]

− λ log(Ex∼qθ [
p(x)

p(x) + qθ(x)
− Ex′∼qθ [

p(x)

p(x) + qθ(x)
]])

= − log(4) +KL(p||p+ qθ
2

) +KL(qθ||p+ qθ
2

)

− λ log(Ex∼qθ [
p(x)

p(x) + qθ(x)
− Ex′∼qθ [

p(x)

p(x) + qθ(x)
]])

= − log(4) + 2JSD(p||qθ)
− λ log(Ex∼qθ [

p(x)

p(x) + qθ(x)
− Ex′∼qθ [

p(x)

p(x) + qθ(x)
]])

(4)

where p is the real data distribution p(x), qθ is the generated

data distribution qθ(x). When p(x) = qθ(x), the loss function

V (G) described above does not reach the minimum. In other

words, with the new objective, the CorGAN remains at the

corrupted status, which ensures that the training process is not

able to converge completely. In the case of unconvergence, all

the generated samples belong to the negative class, which is

the desired property 1.
The first two terms, reformulated as − log(4) +

2JSD(p||qθ), minimize the Jensen–Shannon divergence

distance between the real data distribution and the generative

model distribution. The error in the loss function pushes

the generated samples close to the positive class. Since the

generated samples stay out of the real data distribution, they

all ”live” near the boundary between the positive class and

negative class, such that the property 2 is satisfied.
The third term describes the variance of the discrimination

outputs for the generated samples. The loss function V (G)
minimizes the negative of the variance value, and thus

maximizes the variance value. To reach such a goal, the

generator is updated to generate various samples, even from

similar vectors in latent space. The generated samples stay

far away from each other, which satisfies the property 3.

There is a tradeoff between the property 2 and the property
3 in our CorGAN. In the empirical experiments, we show

that the model has more stable performance if we attach

more importance to the property 3. The variance value is

approximated by the Discrimination output values of a batch

of generated samples.
In the proposed CorGAN, the D still provides information

about divergence distance between qθ(x) and p(x). Since the

training process does not converge, the Discriminator is always

able to distinguish real samples of the positive class and

generated samples of the negative class relatively well. We

did not directly take the Discriminator as an outlier detector

because it is still confused by the real and generated samples

to some degree. Hence, we build another classifier that is

optimized directly on the binary classification task (see Step

2 in Fig. 1). The discriminator can be taken as an initialized

point for this classifier in practice.

IV. EXPERIMENTS AND ANALYSIS

In the experiments, we first compare our model with other

related models on an artificial abnormal image detection task.
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We analyze the sensitivity of the hyperparameters and the

efficiency of the detection process in our model. Additionally,

we show the performance of our model on a real-world

dataset, called KDD99 dataset. We compare our model with

the following similar GAN-based anomaly detection models:

AnoGAN: AnoGAN [14] is first trained until convergence.

The Generator thereof models the normal data distribution

p(x). In the anomaly detection process, given a test sample x,

the anomaly score depends on the reconstruction error, which

is comprised of a Residual Loss and a Discrimination Loss.

The Residual Loss LR(x) =
∑ |x − G(θ, z)| describes the

difference between the test sample and a generated sample

from a variable z in latent space. The Discrimination Loss

is the Feature Dismatching in Discriminator LD(x)FM
=∑ |f(x)−f(G(θ, z))| or the Cross-entropy Loss LD(x)σ . The

final anomaly score is: A(x) = minz(1− λ)LR(x) + λLD(x).

Efficient BiGAN: [16] improves the AnoGAN by jointly

training an encoder that reconstructs the corresponding latent

code from the generated image z = E(G(θ, z)). In the

detection process, while AnoGAN searches for a latent code

that minimizes the reconstruction error, the efficient BiGAN

compute the reconstruction error directly using the latent code

z from the Encoder.

A. Abnormal Image Detection on MNIST

Following the experimental setup in [16], [24], we construct

the same datasets as in Section III-A using THE MNIST

dataset. 10 different datasets are constructed by successively

making each digit class an anomaly and treating the remaining

9 digits as positive examples. Only positive samples were used

for training; the test samples contain both positive examples

and negative ones.

We evaluate our models with the area under the

precision-recall curve (AUPRC score). The score takes all

possible thresholds into consideration, providing an overall

performance of the evaluated models. The performance of our

model and the compared models is shown in Fig. 3.

Fig. 3 The performance of CorGAN model other models. The scores of
AnoGAN and EBigan are obtained from [16], the score of VAE-based

method is obtained from [24]

Fig. 4 The generated images of CorGAN in different epochs. They belong
to the negative class, lie near the positive class and differ from each other.

Our CorGAN model significantly outperforms AnoGAN

(Feature Matching), EBiGN(Feature Matching), Variational

Autoencoder-based model. Reference [24] shows that the

Variational Autoencoder-based method outperforms the

traditional reconstruction-based methods such as PCA, kernel

PCA, and Autoencoder Reconstruction Error-based method.

Hence, we only list the performance of VAE-based methods

in the figure.

Efficiency: [15] proposes generating both positive samples

and negative sample for open-category classification using

GANs. The generation and categorization process is based

on a derivative-free optimization, which is inefficient in

high-dimensional data space. AnoGAN [14] requires a

SGD-based optimization to compute the anomaly score in

the detection process. Reference [16] avoids the optimization

process by training an extra Encoder. It reconstructs the

desired latent code instead of searching via the optimization,

especially, D(G(E(x))), which runs approximately 800x

faster than the AnoGAN. Our framework contains a classifier

C. The anomaly score of a test sample x can be directly

computed via a single forward inference of the Classifier

C(x). Theoretically, the detection process of our framework

runs 3x faster than the improved AnoGAN (approximately

2400x faster than the original AnoGAN).

Sensitivity Analysis: The performance of the CorGAN is

more robust and not as sensitive as that of our early-stopping

solution. The reason is that all the generated images of

CorGAN belong to the negative class (see Fig. 4). The

proposed CorGAN model only slightly outperforms the best

performance in the early-stopping solution. To show a clear

comparison with other models, we only show the performance

of the CorGAN model in Fig. 3.

The hyper-parameter λ in (3) specifies the tradeoff between

property 2 and property 3 of the generated samples. We

empirically test the λ ∈ {5, 2, 1, 0.5, 0.2}. The results show

that the λ with different values have almost no impact on

the final performance, and the large λ leads to more robust

performance. The more penalty on the variance term ensures

that the generated samples are not too close to the positive

class. In all the experiments, we report the results with λ = 1.
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(a) Visualizing the training samples, the generated
samples and the test samples using t-SNE

(b) Building a Classifier on the training data and
the generated data

(c) Detecting outliers using the classification
boundary of the built Classifier

Fig. 5 Visualization of outlier detection process in CorGAN framework on the real-world KDDCUP99 dataset

B. Network Intrusion Detection on KDDCUP99

In this experiment, we show that our CorGAN can

also perform well on high-dimensional non-image data. We

evaluated our method on a real-world network intrusion

dataset, called KDDCUP99 10 percent dataset [41]. The

experimental setup followed the work [42], [10]. More

concretely, 50% of the whole dataset is randomly sampled for

testing. For the remaining 50% of the dataset, all anomalous

samples were removed. Only data samples from the normal

class were used for training models.

The evaluation measure used in this experiment are

precision, recall, and F1-score (anomaly as the positive class

in confusion matrix). The proportion of outliers in the original

dataset is 20%. Hence, the threshold is chosen so that the 20%

of samples with the highest anomaly scores are classified as

anomalies.

The CorGAN used multi-layer perceptrons (MLPs) in its

different function modules. The used Classifier is a Support

Vector Machine with RBF kernel. For a fair comparison, the

architectures and parameters of our CorGAN model, AnoGAN

[14] and efficient BiGAN [16] are set the same. The more

details can be found in Appendix V-B. The performance of our

model and other models is shown in the table I. Our CorGAN

model achieves state-of-the-art performance. The performance

of CorGAN is slightly better than the Early-Stopping solution.

TABLE I
PERFORMANCE ON THE KDDCUP99 DATASET. VALUES FOR OC-SVM,
DSEBM, DAGMM VALUES WERE OBTAINED FROM [42], [10]. VALUES

FOR ANOGAN AND EFFICIENT BIGAN WERE OBTAINED FROM [16].
VALUES FOR GANearly−stopping AND OUR CORGAN MODEL ARE

DERIVED FROM 10 RUNS

Model Precision Recall F1-Score

OC-SVM 0.7457 0.8523 0.7954
DSEBM-r 0.8521 0.6472 0.7328
DSEBM-e 0.8619 0.6446 0.7399

DAGMM-NVI 0.9290 0.9447 0.9368
DAGMM 0.9297 0.9442 0.9369

AnoGANFM 0.8786 ± 0.0340 0.8297 ± 0.0345 0.8865 ± 0.0343

AnoGANσ 0.7790 ± 0.1247 0.7914 ± 0.1194 0.7852 ± 0.1181

EBiGANFM 0.8698 ± 0.1133 0.9523 ± 0.0224 0.9058 ± 0.0688

EBiGANσ 0.9200 ± 0.0740 0.9582 ± 0.0104 0.9372 ± 0.0440

GANearly−stopping 0.9637± 0.0149 0.9791± 0.0152 0.9713± 0.0152

Our CorGAN 0.9648± 0.0135 0.9802± 0.0136 0.9724± 0.0136

To gain more insight into the proposed framework, we

visualized the outlier detection process in Fig. 5. We randomly

CHOSE 500 samples from the training dataset, the generated

dataset, and the test dataset respectively. Using the t-SNE

technique [43], Fig. 5a visualizes the training samples (blue

points), the generated negative samples (cyan points), the

positive samples (yellow points) and the negative ones (red

points) in the test dataset. Since the positive samples in training

data and the positive samples in test data are from the same

distribution, the clusters of blue points overlap the ones of

green points. Each cluster means one type of IP connections.

The number of training samples and generated samples are

the same; the generated negative sample cover more space

although it only forms one cluster.

Fig. 5b shows the classification boundary of the classifier

built on the positive training samples and the generated

negative samples. The built classifier is used to distinguish

the normal samples and the outliers in the test dataset, which

is shown in Fig. 5c. As shown in the figures, the distribution

of generated samples is different from that of the outliers in

the test dataset. The generated samples are auxiliary to build

a tight boundary of the normal distribution from the training

data since they lie near the positive class in data space.

V. CONCLUSION

This work investigated the Generative Adversary

Framework to detect outliers by generating outlier samples.

An intuitive solution is first proposed and analyzed. Due to

the limitation of the high sensitivity of the first solution,

we propose, as a second solution, the CorGAN model.

With a new objective function, the Generator of CorGAN

is able to generate samples with the desired properties. The

model is empirically evaluated on an image dataset and a

high-dimensional non-image dataset. The results show that

our model shows a competitive performance. The outlier

detection tasks in the computer vision community often

involve real-world high-resolution images. The outliers

generated by our model only cover a small space of the

outlier distribution. We leave the further exploration in future

work.
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APPENDIX

A. Annotations in This Paper

The anotations used in this paper are listed in the following

table.

TABLE II
THE ANNOTATIONS USED IN THIS PAPER

p, p(x) the real data distribution
x a variable subjective to p(x)
x′ another variable subjective to p(x)

pz(z) the standard normal distribution
z a variable subjective to pz(z)
z′ another variable subjective to pz(z)

qθ, qθ(x) the generative model distribution
E(x) the Encoder reconstructing latent code
C(x) the Classifier in CorGAN framework

TABLE III
ARCHITECTURE AND HYPERPARAMETERS IN CORGAN

Operation Kernel Strides FMs/Units BN? NonLinear

G(θ, z)
Dense 1024

√
ReLU

Dense 7 ∗ 7 ∗ 128
√

ReLU
Trans Conv 4 × 4 2 × 2 64

√
ReLU

Trans Conv 4 × 4 2 × 2 1 × Tanh
D(x)
Convolution 4 × 4 2 × 2 64 × Leaky ReLU
Convolution 4 × 4 2 × 2 64

√
Leaky ReLU

Dense 1024
√

Leaky ReLU
Dense 1 × Sigmoid
C(x) = D(x)

Optimizer Adam(α = 10−5, β1 = 0.5)
Batch size 100
Latent dimension 200
GAN Epochs 10
Classifier Epochs 10
Leaky ReLU slope 0.1
Weight Isotropic gaussian (μ = 0, σ = 0.02)
Bias initialization Constant(0)

TABLE IV
ARCHITECTURE AND HYPERPARAMETERS IN CORGAN

Operation Units NonLinear Dropout
G(θ,z)
Dense 64 ReLU 0.0
Dense 128 ReLU 0.0
Dense 121 ReLU 0.0
D(x)
Dense 256 Leaky ReLU 0.2
Dense 128 Leaky ReLU 0.2
Dense 128 Leaky ReLU 0.2
Dense 1 Sigmoid 0.0
C(x) = SVM with RBF kernel
Optimizer Adam(α = 10−5, β1 = 0.5)
Batch size 50
Latent dimension 32
GAN Epochs 1
Leaky ReLU slope 0.1
Weight, Bias initialization Xavier Initializer, Constant(0)

B. Architecture of GAN Model and the Classifier

The architectures and hyperparameters of AnoGAN and

Efficient BiGAN can be found in [16]. All the GAN-based

models in this paper used almost the same architectures and

hyperparameters. In the abnormal image detection task on the

MNIST dataset, the pixels of images were scaled to be in the

range [-1,1] for the training and the test. The Table III lists

the architectures and hyperparameters of our CorGAN model.

Table IV lists the architectures and hyperparameters of our

CorGAN model on the KDD99 dataset.
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[28] D. Barbará, Y. Li, and J. Couto, “Coolcat: an entropy-based algorithm
for categorical clustering,” in Proceedings of the eleventh international
conference on Information and knowledge management. ACM, 2002,
pp. 582–589.

[29] Z. He, X. Xu, and S. Deng, “Discovering cluster-based local outliers,”
Pattern Recognition Letters, vol. 24, no. 9, pp. 1641–1650, 2003.

[30] B. Schölkopf, R. C. Williamson, A. J. Smola, J. Shawe-Taylor, and
J. C. Platt, “Support vector method for novelty detection,” in Advances
in neural information processing systems, 2000, pp. 582–588.

[31] D. M. Tax and R. P. Duin, “Support vector domain description,” Pattern
recognition letters, vol. 20, no. 11, pp. 1191–1199, 1999.

[32] K. Hempstalk, E. Frank, and I. H. Witten, “One-class classification
by combining density and class probability estimation,” in Joint
European Conference on Machine Learning and Knowledge Discovery
in Databases. Springer, 2008, pp. 505–519.

[33] W. Fan, M. Miller, S. Stolfo, W. Lee, and P. Chan, “Using
artificial anomalies to detect unknown and known network intrusions,”
Knowledge and Information Systems, vol. 6, no. 5, pp. 507–527, 2004.

[34] N. Abe, B. Zadrozny, and J. Langford, “Outlier detection by active
learning,” in Proceedings of the 12th ACM SIGKDD international
conference on Knowledge discovery and data mining. ACM, 2006,
pp. 504–509.

[35] D. M. Tax and R. P. Duin, “Uniform object generation for optimizing
one-class classifiers,” Journal of machine learning research, vol. 2, no.
Dec, pp. 155–173, 2001.

[36] A. Bánhalmi, A. Kocsor, and R. Busa-Fekete, “Counter-example
generation-based one-class classification,” in ECML. Springer, 2007,
pp. 543–550.

[37] J. Zhao, M. Mathieu, and Y. LeCun, “Energy-based generative
adversarial network,” arXiv preprint arXiv:1609.03126, 2016.

[38] S. Mohamed and B. Lakshminarayanan, “Learning in implicit generative
models,” arXiv preprint arXiv:1610.03483, 2016.

[39] S. Nowozin, B. Cseke, and R. Tomioka, “f-gan: Training generative
neural samplers using variational divergence minimization,” in Advances
in Neural Information Processing Systems, 2016, pp. 271–279.

[40] M. Uehara, I. Sato, M. Suzuki, K. Nakayama, and Y. Matsuo,
“Generative adversarial nets from a density ratio estimation perspective,”
arXiv preprint arXiv:1610.02920, 2016.

[41] M. Lichman et al., “Uci machine learning repository,” 2013.
[42] B. Zong, Q. Song, M. R. Min, W. Cheng, C. Lumezanu, D. Cho, and

H. Chen, “Deep autoencoding gaussian mixture model for unsupervised
anomaly detection,” 2018.

[43] L. v. d. Maaten and G. Hinton, “Visualizing data using t-sne,” Journal
of machine learning research, vol. 9, no. Nov, pp. 2579–2605, 2008.

World Academy of Science, Engineering and Technology
International Journal of Computer and Information Engineering

 Vol:12, No:10, 2018 

898International Scholarly and Scientific Research & Innovation 12(10) 2018 ISNI:0000000091950263

O
pe

n 
Sc

ie
nc

e 
In

de
x,

 C
om

pu
te

r 
an

d 
In

fo
rm

at
io

n 
E

ng
in

ee
ri

ng
 V

ol
:1

2,
 N

o:
10

, 2
01

8 
pu

bl
ic

at
io

ns
.w

as
et

.o
rg

/1
00

09
67

4.
pd

f


