Search results for: Generalized differential quadrature method
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 8779

Search results for: Generalized differential quadrature method

8359 An Earth Mover’s Distance Algorithm Based DDoS Detection Mechanism in SDN

Authors: Yang Zhou, Kangfeng Zheng, Wei Ni, Ren Ping Liu

Abstract:

Software-defined networking (SDN) provides a solution for scalable network framework with decoupled control and data plane. However, this architecture also induces a particular distributed denial-of-service (DDoS) attack that can affect or even overwhelm the SDN network. DDoS attack detection problem has to date been mostly researched as entropy comparison problem. However, this problem lacks the utilization of SDN, and the results are not accurate. In this paper, we propose a DDoS attack detection method, which interprets DDoS detection as a signature matching problem and is formulated as Earth Mover’s Distance (EMD) model. Considering the feasibility and accuracy, we further propose to define the cost function of EMD to be a generalized Kullback-Leibler divergence. Simulation results show that our proposed method can detect DDoS attacks by comparing EMD values with the ones computed in the case without attacks. Moreover, our method can significantly increase the true positive rate of detection.

Keywords: DDoS detection, EMD, relative entropy, SDN.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 766
8358 Exponential Stability of Uncertain Takagi-Sugeno Fuzzy Hopfield Neural Networks with Time Delays

Authors: Meng Hu, Lili Wang

Abstract:

In this paper, based on linear matrix inequality (LMI), by using Lyapunov functional theory, the exponential stability criterion is obtained for a class of uncertain Takagi-Sugeno fuzzy Hopfield neural networks (TSFHNNs) with time delays. Here we choose a generalized Lyapunov functional and introduce a parameterized model transformation with free weighting matrices to it, these techniques lead to generalized and less conservative stability condition that guarantee the wide stability region. Finally, an example is given to illustrate our results by using MATLAB LMI toolbox.

Keywords: Hopfield neural network, linear matrix inequality, exponential stability, time delay, T-S fuzzy model.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1511
8357 Global Existence of Periodic Solutions in a Delayed Tri–neuron Network

Authors: Kejun Zhuang, Zhaohui Wen

Abstract:

In this paper, a tri–neuron network model with time delay is investigated. By using the Bendixson-s criterion for high– dimensional ordinary differential equations and global Hopf bifurcation theory for functional differential equations, sufficient conditions for existence of periodic solutions when the time delay is sufficiently large are established.

Keywords: Delay, global Hopf bifurcation, neural network, periodicsolutions.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1484
8356 A Framework for Early Differential Diagnosis of Tropical Confusable Diseases Using the Fuzzy Cognitive Map Engine

Authors: Faith-Michael E. Uzoka, Boluwaji A. Akinnuwesi, Taiwo Amoo, Flora Aladi, Stephen Fashoto, Moses Olaniyan, Joseph Osuji

Abstract:

The overarching aim of this study is to develop a soft-computing system for the differential diagnosis of tropical diseases. These conditions are of concern to health bodies, physicians, and the community at large because of their mortality rates, and difficulties in early diagnosis due to the fact that they present with symptoms that overlap, and thus become ‘confusable’. We report on the first phase of our study, which focuses on the development of a fuzzy cognitive map model for early differential diagnosis of tropical diseases. We used malaria as a case disease to show the effectiveness of the FCM technology as an aid to the medical practitioner in the diagnosis of tropical diseases. Our model takes cognizance of manifested symptoms and other non-clinical factors that could contribute to symptoms manifestations. Our model showed 85% accuracy in diagnosis, as against the physicians’ initial hypothesis, which stood at 55% accuracy. It is expected that the next stage of our study will provide a multi-disease, multi-symptom model that also improves efficiency by utilizing a decision support filter that works on an algorithm, which mimics the physician’s diagnosis process.

Keywords: Medical diagnosis, tropical diseases, fuzzy cognitive map, decision support filters, malaria differential diagnosis.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2100
8355 3.5-bit Stage of the CMOS Pipeline ADC

Authors: Gao Wei, Xu Minglu, Xu Yan, Zhang Xiaotong, Wang Xinghua

Abstract:

A 3.5-bit stage of the CMOS pipelined ADC is proposed. In this report, the main part of 3.5-bit stage ADC is introduced. How the MDAC, comparator and encoder worked and designed are shown in details. Besides, an OTA which is used in fully differential pipelined ADC was described. Using gain-boost architecture with differential amplifier, this OTA achieve high-gain and high-speed. This design was using CMOS 0.18um process and simulation in Cadence. The result of the simulation shows that the OTA has a gain up to 80dB, the unity gain bandwidth of about 1.138GHz with 2pF load.

Keywords: pipelined ADC, MDAC, operational amplifier.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 3554
8354 Generalized Maximum Entropy Method for Cosmic Source Localization

Authors: Youssef Khmou, Said Safi, Miloud Frikel

Abstract:

The Maximum entropy principle in spectral analysis was used as an estimator of Direction of Arrival (DoA) of electromagnetic or acoustic sources impinging on an array of sensors, indeed the maximum entropy operator is very efficient when the signals of the radiating sources are ergodic and complex zero mean random processes which is the case for cosmic sources. In this paper, we present basic review of the maximum entropy method (MEM) which consists of rank one operator but not a projector, and we elaborate a new operator which is full rank and sum of all possible projectors. Two dimensional Simulation results based on Monte Carlo trials prove the resolution power of the new operator where the MEM presents some erroneous fluctuations.

Keywords: Maximum entropy, Cosmic source, Localization, operator, projector, azimuth, elevation, DoA, circular array.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2134
8353 PID Control Design Based on Genetic Algorithm with Integrator Anti-Windup for Automatic Voltage Regulator and Speed Governor of Brushless Synchronous Generator

Authors: O. S. Ebrahim, M. A. Badr, Kh. H. Gharib, H. K. Temraz

Abstract:

This paper presents a methodology based on genetic algorithm (GA) to tune the parameters of proportional-integral-differential (PID) controllers utilized in the automatic voltage regulator (AVR) and speed governor of a brushless synchronous generator driven by three-stage steam turbine. The parameter tuning is represented as a nonlinear optimization problem solved by GA to minimize the integral of absolute error (IAE). The problem of integral windup due to physical system limitations is solved using simple anti-windup scheme. The obtained controllers are compared to those designed using classical Ziegler-Nichols technique and constrained optimization. Results show distinct superiority of the proposed method.

Keywords: Brushless synchronous generator, Genetic Algorithm, GA, Proportional-Integral-Differential control, PID control, automatic voltage regulator, AVR.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 297
8352 A New Approach to Solve Blasius Equation using Parameter Identification of Nonlinear Functions based on the Bees Algorithm (BA)

Authors: E. Assareh, M.A. Behrang, M. Ghalambaz, A.R. Noghrehabadi, A. Ghanbarzadeh

Abstract:

In this paper, a new approach is introduced to solve Blasius equation using parameter identification of a nonlinear function which is used as approximation function. Bees Algorithm (BA) is applied in order to find the adjustable parameters of approximation function regarding minimizing a fitness function including these parameters (i.e. adjustable parameters). These parameters are determined how the approximation function has to satisfy the boundary conditions. In order to demonstrate the presented method, the obtained results are compared with another numerical method. Present method can be easily extended to solve a wide range of problems.

Keywords: Bees Algorithm (BA); Approximate Solutions; Blasius Differential Equation.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1802
8351 Numerical Analysis of Thermal Conductivity of Non-Charring Material Ablation Carbon-Carbon and Graphite with Considering Chemical Reaction Effects, Mass Transfer and Surface Heat Transfer

Authors: H. Mohammadiun, A. Kianifar, A. Kargar

Abstract:

Nowadays, there is little information, concerning the heat shield systems, and this information is not completely reliable to use in so many cases. for example, the precise calculation cannot be done for various materials. In addition, the real scale test has two disadvantages: high cost and low flexibility, and for each case we must perform a new test. Hence, using numerical modeling program that calculates the surface recession rate and interior temperature distribution is necessary. Also, numerical solution of governing equation for non-charring material ablation is presented in order to anticipate the recession rate and the heat response of non-charring heat shields. the governing equation is nonlinear and the Newton- Rafson method along with TDMA algorithm is used to solve this nonlinear equation system. Using Newton- Rafson method for solving the governing equation is one of the advantages of the solving method because this method is simple and it can be easily generalized to more difficult problems. The obtained results compared with reliable sources in order to examine the accuracy of compiling code.

Keywords: Ablation rate, surface recession, interior temperaturedistribution, non charring material ablation, Newton Rafson method.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1899
8350 Chatter Stability Characterization of Full-Immersion End-Milling Using a Generalized Modified Map of the Full-Discretization Method, Part 1: Validation of Results and Study of Stability Lobes by Numerical Simulation

Authors: Chigbogu G. Ozoegwu, Sam N. Omenyi

Abstract:

The objective in this work is to generate and discuss the stability results of fully-immersed end-milling process with parameters; tool mass m=0.0431kg,tool natural frequency ωn = 5700 rads^-1, damping factor ξ=0.002 and workpiece cutting coefficient C=3.5x10^7 Nm^-7/4. Different no of teeth is considered for the end-milling. Both 1-DOF and 2-DOF chatter models of the system are generated on the basis of non-linear force law. Chatter stability analysis is carried out using a modified form (generalized for both 1-DOF and 2-DOF models) of recently developed method called Full-discretization. The full-immersion three tooth end-milling together with higher toothed end-milling processes has secondary Hopf bifurcation lobes (SHBL’s) that exhibit one turning (minimum) point each. Each of such SHBL is demarcated by its minimum point into two portions; (i) the Lower Spindle Speed Portion (LSSP) in which bifurcations occur in the right half portion of the unit circle centred at the origin of the complex plane and (ii) the Higher Spindle Speed Portion (HSSP) in which bifurcations occur in the left half portion of the unit circle. Comments are made regarding why bifurcation lobes should generally get bigger and more visible with increase in spindle speed and why flip bifurcation lobes (FBL’s) could be invisible in the low-speed stability chart but visible in the high-speed stability chart of the fully-immersed three-tooth miller.

Keywords: Chatter, flip bifurcation, modified full-discretization map stability lobe, secondary Hopf bifurcation.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1832
8349 A C1-Conforming Finite Element Method for Nonlinear Fourth-Order Hyperbolic Equation

Authors: Yang Liu, Hong Li, Siriguleng He, Wei Gao, Zhichao Fang

Abstract:

In this paper, the C1-conforming finite element method is analyzed for a class of nonlinear fourth-order hyperbolic partial differential equation. Some a priori bounds are derived using Lyapunov functional, and existence, uniqueness and regularity for the weak solutions are proved. Optimal error estimates are derived for both semidiscrete and fully discrete schemes.

Keywords: Nonlinear fourth-order hyperbolic equation, Lyapunov functional, existence, uniqueness and regularity, conforming finite element method, optimal error estimates.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1893
8348 OWA Operators in Generalized Distances

Authors: José M. Merigó, Anna M. Gil-Lafuente

Abstract:

Different types of aggregation operators such as the ordered weighted quasi-arithmetic mean (Quasi-OWA) operator and the normalized Hamming distance are studied. We introduce the use of the OWA operator in generalized distances such as the quasiarithmetic distance. We will call these new distance aggregation the ordered weighted quasi-arithmetic distance (Quasi-OWAD) operator. We develop a general overview of this type of generalization and study some of their main properties such as the distinction between descending and ascending orders. We also consider different families of Quasi-OWAD operators such as the Minkowski ordered weighted averaging distance (MOWAD) operator, the ordered weighted averaging distance (OWAD) operator, the Euclidean ordered weighted averaging distance (EOWAD) operator, the normalized quasi-arithmetic distance, etc.

Keywords: Aggregation operators, Distance measures, Quasi- OWA operator.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1662
8347 Magnetohydrodynamics Boundary Layer Flows over a Stretching Surface with Radiation Effect and Embedded in Porous Medium

Authors: Siti Khuzaimah Soid, Zanariah Mohd Yusof, Ahmad Sukri Abd Aziz, Seripah Awang Kechil

Abstract:

A steady two-dimensional magnetohydrodynamics flow and heat transfer over a stretching vertical sheet influenced by radiation and porosity is studied. The governing boundary layer equations of partial differential equations are reduced to a system of ordinary differential equations using similarity transformation. The system is solved numerically by using a finite difference scheme known as the Keller-box method for some values of parameters, namely the radiation parameter N, magnetic parameter M, buoyancy parameter l , Prandtl number Pr and permeability parameter K. The effects of the parameters on the heat transfer characteristics are analyzed and discussed. It is found that both the skin friction coefficient and the local Nusselt number decrease as the magnetic parameter M and permeability parameter K increase. Heat transfer rate at the surface decreases as the radiation parameter increases.

Keywords: Keller-box, MHD boundary layer flow, permeability stretching.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1981
8346 Dynamic Analysis of a Moderately Thick Plate on Pasternak Type Foundation under Impact and Moving Loads

Authors: Neslihan Genckal, Reha Gursoy, Vedat Z. Dogan

Abstract:

In this study, dynamic responses of composite plates on elastic foundations subjected to impact and moving loads are investigated. The first order shear deformation (FSDT) theory is used for moderately thick plates. Pasternak-type (two-parameter) elastic foundation is assumed. Elastic foundation effects are integrated into the governing equations. It is assumed that plate is first hit by a mass as an impact type loading then the mass continues to move on the composite plate as a distributed moving loading, which resembles the aircraft landing on airport pavements. Impact and moving loadings are modeled by a mass-spring-damper system with a wheel. The wheel is assumed to be continuously in contact with the plate after impact. The governing partial differential equations of motion for displacements are converted into the ordinary differential equations in the time domain by using Galerkin’s method. Then, these sets of equations are solved by using the Runge-Kutta method. Several parameters such as vertical and horizontal velocities of the aircraft, volume fractions of the steel rebar in the reinforced concrete layer, and the different touchdown locations of the aircraft tire on the runway are considered in the numerical simulation. The results are compared with those of the ABAQUS, which is a commercial finite element code.

Keywords: Elastic foundation, impact, moving load, thick plate.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1483
8345 Self-Adaptive Differential Evolution Based Power Economic Dispatch of Generators with Valve-Point Effects and Multiple Fuel Options

Authors: R.Balamurugan, S.Subramanian

Abstract:

This paper presents the solution of power economic dispatch (PED) problem of generating units with valve point effects and multiple fuel options using Self-Adaptive Differential Evolution (SDE) algorithm. The global optimal solution by mathematical approaches becomes difficult for the realistic PED problem in power systems. The Differential Evolution (DE) algorithm is found to be a powerful evolutionary algorithm for global optimization in many real problems. In this paper the key parameters of control in DE algorithm such as the crossover constant CR and weight applied to random differential F are self-adapted. The PED problem formulation takes into consideration of nonsmooth fuel cost function due to valve point effects and multi fuel options of generator. The proposed approach has been examined and tested with the numerical results of PED problems with thirteen-generation units including valve-point effects, ten-generation units with multiple fuel options neglecting valve-point effects and ten-generation units including valve-point effects and multiple fuel options. The test results are promising and show the effectiveness of proposed approach for solving PED problems.

Keywords: Multiple fuels, power economic dispatch, selfadaptivedifferential evolution and valve-point effects.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1896
8344 2D and 3D Finite Element Method Packages of CEMTool for Engineering PDE Problems

Authors: Choon Ki Ahn, Jung Hun Park, Wook Hyun Kwon

Abstract:

CEMTool is a command style design and analyzing package for scientific and technological algorithm and a matrix based computation language. In this paper, we present new 2D & 3D finite element method (FEM) packages for CEMTool. We discuss the detailed structures and the important features of pre-processor, solver, and post-processor of CEMTool 2D & 3D FEM packages. In contrast to the existing MATLAB PDE Toolbox, our proposed FEM packages can deal with the combination of the reserved words. Also, we can control the mesh in a very effective way. With the introduction of new mesh generation algorithm and fast solving technique, our FEM packages can guarantee the shorter computational time than MATLAB PDE Toolbox. Consequently, with our new FEM packages, we can overcome some disadvantages or limitations of the existing MATLAB PDE Toolbox.

Keywords: CEMTool, Finite element method (FEM), Numericalanalysis, Partial differential equation (PDE)

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 3797
8343 Transceiver for Differential Wave Pipe-Lined Serial Interconnect with Surfing

Authors: Bhaskar M., Venkataramani B.

Abstract:

In the literature, surfing technique has been proposed for single ended wave-pipelined serial interconnects to increase the data transfer rate. In this paper a novel surfing technique is proposed for differential wave-pipelined serial interconnects, which uses a 'Controllable inverter pair' for surfing. To evaluate the efficiency of this technique, a transceiver with transmitter, receiver, delay locked loop (DLL) along with 40mm metal 4 interconnects using the proposed surfing technique is implemented in UMC 180nm technology and their performances are studied through post layout simulations. From the study, it is observed that the proposed scheme permits 1.875 times higher data transmission rate compared to the single ended scheme whose maximum data transfer rate is 1.33 GB/s. The proposed scheme has the ability to receive the correct data even with stuck-at-faults in the complementary line.

Keywords: Controllable inverter pair, differential interconnect, serial link, surfing, wave pipelining.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1671
8342 Research of Amplitude-Frequency Characteristics of Nonlinear Oscillations of the Interface of Two-Layered Liquid

Authors: Win Ko Ko, A. N. Temnov

Abstract:

The problem of nonlinear oscillations of a two-layer liquid completely filling a limited volume is considered. Using two basic asymmetric harmonics excited in two mutually perpendicular planes, ordinary differential equations of nonlinear oscillations of the interface of a two-layer liquid are investigated. In this paper, hydrodynamic coefficients of linear and nonlinear problems in integral relations were determined. As a result, the instability regions of forced oscillations of a two-layered liquid in a cylindrical tank occurring in the plane of action of the disturbing force are constructed, as well as the dynamic instability regions of the parametric resonance for different ratios of densities of the upper and lower liquids depending on the amplitudes of liquids from the excitations frequencies. Steady-state regimes of fluid motion were found in the regions of dynamic instability of the initial oscillation form. The Bubnov-Galerkin method is used to construct instability regions for approximate solution of nonlinear differential equations.

Keywords: Hydrodynamic coefficients, instability region, nonlinear oscillations, resonance frequency, two-layered liquid.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 565
8341 Application of Functional Network to Solving Classification Problems

Authors: Yong-Quan Zhou, Deng-Xu He, Zheng Nong

Abstract:

In this paper two models using a functional network were employed to solving classification problem. Functional networks are generalized neural networks, which permit the specification of their initial topology using knowledge about the problem at hand. In this case, and after analyzing the available data and their relations, we systematically discuss a numerical analysis method used for functional network, and apply two functional network models to solving XOR problem. The XOR problem that cannot be solved with two-layered neural network can be solved by two-layered functional network, which reveals a potent computational power of functional networks, and the performance of the proposed model was validated using classification problems.

Keywords: Functional network, neural network, XOR problem, classification, numerical analysis method.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1310
8340 Radial Basis Surrogate Model Integrated to Evolutionary Algorithm for Solving Computation Intensive Black-Box Problems

Authors: Abdulbaset Saad, Adel Younis, Zuomin Dong

Abstract:

For design optimization with high-dimensional expensive problems, an effective and efficient optimization methodology is desired. This work proposes a series of modification to the Differential Evolution (DE) algorithm for solving computation Intensive Black-Box Problems. The proposed methodology is called Radial Basis Meta-Model Algorithm Assisted Differential Evolutionary (RBF-DE), which is a global optimization algorithm based on the meta-modeling techniques. A meta-modeling assisted DE is proposed to solve computationally expensive optimization problems. The Radial Basis Function (RBF) model is used as a surrogate model to approximate the expensive objective function, while DE employs a mechanism to dynamically select the best performing combination of parameters such as differential rate, cross over probability, and population size. The proposed algorithm is tested on benchmark functions and real life practical applications and problems. The test results demonstrate that the proposed algorithm is promising and performs well compared to other optimization algorithms. The proposed algorithm is capable of converging to acceptable and good solutions in terms of accuracy, number of evaluations, and time needed to converge.

Keywords: Differential evolution, engineering design, expensive computations, meta-modeling, radial basis function, optimization.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1173
8339 Estimating Correlation Dimension on Japanese Candlestick, Application to FOREX Time Series

Authors: S. Mahmoodzadeh, J. Shahrabi, M. A. Torkamani, J. Sabaghzadeh Ghomi

Abstract:

Recognizing behavioral patterns of financial markets is essential for traders. Japanese candlestick chart is a common tool to visualize and analyze such patterns in an economic time series. Since the world was introduced to Japanese candlestick charting, traders saw how combining this tool with intelligent technical approaches creates a powerful formula for the savvy investors. This paper propose a generalization to box counting method of Grassberger-Procaccia, which is based on computing the correlation dimension of Japanese candlesticks instead commonly used 'close' points. The results of this method applied on several foreign exchange rates vs. IRR (Iranian Rial). Satisfactorily show lower chaotic dimension of Japanese candlesticks series than regular Grassberger-Procaccia method applied merely on close points of these same candles. This means there is some valuable information inside candlesticks.

Keywords: Chaos, Japanese candlestick, generalized box counting, strange attractor.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2438
8338 Transonic Flutter Analysis Using Euler Equation and Reduced Order Modeling Technique

Authors: D. H. Kim, Y. H. Kim, T. Kim

Abstract:

A new method identifies coupled fluid-structure system with a reduced set of state variables is presented. Assuming that the structural model is known a priori either from an analysis or a test and using linear transformations between structural and aeroelastic states, it is possible to deduce aerodynamic information from sampled time histories of the aeroelastic system. More specifically given a finite set of structural modes the method extracts generalized aerodynamic force matrix corresponding to these mode shapes. Once the aerodynamic forces are known, an aeroelastic reduced-order model can be constructed in discrete-time, state-space format by coupling the structural model and the aerodynamic system. The resulting reduced-order model is suitable for constant Mach, varying density analysis.

Keywords: ROM (Reduced-Order Model), aero elasticity, AGARD 445.6 wing.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2589
8337 Quasilinearization–Barycentric Approach for Numerical Investigation of the Boundary Value Fin Problem

Authors: Alireza Rezaei, Fatemeh Baharifard, Kourosh Parand

Abstract:

In this paper we improve the quasilinearization method by barycentric Lagrange interpolation because of its numerical stability and computation speed to achieve a stable semi analytical solution. Then we applied the improved method for solving the Fin problem which is a nonlinear equation that occurs in the heat transferring. In the quasilinearization approach the nonlinear differential equation is treated by approximating the nonlinear terms by a sequence of linear expressions. The modified QLM is iterative but not perturbative and gives stable semi analytical solutions to nonlinear problems without depending on the existence of a smallness parameter. Comparison with some numerical solutions shows that the present solution is applicable.

Keywords: Quasilinearization method, Barycentric lagrange interpolation, nonlinear ODE, fin problem, heat transfer.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1875
8336 On Convergence of Affine Thin Plate Bending Element

Authors: Rado Flajs, Miran Saje

Abstract:

In the present paper the displacement-based nonconforming quadrilateral affine thin plate bending finite element ARPQ4 is presented, derived directly from non-conforming quadrilateral thin plate bending finite element RPQ4 proposed by Wanji and Cheung [19]. It is found, however, that element RPQ4 is only conditionally unisolvent. The new element is shown to be inherently unisolvent. This convenient property results in the element ARPQ4 being more robust and thus better suited for computations than its predecessor. The convergence is proved and the rate of convergence estimated. The mathematically rigorous proof of convergence presented in the paper is based on Stummel-s generalized patch test and the consideration of the element approximability condition, which are both necessary and sufficient for convergence.

Keywords: Quadrilateral thin plate bending element, convergence, generalized patch test.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1380
8335 High Order Accurate Runge Kutta Nodal Discontinuous Galerkin Method for Numerical Solution of Linear Convection Equation

Authors: Faheem Ahmed, Fareed Ahmed, Yongheng Guo, Yong Yang

Abstract:

This paper deals with a high-order accurate Runge Kutta Discontinuous Galerkin (RKDG) method for the numerical solution of the wave equation, which is one of the simple case of a linear hyperbolic partial differential equation. Nodal DG method is used for a finite element space discretization in 'x' by discontinuous approximations. This method combines mainly two key ideas which are based on the finite volume and finite element methods. The physics of wave propagation being accounted for by means of Riemann problems and accuracy is obtained by means of high-order polynomial approximations within the elements. High order accurate Low Storage Explicit Runge Kutta (LSERK) method is used for temporal discretization in 't' that allows the method to be nonlinearly stable regardless of its accuracy. The resulting RKDG methods are stable and high-order accurate. The L1 ,L2 and L∞ error norm analysis shows that the scheme is highly accurate and effective. Hence, the method is well suited to achieve high order accurate solution for the scalar wave equation and other hyperbolic equations.

Keywords: Nodal Discontinuous Galerkin Method, RKDG, Scalar Wave Equation, LSERK

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2467
8334 An Improved Construction Method for MIHCs on Cycle Composition Networks

Authors: Hsun Su, Yuan-Kang Shih, Shin-Shin Kao

Abstract:

Many well-known interconnection networks, such as kary n-cubes, recursive circulant graphs, generalized recursive circulant graphs, circulant graphs and so on, are shown to belong to the family of cycle composition networks. Recently, various studies about mutually independent hamiltonian cycles, abbreviated as MIHC-s, on interconnection networks are published. In this paper, using an improved construction method, we obtain MIHC-s on cycle composition networks with a much weaker condition than the known result. In fact, we established the existence of MIHC-s in the cycle composition networks and the result is optimal in the sense that the number of MIHC-s we constructed is maximal.

Keywords: Hamiltonian cycle, k-ary n-cube, cycle composition networks, mutually independent.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1389
8333 Quintic Spline Solution of Fourth-Order Parabolic Equations Arising in Beam Theory

Authors: Reza Mohammadi, Mahdieh Sahebi

Abstract:

We develop a method based on polynomial quintic spline for numerical solution of fourth-order non-homogeneous parabolic partial differential equation with variable coefficient. By using polynomial quintic spline in off-step points in space and finite difference in time directions, we obtained two three level implicit methods. Stability analysis of the presented method has been carried out. We solve four test problems numerically to validate the derived method. Numerical comparison with other methods shows the superiority of presented scheme.

Keywords: Fourth-order parabolic equation, variable coefficient, polynomial quintic spline, off-step points, stability analysis.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1184
8332 Enhanced Traffic Light Detection Method Using Geometry Information

Authors: Changhwan Choi, Yongwan Park

Abstract:

In this paper, we propose a method that allows faster and more accurate detection of traffic lights by a vision sensor during driving, DGPS is used to obtain physical location of a traffic light, extract from the image information of the vision sensor only the traffic light area at this location and ascertain if the sign is in operation and determine its form. This method can solve the problem in existing research where low visibility at night or reflection under bright light makes it difficult to recognize the form of traffic light, thus making driving unstable. We compared our success rate of traffic light recognition in day and night road environments. Compared to previous researches, it showed similar performance during the day but 50% improvement at night.

Keywords: Traffic light, Intelligent vehicle, Night, Detection, DGPS (Differential Global Positioning System).

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2418
8331 A Hybrid Neural Network and Gravitational Search Algorithm (HNNGSA) Method to Solve well known Wessinger's Equation

Authors: M. Ghalambaz, A.R. Noghrehabadi, M.A. Behrang, E. Assareh, A. Ghanbarzadeh, N.Hedayat

Abstract:

This study presents a hybrid neural network and Gravitational Search Algorithm (HNGSA) method to solve well known Wessinger's equation. To aim this purpose, gravitational search algorithm (GSA) technique is applied to train a multi-layer perceptron neural network, which is used as approximation solution of the Wessinger's equation. A trial solution of the differential equation is written as sum of two parts. The first part satisfies the initial/ boundary conditions and does not contain any adjustable parameters and the second part which is constructed so as not to affect the initial/boundary conditions. The second part involves adjustable parameters (the weights and biases) for a multi-layer perceptron neural network. In order to demonstrate the presented method, the obtained results of the proposed method are compared with some known numerical methods. The given results show that presented method can introduce a closer form to the analytic solution than other numerical methods. Present method can be easily extended to solve a wide range of problems.

Keywords: Neural Networks, Gravitational Search Algorithm (GSR), Wessinger's Equation.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2399
8330 A Survey on Quasi-Likelihood Estimation Approaches for Longitudinal Set-ups

Authors: Naushad Mamode Khan

Abstract:

The Com-Poisson (CMP) model is one of the most popular discrete generalized linear models (GLMS) that handles both equi-, over- and under-dispersed data. In longitudinal context, an integer-valued autoregressive (INAR(1)) process that incorporates covariate specification has been developed to model longitudinal CMP counts. However, the joint likelihood CMP function is difficult to specify and thus restricts the likelihood-based estimating methodology. The joint generalized quasi-likelihood approach (GQL-I) was instead considered but is rather computationally intensive and may not even estimate the regression effects due to a complex and frequently ill-conditioned covariance structure. This paper proposes a new GQL approach for estimating the regression parameters (GQL-III) that is based on a single score vector representation. The performance of GQL-III is compared with GQL-I and separate marginal GQLs (GQL-II) through some simulation experiments and is proved to yield equally efficient estimates as GQL-I and is far more computationally stable.

Keywords: Longitudinal, Com-Poisson, Ill-conditioned, INAR(1), GLMS, GQL.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1776