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Abstract—The Com-Poisson (CMP) model is one of the most
popular discrete generalized linear models (GLMS) that handles
both equi-, over- and under-dispersed data. In longitudinal context,
an integer-valued autoregressive (INAR(1)) process that incorporates
covariate specification has been developed to model longitudinal
CMP counts. However, the joint likelihood CMP function is
difficult to specify and thus restricts the likelihood-based estimating
methodology. The joint generalized quasi-likelihood approach
(GQL-I) was instead considered but is rather computationally
intensive and may not even estimate the regression effects due
to a complex and frequently ill-conditioned covariance structure.
This paper proposes a new GQL approach for estimating the
regression parameters (GQL-III) that is based on a single score vector
representation. The performance of GQL-III is compared with GQL-I
and separate marginal GQLs (GQL-II) through some simulation
experiments and is proved to yield equally efficient estimates as
GQL-I and is far more computationally stable.

Keywords—Longitudinal, Com-Poisson, Ill-conditioned, INAR(1),
GLMS, GQL.

I. INTRODUCTION

IN several real-life medical studies, count data are collected
repeatedly over time for different subjects or individuals.

Some common examples include the monitoring of CD-4
counts in HIV patients and the number of seizures among
epilepsy patients. In such data set-ups, the subjects are treated
as independent while the repeated observations for a particular
individual are most likely time correlated and are influenced
by some explanatory variables like age, gender, treatment,
baseline measurements and among others. One more feature
is these observations may be equi-, over- or under-dispersed
relative to their means. Thus, CMP is most appropriate for
modelling such data. Some interesting facts about CMP is
that it is a member of the family of GLMs and satisfies the
moment properties of the exponential dispersion family. In
this respect, Iterative Reweighted Least Squares (IRWLS) or
quasi-likelihood estimating equations [6], [13] can be used to
estimate the regression effects.

Until now, CMP has been largely explored in cross-sectional
studies [9], [3], [4]; but, only few literature is available on
longitudinal set-ups. Mamode Khan and Jowaheer [5]
formulated an INAR(1) process([1], [7], [2]) to model
longitudinal CMP counts based on time-independent
covariates. In this process, the marginal moments and
joint covariances were derived. These authors considered
the GQL approach [10] to estimate the regression and
dispersion effects while the serial correlations were obtained
through a robust moment estimating equation approach [11].
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Since CMP is a two-parameter model, the classical GQL
was modified to accommodate a score vector constituting
of paired responses. However, the challenge in this joint
GQL (GQL-I) approach was the modelling of the joint
longitudinal covariance structure. This structure required
the computation of high-order moments which were derived
under the multivariate normality assumption [8]. Under
these conditions, the regression and dispersion estimators
were shown to be asymptotically normal and consistent.
The Newton-Raphson iterative procedure was used to
estimate the regression and dispersion parameters. However,
some computational difficulties were noted here. Firstly, in
simulation and real-life studies, the longitudinal covariance
matrix and the Hessian component in the iterative process
were often ill-conditioned and this leads to unreliable
estimates or an entire blockage of the estimation system.
The pseudo-inverse was considered to be an alternative to
the inverse problem but still the problem of non-convergence
persists.

In literature, Prentice and Zhao [8] and Sutradhar and
Farrell [12] have considered the option of setting two separate
GQLs (GQL-II) to estimate different sets of parameters which
has yielded consistent and slightly less efficient estimates
as GQL-I. However, GQL-II yielded very few convergence
problems and very few cases of singular covariance or Hessian
matrix were reported. In this paper, we propose a GQL
approach (GQL-III) which estimates jointly the regression
and dispersion parameters using a single estimating equation
and a score vector of single observations rather than paired
observations. This is possible since the mean and variance
functions of the CMP model constitutes of both the regression
and dispersion effects in their formulations. Such a technique
has not yet been explored and we are proposing here to
compare the performance of these three GQL approaches.
Thus the organization of this paper is as follows: In the next
section, the longitudinal CMP model, the GQL-I and GQL-II
approaches are presented. In the same section, the components
of the derivative and longitudinal covariance matrices are
shown. In The GQL-III approach is also introduced here
followed by a section on simulation experiment and results.
The conclusion is presented in the last section.

II. METHODOLOGY

Let yit be a count response and xit be a p-dimensional
vector of covariates for subject i(i = 1, . . . , I) observed at
time t (t = 1, . . . T ). Assume β is the p× 1 regression vector.
For the ith subject, let yi = (yi1, . . . , yit, . . . , yiT )

T be the
T × 1 response vector and Xi = (xi1, . . . , xiT )

T be the
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T×p matrix of time-independent covariates. The Com-Poisson
density function of yit ∼ CMP ( θitν , ν) is written as

f(yit) =
λyit

it

(yit!)ν
1

Z(λit, ν)
, (1)

where

Z(λit, ν) =
∞∑
j=0

λj
it

(j!)ν
(2)

and
λit = exp(xT

itβ) (3)

where the parameter ν corresponds the dispersion index.
Values of ν = 1, ν < 1and ν > 1 correspond to equi-, over-
and under- dispersion respectively. To facilitate computation,
[9] considered an approximation for Z(λit, ν) which yielded

E(Yit) = θit = λ
1/ν
it − ν − 1

2ν
(4)

and
V ar(Yit) =

θit
ν

+
ν − 1

2ν2
(5)

Note that under the time-independent covariates, that is
stationarity, the correlations within same lags are same for
all individuals such that the general autocorrelation structure
can be expressed as

Ci(ρ) =

⎡
⎢⎢⎢⎣

1 ρ1 ρ2 . . . ρT−1

ρ1 1 ρ1 . . . ρT−2

...
...

...
...

...
ρT−1 ρT−2 ρT−3 . . . 1

⎤
⎥⎥⎥⎦ (6)

where further to findings of [11]

ρ̂l =

∑I
i=1

∑T−l
t=1 ỹit ˜yi(t+l)/(T − l)∑I
i=1

∑T
t=1 ỹit

2/T
(7)

where ỹit =
yit−θi1√
V ar(Yit

.

A. A Review of the GQL-I and GQL-II and Introducing
GQL-III

This section provides an overview of the GQL-I approach
developed by [5] for the CMP longitudinal model.

I∑
i=1

DT
i Σ̃i

−1
(fi − μi) = 0, (8)

where fi = (fT
i1, . . . , f

T
it , . . . , f

T
iT )

T , μi =
(μT

i1, . . . , μ
T
it, . . . , μ

T
iT )

T are 2T × 1 vectors with fit a
pair of the response score(yit, y2it), μit = (θi1,mi1)

T for
t = 1, . . . , T . θi1 = E(Yit) and mi1 = E(Y 2

it) where

mi1 =
λ

1
ν
i1

ν
+ θ2i1 (9)

with λi1 = exp(xT
i1β). Σ̃i is the covariance matrix of the

score vector fi and Di is the 2T × (p+ 1) derivative matrix
consisting of

Di = [∂μi/∂β
T , ∂μi/∂ν] = [DT

i1, . . . , D
T
it, . . . , D

T
iT ]

T ,

with

Dit =

(
∂θi1/∂βT ∂θi1/∂ν

∂mi1/∂βT ∂mi1/∂ν

)
for t = 1, . . . , T where

∂θi1/∂β
T =

λ
1
ν
i1

ν
xT
i1 (10)

∂θi1/∂ν =
ν − 1

2ν2
− 1

2ν
− λ

1
ν
i1x

T
i1β

ν2
(11)

∂mi1/∂β
T = xT

i1(
2λ

1
ν
i1 + 2νλ

2
ν
i1 − νλ

1
ν
i1

ν2
) (12)

(13)

The longitudinal joint covariance matrix of fi is expressed as

Σ̃i =

⎛
⎜⎜⎜⎜⎜⎜⎝

˜Σi1
˜Ωi12

˜Ωi13
... ˜Ωi1T

˜Σi2
˜Ωi23

... ˜Ωi2T

˜Σi3
... ˜Ωi3T

. . .
˜ΣiT

⎞
⎟⎟⎟⎟⎟⎟⎠

(14)

where the diagonal submatrix

Σ̃it =

(
var(Yit) cov(Yit,Y 2

it)

var(Y 2
it)

)
and for t �= w, the off-diagonal submatrix

Ω̃itw =

(
cov(Yit,Yiw) cov(Yit,Y 2

iw)

cov(Y 2
it,Yiw) cov(Y 2

it,Y
2
iw)

)
for t = 1, . . . , T and w = 1, . . . , T [Refer to [5] for more
details on these components]. The GQL-I estimating equation
is solved by the Newton-Raphson iterative process[

β̂r+1

ν̂r+1

]
=

[
β̂r

ν̂r

]
+[

I∑
i=1

DT
i Σ̃i

−1
Di]

−1
r [

I∑
i=1

DT
i Σ̃i

−1
(fi−μi)]r

(15)
where β̂r is the value of β̂ at the rth iteration. [.]r is the
value of the expression at the rth iteration. The algorithm
works as follows: For an initial value of β̂ and ν̂, we calculate
ρ̂ to obtain the correlation structure and then use these two
sets of parameters to update the values of β̂ and ν̂. Then
the new set of parameters is used to calculate ρ̂l and the
iteration continues in this way until convergence. However,
these authors reported that few simulations converge under the
GQL-I approach because the longitudinal covariance matrix Σ̃i

and the Hessian component are close to singularity. A possible
solution to this problem is to adopt the GQL-II approach of
[8] ad-hoc estimation and [12] separate marginal estimating
equations. The GQL-II is split into

I∑
i=1

[∂θi1/∂β
T ]T [Cov(Yi)]

−1[yi − θi] = 0 (16)

I∑
i=1

[∂mi1/∂ν]
T [Cov(Y 2

i )]
−1[y2i −mi] = 0 (17)

where [Cov(Yi)] and [Cov(Y 2
i )] comprise of the covariance

matrix of yi and y2i respectively and are T × T dimensional
matrices.
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B. GQL-III

GQL-III is a simpler version of GQL-I where only the score
vector yi is considered instead of yi and y2i . Since the first
moment of yit is a function of both β and ν, we may consider
only a (p+ 1)× T derivative matrix, that is,

I∑
i=1

D̃T
i [Cov(Yi)]

−1[yi − θi] = 0 (18)

where

D̃it =
(
∂θi1/∂βT ∂θi1/∂ν

)
(19)

The Newton-Rapshon iterative procedure is implemented in
a similar way as in GQL-I but with the modified derivative
and covariance matrix.

III. SIMULATION STUDY AND RESULTS

A. The Generating Procedure

A simulation experiment is run 10,000 times with sample
sizes I = 60, 100 and 500 and with T = 4 and correlation
coefficient ρ = 0.9 along with β1 = β2 = 1 and ν = 0.5 and
1. The two-dimensional covariate design is

xit1 =

⎧⎨
⎩

−1 + i (i = 1, . . . , I/4),
0 (i = (I/4) + 1, . . . , 3I/4),
1 + i (i = (3I/4) + 1, . . . , I),

and xit2 is a Poisson distributed with mean parameter 2. This
implies λit = exp(xit1β1 + xit2β2) for t = 1, 2, . . . , T = 4.
Moreover, the INAR(1) sequence of the Com-Poisson counts
is

yit = ρ ∗ yi,t−1 + dit (20)

where 0 < ρ < 1. The symbol ∗ indicates the binomial
convolution thinning operation such that

ρ ∗ yi,t−1 =

yi,t−1∑
j=1

bj(ρ) = git. (21)

where prob[bj(ρ) = 1] = ρ and prob[bj(ρ) = 0] = 1 − ρ.
therefore

(git | yi,t−1, ρ) ∼ Binomial(yi,t−1, ρ) (22)

and the error term dit ∼ CMP ( (1−ρ)θi1
ν̃ , ν̃) where

ν̃ =
(2q0 + 1) +

√
(2q0 + 1)2 − 8q1
4q1

(23)

with q0 = (1 − ρ)θi1, q1 = q0
ν [1 + ρ(1 − ν)] + ν−1

2ν2 (1 − ρ2)
and 0 < ρ < 1 [See [5] for further details]. The simulation
results are shown in the next section.

B. Numerical Results

TABLE I
REGRESSION AND DISPERSION ESTIMATES UNDER GQL-I AND GQL-II

I ν Method β̂1 ν̂ ρ̂1 ρ̂2
60 0.5 GQL-I 0.9992 0.9991 0.4830 0.8982 0.7885

(0.0192) (0.0230) (0.0120)
GQL-II 0.9991 0.9991 0.4828 0.9014 0.7992

(0.0220) (0.0242) (0.0134)
GQL-III 0.9991 0.9991 0.4832 0.8988 0.8201

(0.0183) (0.0225) (0.0110)
100 GQL-I 0.9998 0.9999 0.5091 0.9045 0.7956

(0.0115) (0.0199) (0.0115)
GQL-II 0.9999 0.9997 0.4989 0.9026 0.8015

(0.0120) (0.0206) (0.0120)
GQL-III 0.9997 0.9999 0.5020 0.8988 0.8112

(0.0115) (0.0200) (0.0099)
500 GQL-I 0.9997 0.9999 0.4990 0.9012 0.7999

(0.0082) (0.0074) (0.0101)
GQL-II 1.0002 0.9999 0.4992 0.8972 0.8012

(0.0083) (0.0076) (0.0108)
GQL-III 0.9997 0.9999 0.4995 0.8989 0.8121

(0.0062) (0.0056) (0.0085)
60 1 GQL-I 1.0101 1.0002 0.9982 0.8952 0.8182

(0.0198) (0.0252) (0.0152)
GQL-II 1.1002 0.9999 0.9989 0.9010 0.8231

(0.0201) (0.0265) (0.0155)
GQL-III 1.0102 1.0001 0.9985 0.8991 0.8042

(0.0130) (0.0230) (0.0130)
100 GQL-I 1.0001 1.0001 1.0031 0.8925 0.8201

(0.0138) (0.0192) (0.0136)
GQL-II 0.9999 0.9999 0.9995 0.9001 0.8182

(0.0141) (0.0210) (0.0142)
GQL-III 1.0001 1.0001 0.9995 0.8997 0.8096

(0.0123) (0.0160) (0.0101)
500 GQL-I 0.9991 0.9999 0.9990 0.9021 0.8315

(0.0101) (0.0086) (0.0128)
GQL-II 0.9991 0.9999 1.0012 0.8991 0.8159

(0.0102) (0.0090) (0.0135)
GQL-III 1.0001 1.0001 1.0012 0.9101 0.8201

(0.0098) (0.0074) (0.0087)

The results demonstrate that for the different values of
ν, the estimates of β converge to the true values and the
correlation estimates under the moment estimating equation
are close to the autoregressive structure. As the cluster size
increases, the standard errors in the GQL approaches decrease.
However, the standard errors in GQL-I are slightly superior
than GQL-II but when compared with GQL-III, there are some
significant gaps. In fact, in the majority of the simulations, the
standard error of GQL-III regression estimates are comparable
to GQL-I but GQL-III yields highly efficient estimates for the
dispersion parameter. The same trend has been noted across
the different clusters and the different ν values. However, we
need to add that the number of non-convergent simulations
has significantly decreased in the GQL-III approach. In fact,
for I = 60 and ν = 0.5, GQL-I fails in 3516 simulations
while GQL-II and GQL-III flop in only 320 simulations. For
ν = 1 and I = 100, GQL-I survives in only 1000 simulations
while the other two algorithms yield around 4300 simulations.
The failures in GQL-I were due mainly to the ill-conditioned
longitudinal covariance matrix and in some simulations due
to the Hessian matrix in the Newton-Raphson iteration. The
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pseudo-inverse was used in GQL-I but the converged estimates
deviate from the true values and in some cases NaN or Inf
expressions were obtained. Based on the above simulation
study, GQL-III yields satisfactory results.

IV. CONCLUSION

This paper introduces a new GQL-III approach to estimate
the regression and dispersion parameters in a longitudinal
Com-Poisson set-up. As compared to the existing GQL-I and
GQL-II, this approach is more computationally feasible and
yields slightly more efficient estimates than GQL-I and GQL-II
under both dispersed data set-ups.
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