Search results for: waste toner-modified asphalt
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 823

Search results for: waste toner-modified asphalt

433 A Goal Programming Approach for Plastic Recycling System in Thailand

Authors: Wuthichai Wongthatsanekorn

Abstract:

Plastic waste is a big issue in Thailand, but the amount of recycled plastic in Thailand is still low due to the high investment and operating cost. Hence, the rest of plastic waste are burnt to destroy or sent to the landfills. In order to be financial viable, an effective reverse logistics infrastructure is required to support the product recovery activities. However, there is a conflict between reducing the cost and raising environmental protection level. The purpose of this study is to build a goal programming (GP) so that it can be used to help analyze the proper planning of the Thailand-s plastic recycling system that involves multiple objectives. This study considers three objectives; reducing total cost, increasing the amount of plastic recovery, and raising the desired plastic materials in recycling process. The results from two priority structures show that it is necessary to raise the total cost budget in order to achieve targets on amount of recycled plastic and desired plastic materials.

Keywords: Goal Programming, Plastic Recycling, Thailand.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2656
432 Comparison of Conventional and “ECO“Transportation Pavements in Cyprus using Life Cycle Approach

Authors: Constantia Achilleos, Diofantos G. Hadjimitsis

Abstract:

Road industry has challenged the prospect of ecoconstruction. Pavements may fit within the framework of sustainable development. Hence, research implements assessments of conventional pavements impacts on environment in use of life cycle approach. To meet global, and often national, targets on pollution control, newly introduced pavement designs are under study. This is the case of Cyprus demonstration, which occurred within EcoLanes project work. This alternative pavement differs on concrete layer reinforced with tire recycling product. Processing of post-consumer tires produces steel fibers improving strength capacity against cracking. Thus maintenance works are relevantly limited in comparison to flexible pavement. This enables to be more ecofriendly, referenced to current study outputs. More specific, proposed concrete pavement life cycle processes emits 15 % less air pollutants and consumes 28 % less embodied energy than those of the asphalt pavement. In addition there is also a reduction on costs by 0.06 %.

Keywords: Environmental impact assessment, life cycle, tirerecycling, transportation pavement.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2184
431 Transesterification of Waste Cooking Oil for Biodiesel Production Using Modified Clinoptilolite Zeolite as a Heterogeneous Catalyst

Authors: D. Mowla, N. Rasti, P. Keshavarz

Abstract:

Reduction of fossil fuels sources, increasing of pollution gases emission, and global warming effects increase the demand of renewable fuels. One of the main candidates of alternative fuels is biodiesel. Biodiesel limits greenhouse gas effects due to the closed CO2 cycle. Biodiesel has more biodegradability, lower combustion emissions such as CO, SOx, HC, PM and lower toxicity than petro diesel. However, biodiesel has high production cost due to high price of plant oils as raw material. So, the utilization of waste cooking oils (WCOs) as feedstock, due to their low price and disposal problems reduce biodiesel production cost. In this study, production of biodiesel by transesterification of methanol and WCO using modified sodic potassic (SP) clinoptilolite zeolite and sodic potassic calcic (SPC) clinoptilolite zeolite as heterogeneous catalysts have been investigated. These natural clinoptilolite zeolites were modified by KOH solution to increase the site activity. The optimum biodiesel yields for SP clinoptilolite and SPC clinoptilolite were 95.8% and 94.8%, respectively. Produced biodiesel were analyzed and compared with petro diesel and ASTM limits. The properties of produced biodiesel confirm well with ASTM limits. The density, kinematic viscosity, cetane index, flash point, cloud point, and pour point of produced biodiesel were all higher than petro diesel but its acid value was lower than petro diesel. Finally, the reusability and regeneration of catalysts were investigated. The results indicated that the spent zeolites cannot be reused directly for the transesterification, but they can be regenerated easily and can obtain high activity.

Keywords: Biodiesel, renewable fuel, transesterification, waste cooking oil.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1481
430 The Effect of Fine Aggregate Properties on the Fatigue Behavior of the Conventional and Polymer Modified Bituminous Mixtures Using Two Types of Sand as Fine Aggregate

Authors: S. G. Yasreen, N. B. Madzlan, K. Ibrahim

Abstract:

Fatigue cracking continues to be the main challenges in improving the performance of bituminous mixture pavements. The purpose of this paper is to look at some aspects of the effects of fine aggregate properties on the fatigue behaviour of hot mixture asphalt. Two types of sand (quarry and mining sand) with two conventional bitumen (PEN 50/60 & PEN 80/100) and four polymers modified bitumen PMB (PM1_82, PM1_76, PM2_82 and PM2_76) were used. Physical, chemical and mechanical tests were performed on the sands to determine their effect when incorporated with a bituminous mixture. According to the beam fatigue results, quarry sand that has more angularity, rougher, higher shear strength and a higher percentage of Aluminium oxide presented higher resistance to fatigue. Also a PMB mixture gives better fatigue results than conventional mixtures, this is due to the PMB having better viscosity property than that of the conventional bitumen.

Keywords: Beam fatigue test, chemical property, mechanical property, physical property

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2812
429 Preparation of Sorbent Materials for the Removal of Hardness and Organic Pollutants from Water and Wastewater

Authors: Thanaa Abdel Moghny, Mohamed Keshawy, Mahmoud Fathy, Abdul-Raheim M. Abdul-Raheim, Khalid I. Kabel, Ahmed F. El-Kafrawy, Mahmoud Ahmed Mousa, Ahmed E. Awadallah

Abstract:

Ecological pollution is of great concern for human health and the environment. Numerous organic and inorganic pollutants usually discharged into the water caused carcinogenic or toxic effect for human and different life form. In this respect, this work aims to treat water contaminated by organic and inorganic waste using sorbent based on polystyrene. Therefore, two different series of adsorbent material were prepared; the first one included the preparation of polymeric sorbent from the reaction of styrene acrylate ester and alkyl acrylate. The second series involved syntheses of composite ion exchange resins of waste polystyrene and   amorphous carbon thin film (WPS/ACTF) by solvent evaporation using micro emulsion polymerization. The produced ACTF/WPS nanocomposite was sulfonated to produce cation exchange resins ACTF/WPSS nanocomposite. The sorbents of the first series were characterized using FTIR, 1H NMR, and gel permeation chromatography. The thermal properties of the cross-linked sorbents were investigated using thermogravimetric analysis, and the morphology was characterized by scanning electron microscope (SEM). The removal of organic pollutant was determined through absorption tests in a various organic solvent. The chemical and crystalline structure of nanocomposite of second series has been proven by studies of FTIR spectrum, X-rays, thermal analysis, SEM and TEM analysis to study morphology of resins and ACTF that assembled with polystyrene chain. It is found that the composite resins ACTF/WPSS are thermally stable and show higher chemical stability than ion exchange WPSS resins. The composite resin was evaluated for calcium hardness removal. The result is evident that the ACTF/WPSS composite has more prominent inorganic pollutant removal than WPSS resin. So, we recommend the using of nanocomposite resin as new potential applications for water treatment process.

Keywords: Nanocomposite, sorbent materials, waste water, waste polystyrene.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1407
428 Influence of the Low Frequency Ultrasound on the Cadmium (II) Biosorption by an Ecofriendly Biocomposite (Extraction Solid Waste of Ammi visnaga / Calcium Alginate): Kinetic Modeling

Authors: L. Nouri Taiba, Y. Bouhamidi, F. Kaouah, Z. Bendjama, M. Trari

Abstract:

In the present study, an ecofriendly biocomposite namely calcium alginate immobilized Ammi Visnaga (Khella) extraction waste (SWAV/CA) was prepared by electrostatic extrusion method and used on the cadmium biosorption from aqueous phase with and without the assistance of ultrasound in batch conditions. The influence of low frequency ultrasound (37 and 80 KHz) on the cadmium biosorption kinetics was studied. The obtained results show that the ultrasonic irradiation significantly enhances and improves the efficiency of the cadmium removal. The Pseudo first order, Pseudo-second-order, Intraparticle diffusion, and Elovich models were evaluated using the non-linear curve fitting analysis method. Modeling of kinetic results shows that biosorption process is best described by the pseudo-second order and Elovich, in both the absence and presence of ultrasound.

Keywords: Biocomposite, biosorption, cadmium, non-linear analysis, ultrasound.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1596
427 Efficacy of Methyl Eugenol and Food-Based Lures in Trapping Oriental Fruit Fly Bactrocera dorsalis (Diptera: Tephritidae) on Mango Homestead Trees

Authors: Juliana Amaka Ugwu

Abstract:

Trapping efficiency of methyl eugenol and three locally made food-based lures were evaluated in three locations for trapping of B. dorsalis on mango homestead trees in Ibadan South west Nigeria. The treatments were methyl eugenol, brewery waste, pineapple juice, orange juice, and control (water). The experiment was laid in a Complete Randomized Block Design (CRBD) and replicated three times in each location. Data collected were subjected to analysis of variance and significant means were separated by Turkey’s test. The results showed that B. dorsalis was recorded in all locations of study. Methyl eugenol significantly (P < 0.05) trapped higher population of B. dorsalis in all the study area. The population density of B. dorsalis was highest during the ripening period of mango in all locations. The percentage trapped flies after 7 weeks were 77.85%-82.38% (methyl eugenol), 7.29%-8.64% (pineapple juice), 5.62-7.62% (brewery waste), 4.41%-5.95% (orange juice), and 0.24-0.47% (control). There were no significance differences (p > 0.05) on the population of B. dorsalis trapped in all locations. Similarly, there were no significant differences (p > 0.05) on the population of flies trapped among the food attractants. However, the three food attractants significantly (p < 0.05) trapped higher flies than control. Methyl eugenol trapped only male flies while brewery waste and other food based attractants trapped both male and female flies. The food baits tested were promising attractants for trapping B. dorsalis on mango homestead tress, hence increased dosage could be considered for monitoring and mass trapping as management strategies against fruit fly infestation.

Keywords: Attractants, trapping, mango, Bactrocera dorsalis.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 765
426 Analytic Hierarchy Process Method for Supplier Selection Considering Green Logistics: Case Study of Aluminum Production Sector

Authors: H. Erbiyik, A. Bal, M. Sirakaya, Ö. Yesildal, E. Yolcu

Abstract:

The emergence of many environmental issues began with the Industrial Revolution. The depletion of natural resources and emerging environmental challenges over time requires enterprises and managers to take into consideration environmental factors while managing business. If we take notice of these causes; the design and implementation of environmentally friendly green purchasing, production and waste management systems become very important at green logistics systems. Companies can adopt green supply chain with the awareness of these facts. The concept of green supply chain constitutes from green purchasing, green production, green logistics, waste management and reverse logistics. In this study, we wanted to identify the concept of green supply chain and why green supply chain should be applied. In the practice part of the study an analytic hierarchy process (AHP) study is conducted on an aluminum production company to evaluate suppliers.

Keywords: Aluminum sector, analytic hierarchy process, decision making, green logistics.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1498
425 Finite Element Modeling of the Mechanical Behavior of Municipal Solid Waste Incineration Bottom Ash with the Mohr-Coulomb Model

Authors: Le Ngoc Hung, Abriak Nor Edine, Binetruy Christophe, Benzerzour Mahfoud, Shahrour Isam, Patrice Rivard

Abstract:

Bottom ash from Municipal Solid Waste Incineration (MSWI) can be viewed as a typical granular material because these industrial by-products result from the incineration of various domestic wastes. MSWI bottom ash is mainly used in road engineering in substitution of the traditional natural aggregates. As the characterization of their mechanical behavior is essential in order to use them, specific studies have been led over the past few years. In the first part of this paper, the mechanical behavior of MSWI bottom ash is studied with triaxial tests. After, analysis of the experiment results, the simulation of triaxial tests is carried out by using the software package CESAR-LCPC. As the first approach in modeling of this new class material, the Mohr-Coulomb model was chosen to describe the evolution of material under the influence of external mechanical actions.

Keywords: Bottom ash, granular material, triaxial test, mechanical behavior, simulation, Mohr-Coulomb model, CESARLCPC.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1895
424 Selection of Pichia kudriavzevii Strain for the Production of Single-Cell Protein from Cassava Processing Waste

Authors: Phakamas Rachamontree, Theerawut Phusantisampan, Natthakorn Woravutthikul, Peerapong Pornwongthong, Malinee Sriariyanun

Abstract:

A total of 115 yeast strains isolated from local cassava processing wastes were measured for crude protein content. Among these strains, the strain MSY-2 possessed the highest protein concentration (>3.5 mg protein/mL). By using molecular identification tools, it was identified to be a strain of Pichia kudriavzevii based on similarity of D1/D2 domain of 26S rDNA region. In this study, to optimize the protein production by MSY-2 strain, Response Surface Methodology (RSM) was applied. The tested parameters were the carbon content, nitrogen content, and incubation time. Here, the value of regression coefficient (R2) = 0.7194 could be explained by the model which is high to support the significance of the model. Under the optimal condition, the protein content was produced up to 3.77 g per L of the culture and MSY-2 strain contains 66.8 g protein per 100 g of cell dry weight. These results revealed the plausibility of applying the novel strain of yeast in single-cell protein production.

Keywords: Single cell protein, response surface methodology, yeast, cassava processing waste.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2680
423 Sustainable Geographic Information System-Based Map for Suitable Landfill Sites in Aley and Chouf, Lebanon

Authors: Allaw Kamel, Bazzi Hasan

Abstract:

Municipal solid waste (MSW) generation is among the most significant sources which threaten the global environmental health. Solid Waste Management has been an important environmental problem in developing countries because of the difficulties in finding sustainable solutions for solid wastes. Therefore, more efforts are needed to be implemented to overcome this problem. Lebanon has suffered a severe solid waste management problem in 2015, and a new landfill site was proposed to solve the existing problem. The study aims to identify and locate the most suitable area to construct a landfill taking into consideration the sustainable development to overcome the present situation and protect the future demands. Throughout the article, a landfill site selection methodology was discussed using Geographic Information System (GIS) and Multi Criteria Decision Analysis (MCDA). Several environmental, economic and social factors were taken as criterion for selection of a landfill. Soil, geology, and LUC (Land Use and Land Cover) indices with the Sustainable Development Index were main inputs to create the final map of Environmentally Sensitive Area (ESA) for landfill site. Different factors were determined to define each index. Input data of each factor was managed, visualized and analyzed using GIS. GIS was used as an important tool to identify suitable areas for landfill. Spatial Analysis (SA), Analysis and Management GIS tools were implemented to produce input maps capable of identifying suitable areas related to each index. Weight has been assigned to each factor in the same index, and the main weights were assigned to each index used. The combination of the different indices map generates the final output map of ESA. The output map was reclassified into three suitability classes of low, moderate, and high suitability. Results showed different locations suitable for the construction of a landfill. Results also reflected the importance of GIS and MCDA in helping decision makers finding a solution of solid wastes by a sanitary landfill.

Keywords: Sustainable development, landfill, municipal solid waste, geographic information system, GIS, multi criteria decision analysis, environmentally sensitive area.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 878
422 Sustainability Assessment of a Deconstructed Residential House

Authors: Atiq U. Zaman, Juliet Arnott

Abstract:

This paper analyses the various benefits and barriers of residential deconstruction in the context of environmental performance and circular economy based on a case study project in Christchurch, New Zealand. The case study project “Whole House Deconstruction” which aimed, firstly, to harvest materials from a residential house, secondly, to produce new products using the recovered materials, and thirdly, to organize an exhibition for the local public to promote awareness on resource conservation and sustainable deconstruction practices. Through a systematic deconstruction process, the project recovered around 12 tonnes of various construction materials, most of which would otherwise be disposed of to landfill in the traditional demolition approach. It is estimated that the deconstruction of a similar residential house could potentially prevent around 27,029 kg of carbon emission to the atmosphere by recovering and reusing the building materials. In addition, the project involved local designers to produce 400 artefacts using the recovered materials and to exhibit them to accelerate public awareness. The findings from this study suggest that the deconstruction project has significant environmental benefits, as well as social benefits by involving the local community and unemployed youth as a part of their professional skills development opportunities. However, the project faced a number of economic and institutional challenges. The study concludes that with proper economic models and appropriate institutional support a significant amount of construction and demolition waste can be reduced through a systematic deconstruction process. Traditionally, the greatest benefits from such projects are often ignored and remain unreported to wider audiences as most of the external and environmental costs have not been considered in the traditional linear economy.

Keywords: Circular economy, construction and demolition waste, resource recovery, systematic deconstruction, sustainable waste management.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1112
421 Use of Natural Fibers in Landfill Leachate Treatment

Authors: J. F. Marina Araujo, F. Marcus Vinicius Araujo, R. Daniella Mulinari

Abstract:

Due to the resultant leachate from waste decomposition in landfills has polluter potential hundred times greater than domestic sewage, this is considered a problem related to the depreciation of environment requiring pre-disposal treatment.In seeking to improve this situation, this project proposes the treatment of landfill leachate using natural fibers intercropped with advanced oxidation processes. The selected natural fibers were palm, coconut and banana fiber.These materials give sustainability to the project because, besides having adsorbent capacity, are often part of waste discarded. The study was conducted in laboratory scale.In trials, the effluents were characterized as Chemical Oxygen Demand (COD), Turbidity and Color. The results indicate that is technically promising since that there were extremely oxidative conditions, the use of certain natural fibers in the reduction of pollutants in leachate have been obtained results of COD removals between 67.9% and 90.9%, Turbidity between 88.0% and 99.7% and Color between 67.4% and 90.4%.The expectation generated is to continue evaluating the association of efficiency of other natural fibers with other landfill leachate treatment processes.

Keywords: Landfill leachate, chemical treatment, natural Fibers, advanced oxidation processes.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2626
420 Effect of Domestic Treated Wastewater use on Three Varieties of Amaranth (Amaranthus spp.) under Semi Arid Conditions

Authors: El Youssfi L., Choukr-Allah R., Zaafrani M., Mediouni T., Sarr F, Hirich A.

Abstract:

An experiment was implemented in a filed in the south of Morocco to evaluate the effects of domestic treated wastewater use for irrigation of amaranth crop under semi-arid conditions. Three varieties (A0020, A0057 & A211) were tested and irrigated using domestic treated wastewater EC1 (0,92 dS/m) as control, EC3 (3dS/m) and EC6 (6dS/m) obtained by adding sea water. In term of growth, an increase of the EC level of applied irrigation water reduced significantly the plant-s height, leaf area, fresh and dry weight measured at vegetative, flowering and maturity stage for all varieties. Even with the application of the EC6, yields were relatively higher in comparison with the once obtained in normal cultivation conditions. A significant accumulation of nitrate, chloride and sodium in soil layers during the crop cycle was noted. The use of treated waste water for its irrigation is proved to be possible. The variety A211 had showed to be less sensitive to salinity stress and it could be more promising its introduction to study area.

Keywords: Amaranth, salinity, semi-arid, treated waste water.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2017
419 Utilization of Kitchen Waste inside Green House Chamber: A Community Level Biogas Programme

Authors: Ravi P. Agrahari

Abstract:

The present study was undertaken with the objective of evaluating kitchen waste as an alternative organic material for biogas production in community level biogas plant. The field study was carried out for one month (January 19, 2012– February 17, 2012) at Centre for Energy Studies, IIT Delhi, New Delhi, India.

This study involves the uses of greenhouse canopy to increase the temperature for the production of biogas in winter period. In continuation, a semi-continuous study was conducted for one month with the retention time of 30 days under batch system. The gas generated from the biogas plant was utilized for cooking (burner) and lighting (lamp) purposes. Gas productions in the winter season registered lower than other months. It can be concluded that the solar greenhouse assisted biogas plant can be efficiently adopted in colder region or in winter season because temperature plays a major role in biogas production. 

Keywords: Biogas, Green house chamber, organic material, solar intensity.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2042
418 Durability of LDPE Geomembrane within Sealing System of MSW (Landfill)

Authors: L. Menaa, A. Cherifi, K. Tigouirat, M. Choura

Abstract:

Analyse of locally manufactured Low Density Polyethylene (LDPE) durability, used within lining systems at bottom of Municipal Solid Waste (landfill), is done in the present work. For this end, short and middle time creep behavior under tension of the analyzed material is carried out. The locally manufactured material is tested and compared to the European one (LDPE-CE). Both materials was tested in 03 various mediums: ambient and two aggressive (salty water and foam water), using three specimens in each case. A testing campaign is carried out using an especially designed and achieved testing bench. Moreover, characterisation tests were carried out to evaluate the medium effect on the mechanical properties of the tested material (LDPE). Furthermore, experimental results have been used to establish a law regression which can be used to predict creep behaviour of the analyzed material. As a result, the analyzed LDPE material has showed a good stability in different ambient and aggressive mediums; as well, locally manufactured LDPE seems more flexible, compared with the European one. This makes it more useful to the desired application.

Keywords: LDPE membrane, solid waste, aggressive mediums, durability

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1553
417 Biosorption of Cu (II) and Zn (II) from Real Wastewater onto Cajanus cajan Husk

Authors: Mallappa A. Devani, John U. Kennedy Oubagaranadin, Basudeb Munshi

Abstract:

In this preliminary work, locally available husk of Cajanus cajan (commonly known in India as Tur or Arhar), a bio-waste, has been used in its physically treated and chemically activated form for the removal of binary Cu (II) and Zn(II) ions from the real waste water obtained from an electroplating industry in Bangalore, Karnataka, India and from laboratory prepared binary solutions having almost similar composition of the metal ions, for comparison. The real wastewater after filtration and dilution for five times was used for biosorption studies at the normal pH of the solutions at room temperature. Langmuir's binary model was used to calculate the metal uptake capacities of the biosorbents. It was observed that Cu(II) is more competitive than Zn(II) in biosorption. In individual metal biosorption, Cu(II) uptake was found to be more than that of the Zn(II) and a similar trend was observed in the binary metal biosorption from real wastewater and laboratory prepared solutions. FTIR analysis was carried out to identify the functional groups in the industrial wastewater and EDAX for the elemental analysis of the biosorbents after experiments.

Keywords: Biosorption, Cajanus cajan, multi metal remediation, wastewater.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 944
416 Economic and Environmental Benefits of the Best Available Technique Application in a Food Processing Plant

Authors: Frantisek Bozek, Pavel Budinsky, Ignac Hoza, Alexandr Bozek, Magdalena Naplavova

Abstract:

A cleaner production project was implemented in a bakery. The project is based on the substitution of the best available technique for an obsolete leaven production technology. The new technology enables production of durable, high-quality leavens. Moreover, 25% of flour as the original raw material can be replaced by pastry from the previous day production which has not been sold. That pastry was previously disposed in a waste incineration plant. Besides the environmental benefits resulting from less waste, lower consumption of energy, reduction of sewage waters quantity and floury dustiness there are also significant economic benefits. Payback period of investment was calculated with help of static method of financial analysis about 2.6 years, using dynamic method 3.5 years and an internal rate of return more than 29%. The supposed annual average profit after taxationin the second year of operation was incompliance with the real profit.

Keywords: Bakery, best available technology, cleaner production, costs, economic benefit, efficiency, energy, environmental benefit, investment, savings.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2109
415 The Integration of Cleaner Production Innovation and Creativity for Supply Chain Sustainability of Bogor Batik SMEs

Authors: Sawarni Hasibuan, Juliza Hidayati

Abstract:

Competitiveness and sustainability issues not only put pressure on big companies, but also small and medium enterprises (SMEs). SMEs Batik Bogor is one of the local culture-based creative industries in Bogor city which is also dealing with the issue of sustainability. The purpose of this research is to develop framework of sustainability at SMEs Batik Indonesia case of SMEs Batik Bogor by integrating innovation of cleaner production in its supply chain. The approach used is desk study, field survey, in-depth interviews, and benchmarking best practices of SMEs sustainability. In-depth interviews involve stakeholders to identify the needs and standards of sustainability of SMEs Batik. Data analysis was done by benchmarking method, Multi Dimension Scaling (MDS) method, and Strength, Weakness, Opportunity, Threat (SWOT) analysis. The results recommend the framework of sustainability for SMEs Batik in Indonesia. The sustainability status of SMEs Batik Bogor is classified as Moderate Sustainable. Factors that support the sustainability of SMEs Batik Bogor such is a strong commitment of top management in adopting cleaner production innovation and creativity approach. Successful cleaner production innovations are implemented primarily in the substitution of dye materials from toxic to non-toxic, reducing the intensity of non-renewable energy use, as well as the reuse and recycle of solid waste. “Mosaic Batik” is one of the innovations of solid waste utilization of batik waste produced by company R&D center that gives benefit to three pillars of sustainability, that is financial benefit, environmental benefit, and social benefit. The sustainability of SMEs Batik Bogor cannot be separated from the support of Bogor City Government which proactively facilitates the promotion of sustainable innovation produced by SMEs Batik Bogor.

Keywords: Cleaner production innovation, creativity, SMEs Batik, sustainability supply chain.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 876
414 Detailed Sensitive Detection of Impurities in Waste Engine Oils Using Laser Induced Breakdown Spectroscopy, Rotating Disk Electrode Optical Emission Spectroscopy and Surface Plasmon Resonance

Authors: Cherry Dhiman, Ayushi Paliwal, Mohd. Shahid Khan, M. N. Reddy, Vinay Gupta, Monika Tomar

Abstract:

The laser based high resolution spectroscopic experimental techniques such as Laser Induced Breakdown Spectroscopy (LIBS), Rotating Disk Electrode Optical Emission spectroscopy (RDE-OES) and Surface Plasmon Resonance (SPR) have been used for the study of composition and degradation analysis of used engine oils. Engine oils are mainly composed of aliphatic and aromatics compounds and its soot contains hazardous components in the form of fine, coarse and ultrafine particles consisting of wear metal elements. Such coarse particulates matter (PM) and toxic elements are extremely dangerous for human health that can cause respiratory and genetic disorder in humans. The combustible soot from thermal power plants, industry, aircrafts, ships and vehicles can lead to the environmental and climate destabilization. It contributes towards global pollution for land, water, air and global warming for environment. The detection of such toxicants in the form of elemental analysis is a very serious issue for the waste material management of various organic, inorganic hydrocarbons and radioactive waste elements. In view of such important points, the current study on used engine oils was performed. The fundamental characterization of engine oils was conducted by measuring water content and kinematic viscosity test that proves the crude analysis of the degradation of used engine oils samples. The microscopic quantitative and qualitative analysis was presented by RDE-OES technique which confirms the presence of elemental impurities of Pb, Al, Cu, Si, Fe, Cr, Na and Ba lines for used waste engine oil samples in few ppm. The presence of such elemental impurities was confirmed by LIBS spectral analysis at various transition levels of atomic line. The recorded transition line of Pb confirms the maximum degradation which was found in used engine oil sample no. 3 and 4. Apart from the basic tests, the calculations for dielectric constants and refractive index of the engine oils were performed via SPR analysis.

Keywords: Laser induced breakdown spectroscopy, rotating disk electrode optical emission spectroscopy, surface plasmon resonance, ICCD spectrometer, Nd:YAG laser, engine oil.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 752
413 Effect of Temperature on Specific Retention Volumes of Selected Volatile Organic Compounds Using the Gas - Liquid Chromatographic Technique Revisited

Authors: Edison Muzenda, Ayo S. Afolabi

Abstract:

This paper is a continuation of our interest in the influence of temperature on specific retention volumes and the resulting infinite dilution activity coefficients. This has a direct effect in the design of absorption and stripping columns for the abatement of volatile organic compounds. The interaction of 13 volatile organic compounds (VOCs) with polydimethylsiloxane (PDMS) at varying temperatures was studied by gas liquid chromatography (GLC). Infinite dilution activity coefficients and specific retention volumes obtained in this study were found to be in agreement with those obtained from static headspace and group contribution methods by the authors as well as literature values for similar systems. Temperature variation also allows for transport calculations for different seasons. The results of this work confirm that PDMS is well suited for the scrubbing of VOCs from waste gas streams. Plots of specific retention volumes against temperature gave linear van-t Hoff plots.

Keywords: Specific retention volume, Waste gas streams, specific retention, infinite dilution, abatement, transport.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1956
412 Value Index, a Novel Decision Making Approach for Waste Load Allocation

Authors: E. Feizi Ashtiani, S. Jamshidi, M.H Niksokhan, A. Feizi Ashtiani

Abstract:

Waste load allocation (WLA) policies may use multiobjective optimization methods to find the most appropriate and sustainable solutions. These usually intend to simultaneously minimize two criteria, total abatement costs (TC) and environmental violations (EV). If other criteria, such as inequity, need for minimization as well, it requires introducing more binary optimizations through different scenarios. In order to reduce the calculation steps, this study presents value index as an innovative decision making approach. Since the value index contains both the environmental violation and treatment costs, it can be maximized simultaneously with the equity index. It implies that the definition of different scenarios for environmental violations is no longer required. Furthermore, the solution is not necessarily the point with minimized total costs or environmental violations. This idea is testified for Haraz River, in north of Iran. Here, the dissolved oxygen (DO) level of river is simulated by Streeter-Phelps equation in MATLAB software. The WLA is determined for fish farms using multi-objective particle swarm optimization (MOPSO) in two scenarios. At first, the trade-off curves of TC-EV and TC-Inequity are plotted separately as the conventional approach. In the second, the Value-Equity curve is derived. The comparative results show that the solutions are in a similar range of inequity with lower total costs. This is due to the freedom of environmental violation attained in value index. As a result, the conventional approach can well be replaced by the value index particularly for problems optimizing these objectives. This reduces the process to achieve the best solutions and may find better classification for scenario definition. It is also concluded that decision makers are better to focus on value index and weighting its contents to find the most sustainable alternatives based on their requirements.

Keywords: Waste load allocation (WLA), Value index, Multi objective particle swarm optimization (MOPSO), Haraz River, Equity.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2027
411 Quality Evaluation of Grape Seed Oils of the Ionian Islands Based on GC-MS and Other Spectroscopic Techniques

Authors: I. Oikonomou, I. Lappa, D. Daferera, C. Kanakis, L. Kiokakis, K. Skordilis, A. Avramouli, E. Kalli, C. Pappas, P. A. Tarantilis, E. Skotti

Abstract:

Grape seeds are waste products of wineries and often referred to as an important agricultural and industrial waste product with the potential to be used in pharmaceutical, food, and cosmetic applications. In this study, grape seed oil from traditional Ionian varieties was examined for the determination of the quality and the characteristics of each variety. Initially, the fatty acid methyl ester (FAME) profiles were analyzed using Gas Chromatography-Mass Spectrometry, after transesterification. Furthermore, other quality parameters of the grape seed oils were determined by Spectroscopy techniques, UV-Vis and Raman included. Moreover, the antioxidant capacity of the oil was measured by 2,2'-azino-bis-3-ethylbenzothiazoline-6-sulfonic acid (ABTS) and 2,2-Diphenyl-1-picrylhydrazyl (DPPH) assays and their antioxidant capacity expressed in Trolox equivalents. K and ΔΚ indices were measured in 232, 268, 270 nm, as an oil quality index. The results indicate that the air-dried grape seed total oil content ranged from 5.26 to 8.77% w/w, which is in accordance with the other grape seed varieties tested in similar studies. The composition of grape seed oil is predominated with linoleic and oleic fatty acids, with the linoleic fatty acid ranging from 53.68 to 69.95% and both the linoleic and oleic fatty acids totaling 78-82% of FAMEs, which is analogous to the fatty acid composition of safflower oil. The antioxidant assays ABTS and DPPH scored high, exhibiting that the oils have potential in the cosmetic and culinary businesses. Above that, our results demonstrate that Ionian grape seed oils have prospects that can go further than cosmetic or culinary use, into the pharmaceuticals industry. Finally, the reclamation of grape seeds from wineries waste stream is in accordance with the bio-economy strategic framework and contributes to environmental protection.

Keywords: Antioxidant capacity, fatty acid methyl esters, grape seed oil, GC-MS.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 747
410 Experimental Study on the Creep Characteristics of FRC Base for Composite Pavement System

Authors: Woo-tai Jung, Sung-yong Choi, Young-hwan Park

Abstract:

The composite pavement system considered in this paper is composed of a functional surface layer, a fiber reinforced asphalt middle layer and a fiber reinforced lean concrete base layer. The mix design of the fiber reinforced lean concrete corresponds to the mix composition of conventional lean concrete but reinforced by fibers. The quasi-absence of research on the durability or long-term performances (fatigue, creep, etc.) of such mix design stresses the necessity to evaluate experimentally the long-term characteristics of this layer composition. This study tests the creep characteristics as one of the long-term characteristics of the fiber reinforced lean concrete layer for composite pavement using a new creep device. The test results reveal that the lean concrete mixed with fiber reinforcement and fly ash develops smaller creep than the conventional lean concrete. The results of the application of the CEB-FIP prediction equation indicate that a modified creep prediction equation should be developed to fit with the new mix design of the layer.

Keywords: Creep, Lean concrete, Pavement, Fiber reinforced concrete, Base.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2206
409 Experimental Study on the Creep Characteristics of FRC Base for Composite Pavement System

Authors: Woo-Tai Jung, Sung-Yong Choi, Young-Hwan Park

Abstract:

The composite pavement system considered in this paper is composed of a functional surface layer, a fiber reinforced asphalt middle layer and a fiber reinforced lean concrete base layer. The mix design of the fiber reinforced lean concrete corresponds to the mix composition of conventional lean concrete but reinforced by fibers. The quasi-absence of research on the durability or long-term performances (fatigue, creep, etc.) of such mix design stresses the necessity to evaluate experimentally the long-term characteristics of this layer composition. This study tests the creep characteristics as one of the long-term characteristics of the fiber reinforced lean concrete layer for composite pavement using a new creep device. The test results reveal that the lean concrete mixed with fiber reinforcement and fly ash develops smaller creep than the conventional lean concrete. The results of the application of the CEB-FIP prediction equation indicate that a modified creep prediction equation should be developed to fit with the new mix design of the layer.

Keywords: Creep, Lean concrete, Pavement, Fiber reinforced concrete, Base.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1362
408 Destination of the Solid Waste Generated at the Agricultural Products Wholesale Market in Brazil

Authors: C de Almeida, I. M. Dal Fabbro

Abstract:

The Brazilian Agricultural Products Wholesale Market fits well as example of residues generating system, reaching 750 metric tons per month of total residues, from which 600 metric tons are organic material and 150 metric tons are recyclable materials. Organic material is basically composed of fruit, vegetables and flowers leftovers from the products commercialization. The recyclable compounds are generate from packing material employed in the commercialization process. This research work devoted efforts in carrying quantitative analysis of the residues generated in the agricultural enterprise at its final destination. Data survey followed the directions implemented by the Residues Management Program issued by the agricultural enterprise. It was noticed from that analysis the necessity of changing the logistics applied to the recyclable material collecting process. However, composting process was elected as the organic compounds destination which is considered adequate for a material composed of significant percentage of organic matter far higher than wood, cardboard and plastics contents.

Keywords: Composting, environment, recycling, solid waste.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2020
407 The Use of Rice Husk Ash as a Stabilizing Agent in Lateritic Clay Soil

Authors: J. O. Akinyele, R. W. Salim, K. O. Oikelome, O. T. Olateju

Abstract:

Rice Husk (RH) is the major byproduct in the processing of paddy rice. The management of this waste has become a big challenge to some of the rice producers, some of these wastes are left in open dumps while some are burn in the open space, and these two actions have been contributing to environmental pollution. This study evaluates an alternative waste management of this agricultural product for use as a civil engineering material. The RH was burn in a controlled environment to form Rice Husk Ash (RHA). The RHA was mix with lateritic clay at 0, 2, 4, 6, 8, and 10% proportion by weight. Chemical test was conducted on the open burn and controlled burn RHA with the lateritic clay. Physical test such as particle size distribution, Atterberg limits test, and density test were carried out on the mix material. The chemical composition obtained for the RHA showed that the total percentage compositions of Fe2O3, SiO2 and Al2O3 were found to be above 70% (class “F” pozzolan) which qualifies it as a very good pozzolan. The coefficient of uniformity (Cu) was 8 and coefficient of curvature (Cc) was 2 for the soil sample. The Plasticity Index (PI) for the 0, 2, 4, 6, 8. 10% was 21.0, 18.8, 16.7, 14.4, 12.4 and 10.7 respectively. The work concluded that RHA can be effectively used in hydraulic barriers and as a stabilizing agent in soil stabilization.

Keywords: Rice husk ash, pozzolans, paddy rice, lateritic clay.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2833
406 Evaluation on Mechanical Stabilities of Clay-Sand Mixtures Used as Engineered Barrier for Radioactive Waste Disposal

Authors: Ahmet E. Osmanlioglu

Abstract:

In this study, natural bentonite was used as natural clay material and samples were taken from the Kalecik district in Ankara. In this research, bentonite is the subject of an analysis from standpoint of assessing the basic properties of engineered barriers with respect to the buffer material. Bentonite and sand mixtures were prepared for tests. Some of clay minerals give relatively higher hydraulic conductivity and lower swelling pressure. Generally, hydraulic conductivity of these type clays is lower than <10-12 m/s. The hydraulic properties of clay-sand mixtures are evaluated to design engineered barrier specifications. Hydraulic conductivities of bentonite-sand mixture were found in the range of 1.2x10-10 to 9.3x10-10 m/s. Optimum B/S mixture ratio was determined as 35% in terms of hydraulic conductivity and mechanical stability. At the second stage of this study, all samples were compacted into cylindrical shape molds (diameter: 50 mm and length: 120 mm). The strength properties of compacted mixtures were better than the compacted bentonite. In addition, the larger content of the quartz sand in the mixture has the greater thermal conductivity.

Keywords: Bentonite, hydraulic conductivity, clay, nuclear waste disposal.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1420
405 Res2ValHUM: Creation of Resource Management Tool and Microbial Consortia Isolation and Identification

Authors: A. Ribeiro, N. Valério, C. Vilarinho, J. Araujo, J. Carvalho

Abstract:

Res2ValHUM project involves institutions from the Spanish Autonomous Region of Galicia and the north of Portugal (districts of Porto and Braga) and has as overall objectives of promotion of composting as an process for the correct managing of organic waste, valorization of compost in different fields or applications for the constitution of products with high added value, reducing of raw materials losses, and reduction of the amount of waste throw in landfills. Three main actions were designed to achieve the objectives: development of a management tool to improve collection and residue channeling for composting, sensibilization of the population for composting and characterization of the chemical and biological properties of compost and humic and fulvic substances to envisage high-value applications of compost. Here we present the cooperative activity of Galician and northern Portuguese institutions to valorize organic waste in both regions with common socio-economic characteristics and residue management problems. Results from the creation of the resource manage tool proved the existence of a large number of agricultural wastes that could be valorized. In the North of Portugal, the wastes from maize, oats, potato, apple, grape pomace, rye, and olive pomace can be highlighted. In the Autonomous Region of Galicia the wastes from maize, wheat, potato, apple, and chestnuts can be emphasized. Regarding the isolation and identification of microbial consortia from compost samples, results proved microorganisms belong mainly to the genus Bacillus spp. Among all the species identified in compost samples, Bacillus licheniformis can be highlighted in the production of humic and fulvic acids.

Keywords: Agricultural wastes, Bacillus licheniformis, Bacillus spp., Humic-acids, Fulvic-acids.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 696
404 Density, Strength, Thermal Conductivity and Leachate Characteristics of Light-Weight Fired Clay Bricks Incorporating Cigarette Butts

Authors: Aeslina Abdul Kadir, Abbas Mohajerani, Felicity Roddick, John Buckeridge

Abstract:

Several trillion cigarettes produced worldwide annually lead to many thousands of kilograms of toxic waste. Cigarette butts (CBs) accumulate in the environment due to the poor biodegradability of the cellulose acetate filters. This paper presents some of the results from a continuing study on recycling CBs into fired clay bricks. Physico-mechanical properties of fired clay bricks manufactured with different percentages of CBs are reported and discussed. The results show that the density of fired bricks was reduced by up to 30 %, depending on the percentage of CBs incorporated into the raw materials. Similarly, the compressive strength of bricks tested decreased according to the percentage of CBs included in the mix. The thermal conductivity performance of bricks was improved by 51 and 58 % for 5 and 10 % CBs content respectively. Leaching tests were carried out to investigate the levels of possible leachates of heavy metals from the manufactured clay-CB bricks. The results revealed trace amounts of heavy metals.

Keywords: Cigarette butts, Fired clay bricks, Light bricks, Recycling waste, Thermal conductivity, Leachates, Leaching test

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 4918