Search results for: stability constraints
1389 Propane Dehydrogenation with Better Stability by a Modified Pt-Based Catalyst
Authors: N. Hataivichian, K. Suriye, S. Kunjara Na Ayudhya, P. Praserthdam, S. Phatanasri
Abstract:
The effect of transition metal doping on Pt/Al2O3 catalyst used in propane dehydrogenation reaction at 500°C was studied. The preparation methods investigated were sequential impregnation (Pt followed by the 2nd metal or the 2nd metal followed by Pt) and co-impregnation. The metal contents of these catalysts were fixed as the weight ratio of Pt per the 2nd metal of around 0.075. These catalysts were characterized by N2-physisorption, TPR, COchemisorption and NH3-TPD. It was found that the impregnated 2nd metal had an effect upon reducibility of Pt due to its interaction with transition metal-containing structure. This was in agreement with the CO-chemisorption result that the presence of Pt metal, which is a result from Pt species reduction, was decreased. The total acidity of bimetallic catalysts is decreased but the strong acidity is slightly increased. It was found that the stability of bimetallic catalysts prepared by co-impregnation and sequential impregnation where the 2nd metal was impregnated before Pt were better than that of monometallic catalyst (undoped Pt one) due to the forming of Pt sites located on the transition metal-oxide modified surface. Among all preparation methods, the sequential impregnation method- having Pt impregnated before the 2nd metal gave the worst stability because this catalyst lacked the modified Pt sites and some fraction of Pt sites was covered by the 2nd metal.
Keywords: Alumina, dehydrogenation, platinum, transition metal.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 25251388 Exponential Stability of Linear Systems under a Class of Unbounded Perturbations
Authors: Safae El Alaoui, Mohamed Ouzahra
Abstract:
In this work, we investigate the exponential stability of a linear system described by x˙ (t) = Ax(t) − ρBx(t). Here, A generates a semigroup S(t) on a Hilbert space, the operator B is supposed to be of Desch-Schappacher type, which makes the investigation more interesting in many applications. The case of Miyadera-Voigt perturbations is also considered. Sufficient conditions are formulated in terms of admissibility and observability inequalities and the approach is based on some energy estimates. Finally, the obtained results are applied to prove the uniform exponential stabilization of bilinear partial differential equations.
Keywords: Exponential stabilization, unbounded operator, Desch-Schappacher, Miyadera-Voigt operator.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 3791387 Swarm Navigation in a Complex Environment
Authors: Jai Raj, Jito Vanualailai, Bibhya Sharma, Shonal Singh
Abstract:
This paper proposes a solution to the motion planning and control problem of car-like mobile robots which is required to move safely to a designated target in a priori known workspace cluttered with swarm of boids exhibiting collective emergent behaviors. A generalized algorithm for target convergence and swarm avoidance is proposed that will work for any number of swarms. The control laws proposed in this paper also ensures practical stability of the system. The effectiveness of the proposed control laws are demonstrated via computer simulations of an emergent behavior.Keywords: Swarm, practical stability, motion planning, emergent.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 13991386 pth Moment Exponential Synchronization of a Class of Chaotic Neural Networks with Mixed Delays
Authors: Zixin Liu, Shu Lü, Shouming Zhong, Mao Ye
Abstract:
This paper studies the pth moment exponential synchronization of a class of stochastic neural networks with mixed delays. Based on Lyapunov stability theory, by establishing a new integrodifferential inequality with mixed delays, several sufficient conditions have been derived to ensure the pth moment exponential stability for the error system. The criteria extend and improve some earlier results. One numerical example is presented to illustrate the validity of the main results.
Keywords: pth Moment Exponential synchronization, Stochastic, Neural networks, Mixed time delays
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 15831385 A Fuzzy Multi-objective Model for a Machine Selection Problem in a Flexible Manufacturing System
Authors: Phruksaphanrat B.
Abstract:
This research presents a fuzzy multi-objective model for a machine selection problem in a flexible manufacturing system of a tire company. Two main objectives are minimization of an average machine error and minimization of the total setup time. Conventionally, the working team uses trial and error in selecting a pressing machine for each task due to the complexity and constraints of the problem. So, both objectives may not satisfy. Moreover, trial and error takes a lot of time to get the final decision. Therefore, in this research preemptive fuzzy goal programming model is developed for solving this multi-objective problem. The proposed model can obtain the appropriate results that the Decision Making (DM) is satisfied for both objectives. Besides, alternative choice can be easily generated by varying the satisfaction level. Additionally, decision time can be reduced by using the model, which includes all constraints of the system to generate the solutions. A numerical example is also illustrated to show the effectiveness of the proposed model.Keywords: Machine Selection, Preemptive Fuzzy Goal Programming, Mixed Integer Programming, Application of Tire Industry.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 14451384 Quantification of Aerodynamic Variables Using Analytical Technique and Computational Fluid Dynamics
Authors: Adil Loya, Kamran Maqsood, Muhammad Duraid
Abstract:
Aerodynamic stability coefficients are necessary to be known before any unmanned aircraft flight is performed. This requires expertise on aerodynamics and stability control of the aircraft. To enable efficacious performance of aircraft requires that a well-defined flight path and aerodynamics should be defined beforehand. This paper presents a study on the aerodynamics of an unmanned aero vehicle (UAV) during flight conditions. Current research holds comparative studies of different parameters for flight aerodynamic, measured using two different open source analytical software programs. These software packages are DATCOM and XLRF5, which help in depicting the flight aerodynamic variables. Computational fluid dynamics (CFD) was also used to perform aerodynamic analysis for which Star CCM+ was used. Output trends of the study demonstrate high accuracies between the two software programs with that of CFD. It can be seen that the Coefficient of Lift (CL) obtained from DATCOM and XFLR is similar to CL of CFD simulation. In the similar manner, other potential aerodynamic stability parameters obtained from analytical software are in good agreement with CFD.
Keywords: XFLR5, DATCOM, computational fluid dynamic, unmanned aero vehicle.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 8831383 Nonlinear Controller Design for Active Front Steering System
Authors: Iman Mousavinejad, Reza Kazemi, , Mohsen Bayani Khaknejad
Abstract:
Active Front Steering system (AFS) provides an electronically controlled superposition of an angle to the steering wheel angle. This additional degree of freedom enables a continuous and driving-situation dependent on adaptation of the steering characteristics. In an active steering system, there needs be no fixed relationship between the steering wheel and the angle of the road wheels. Not only can the effective steering ratio be varied with speed, for example, but also the road wheel angles can be controlled by a combination of driver and computer inputs. Features like steering comfort, effort and steering dynamics are optimized and stabilizing steering interventions can be performed. In contrast to the conventional stability control, the yaw rate was fed back to AFS controller and the stability performance was optimized with Sliding Mode control (SMC) method. In addition, tire uncertainties have been taken into account in SM controller to provide the control robustness. In this paper, 3-DOF nonlinear model is used to design the AFS controller and 8-DOF nonlinear model is used to model the controlled vehicle.
Keywords: Active Front Steering (AFS), Sliding Mode Control method (SMC), Yaw rate, Vehicle Stability, Robustness
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 33371382 Model-Based Automotive Partitioning and Mapping for Embedded Multicore Systems
Authors: Robert H¨ottger, Lukas Krawczyk, Burkhard Igel
Abstract:
This paper introduces novel approaches to partitioning and mapping in terms of model-based embedded multicore system engineering and further discusses benefits, industrial relevance and features in common with existing approaches. In order to assess and evaluate results, both approaches have been applied to a real industrial application as well as to various prototypical demonstrative applications, that have been developed and implemented for different purposes. Evaluations show, that such applications improve significantly according to performance, energy efficiency, meeting timing constraints and covering maintaining issues by using the AMALTHEA platform and the implemented approaches. Furthermore, the model-based design provides an open, expandable, platform independent and scalable exchange format between OEMs, suppliers and developers on different levels. Our proposed mechanisms provide meaningful multicore system utilization since load balancing by means of partitioning and mapping is effectively performed with regard to the modeled systems including hardware, software, operating system, scheduling, constraints, configuration and more data.
Keywords: Partitioning, mapping, distributed systems, scheduling, embedded multicore systems, model-based, system analysis.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 32951381 Observer Design for Chaos Synchronization of Time-delayed Power Systems
Authors: Jui-Sheng Lin, Yi-Sung Yang, Meei-Ling Hung, Teh-Lu Liao, Jun-Juh Yan
Abstract:
The global chaos synchronization for a class of time-delayed power systems is investigated via observer-based approach. By employing the concepts of quadratic stability theory and generalized system model, a new sufficient criterion for constructing an observer is deduced. In contrast to the previous works, this paper proposes a theoretical and systematic design procedure to realize chaos synchronization for master-slave power systems. Finally, an illustrative example is given to show the applicability of the obtained scheme.
Keywords: Chaos, Synchronization, Quadratic stability theory, Observer
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 17251380 Influence of Propeller Blade Lift Distribution on Whirl Flutter Stability Characteristics
Authors: J. Cecrdle
Abstract:
This paper deals with the whirl flutter of the turboprop aircraft structures. It is focused on the influence of the blade lift span-wise distribution on the whirl flutter stability. Firstly it gives the overall theoretical background of the whirl flutter phenomenon. After that the propeller blade forces solution and the options of the blade lift modeling are described. The problem is demonstrated on the example of a twin turboprop aircraft structure. There are evaluated the influences with respect to the propeller aerodynamic derivatives and finally the influences to the whirl flutter speed and the whirl flutter margin respectively.
Keywords: Aeroelasticity, flutter, propeller blade force, whirl flutter.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 23391379 Polymeric Sustained Biodegradable Patch Formulation for Wound Healing
Authors: Abhay Asthana, Gyati Shilakari Asthana
Abstract:
It is the patient compliance and stability in combination with controlled drug delivery and biocompatibility that forms the core feature in present research and development of sustained biodegradable patch formulation intended for wound healing. The aim was to impart sustained degradation, sterile formulation, significant folding endurance, elasticity, biodegradability, bio-acceptability and strength. The optimized formulation comprised of polymers including Hydroxypropyl methyl cellulose, Ethylcellulose, and Gelatin, and Citric Acid PEG Citric acid (CPEGC) triblock dendrimers and active Curcumin. Polymeric mixture dissolved in geometric order in suitable medium through continuous stirring under ambient conditions. With continued stirring Curcumin was added with aid of DCM and Methanol in optimized ratio to get homogenous dispersion. The dispersion was sonicated with optimum frequency and for given time and later casted to form a patch form. All steps were carried out under strict aseptic conditions. The formulations obtained in the acceptable working range were decided based on thickness, uniformity of drug content, smooth texture and flexibility and brittleness. The patch kept on stability using butter paper in sterile pack displayed folding endurance in range of 20 to 23 times without any evidence of crack in an optimized formulation at room temperature (RT) (24 ± 2°C). The patch displayed acceptable parameters after stability study conducted in refrigerated conditions (8±0.2°C) and at RT (24 ± 2°C) up to 90 days. Further, no significant changes were observed in critical parameters such as elasticity, biodegradability, drug release and drug content during stability study conducted at RT 24±2°C for 45 and 90 days. The drug content was in range 95 to 102%, moisture content didn’t exceeded 19.2% and patch passed the content uniformity test. Percentage cumulative drug release was found to be 80% in 12h and matched the biodegradation rate as drug release with correlation factor R2>0.9. The biodegradable patch based formulation developed shows promising results in terms of stability and release profiles.Keywords: Sustained biodegradation, wound healing, polymeric patch, stability.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 23041378 Effect of Ripening Conditions and Storage Time on Oxidative and Sensory Stability of Petrovská Klobása Sausage
Authors: Branislav V. Šojić, Ljiljana S. Petrović, Vladimir M. Tomović, Natalija R. Džinić, Anamarija I. Mandić, Snežana B. Škaljac, Marija R. Jokanović, Predrag M. Ikonić, Tatjana A. Tasić, Ivana J. Sedej
Abstract:
The influence of ripening conditions (traditional and industrial) on oxidative and sensory stability of dry fermented sausage (Petrovská klobása), during 7 months of storage, was investigated. During the storage period the content of free fatty acids was significantly higher (P<0.05), while the content of malondialdehyde was significantly lower in the sausage subjected to traditional conditions of drying. At the end of the storage period, content of hexanal in the sausage subjected to traditional conditions of ripening (1.67μg/g) was significantly lower (P<0.05) in comparison with this content in the sausage subjected to industrial conditions of ripening (4.94µg/g). Traditional conditions of ripening at lower temperatures have led to better sensory properties of odor and taste of traditional dry fermented sausage, Petrovská klobása after 2 and 7 months of storage.
Keywords: Lipid oxidation, Petrovská klobása, sensory stability, storage time.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 39461377 A PI Controller for Enhancing the Transient Stability of Multi Pulse Inverter Based Static Synchronous Series Compensator (SSSC) With Superconducting Magnetic Energy Storage(SMES)
Authors: S. Padma, Dr. R. Lakshmipathi, K. Ramash Kumar, P. Nandagopal
Abstract:
The power system network is becoming more complex nowadays and it is very difficult to maintain the stability of the system. Today-s enhancement of technology makes it possible to include new energy storage devices in the electric power system. In addition, with the aid of power electronic devices, it is possible to independently exchange active and reactive power flow with the utility grid. The main purpose of this paper proposes a Proportional – Integral (PI) control based 48 – pulse Inverter based Static Synchronous Series Compensator (SSSC) with and without Superconducting Magnetic Energy Storage (SMES) used for enhancing the transient stability and regulating power flow in automatic mode. Using a test power system through the dynamic simulation in Matlab/Simulink platform validates the performance of the proposed SSSC with and without SMES system.Keywords: Flexible AC transmission system (FACTS), PIControl, Superconducting Magnetic Energy Storage (SMES), Static Synchronous Series Compensator (SSSC).
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 23571376 Stability of Electrical Drives Supplied by a Three Level Inverter
Authors: M. S. Kelaiaia, H. Labar, S. Kelaiaia, T. Mesbah
Abstract:
The development of the power electronics has allowed increasing the precision and reliability of the electrical devices, thanks to the adjustable inverters, as the Pulse Wide Modulation (PWM) applied to the three level inverters, which is the object of this study. The authors treat the relation between the law order adopted for a given system and the oscillations of the electrical and mechanical parameters of which the tolerance depends on the process with which they are integrated (paper factory, lifting of the heavy loads, etc.).Thus, the best choice of the regulation indexes allows us to achieve stability and safety training without investment (management of existing equipment). The optimal behavior of any electric device can be achieved by the minimization of the stored electrical and mechanical energy.Keywords: Multi level inverter, PWM, Harmonics, oscillation, control.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 13761375 Impact of Loading Conditions on the Emission- Economic Dispatch
Authors: M. R. Alrashidi, M. E. El-Hawary
Abstract:
Environmental awareness and the recent environmental policies have forced many electric utilities to restructure their operational practices to account for their emission impacts. One way to accomplish this is by reformulating the traditional economic dispatch problem such that emission effects are included in the mathematical model. This paper presents a Particle Swarm Optimization (PSO) algorithm to solve the Economic- Emission Dispatch problem (EED) which gained recent attention due to the deregulation of the power industry and strict environmental regulations. The problem is formulated as a multi-objective one with two competing functions, namely economic cost and emission functions, subject to different constraints. The inequality constraints considered are the generating unit capacity limits while the equality constraint is generation-demand balance. A novel equality constraint handling mechanism is proposed in this paper. PSO algorithm is tested on a 30-bus standard test system. Results obtained show that PSO algorithm has a great potential in handling multi-objective optimization problems and is capable of capturing Pareto optimal solution set under different loading conditions.Keywords: Economic emission dispatch, economic cost dispatch, particle swarm, multi-objective optimization.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 19001374 Digital Control Algorithm Based on Delta-Operator for High-Frequency DC-DC Switching Converters
Authors: Renkai Wang, Tingcun Wei
Abstract:
In this paper, a digital control algorithm based on delta-operator is presented for high-frequency digitally-controlled DC-DC switching converters. The stability and the controlling accuracy of the DC-DC switching converters are improved by using the digital control algorithm based on delta-operator without increasing the hardware circuit scale. The design method of voltage compensator in delta-domain using PID (Proportion-Integration- Differentiation) control is given in this paper, and the simulation results based on Simulink platform are provided, which have verified the theoretical analysis results very well. It can be concluded that, the presented control algorithm based on delta-operator has better stability and controlling accuracy, and easier hardware implementation than the existed control algorithms based on z-operator, therefore it can be used for the voltage compensator design in high-frequency digitally- controlled DC-DC switching converters.
Keywords: Digitally-controlled DC-DC switching converter, finite word length, control algorithm based on delta-operator, high-frequency, stability.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 12661373 Stabilization of the Lorenz Chaotic Equations by Fuzzy Controller
Authors: Behrooz Rezaie, Zahra Rahmani Cherati, Mohammad Reza Jahed Motlagh, Mohammad Farrokhi
Abstract:
In this paper, a fuzzy controller is designed for stabilization of the Lorenz chaotic equations. A simple Mamdani inference method is used for this purpose. This method is very simple and applicable for complex chaotic systems and it can be implemented easily. The stability of close loop system is investigated by the Lyapunov stabilization criterion. A Lyapunov function is introduced and the global stability is proven. Finally, the effectiveness of this method is illustrated by simulation results and it is shown that the performance of the system is improved.Keywords: Chaotic system, Fuzzy control, Lorenz equation.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 20321372 Assessments of Internal Erosion in a Landfill Due to Changes in Groundwater Level
Authors: Siamak Feizi, Gunvor Baardvik
Abstract:
Soil erosion has special consequences for landfills that are more serious than those found at conventional construction sites. Different potential heads between two sides of a landfill and the subsequent movement of water through pores within the soil body could trigger the soil erosion and construction instability. Such condition was encountered in a landfill project in the southern part of Norway. To check the risk of internal erosion due changes in the groundwater level (because of seasonal flooding in the river), a series of numerical simulations by means of Geo-Seep software were conducted. Output of this study provides a total picture of the landfill stability, possibilities of erosions and necessary measures to prevent or reduce the risk for the landfill operator.
Keywords: Erosion, seepage, landfill, stability.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 4531371 Numerical Study for Structural Design of Composite Rotor with Crack Initiation
Authors: A. Chellil, A. Nour, S. Lecheb, H. Mechakra, A. Bouderba, H. Kebir
Abstract:
In this paper, a coupled damage effect in the instability of a composite rotor is presented, under dynamic loading response in the harmonic analysis condition. The analysis of the stress which operates the rotor is done. Calculations of different energies and the virtual work of the aerodynamic loads from the rotor blade are developed. The use of the composite material for the rotor offers a good stability. Numerical calculations on the model developed prove that the damage effect has a negative effect on the stability of the rotor. The study of the composite rotor in transient system allowed determining the vibratory responses due to various excitations.
Keywords: Rotor, composite, damage, finite element, numerical.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 22521370 A New Heuristic Approach for Large Size Zero-One Multi Knapsack Problem Using Intercept Matrix
Authors: K. Krishna Veni, S. Raja Balachandar
Abstract:
This paper presents a heuristic to solve large size 0-1 Multi constrained Knapsack problem (01MKP) which is NP-hard. Many researchers are used heuristic operator to identify the redundant constraints of Linear Programming Problem before applying the regular procedure to solve it. We use the intercept matrix to identify the zero valued variables of 01MKP which is known as redundant variables. In this heuristic, first the dominance property of the intercept matrix of constraints is exploited to reduce the search space to find the optimal or near optimal solutions of 01MKP, second, we improve the solution by using the pseudo-utility ratio based on surrogate constraint of 01MKP. This heuristic is tested for benchmark problems of sizes upto 2500, taken from literature and the results are compared with optimum solutions. Space and computational complexity of solving 01MKP using this approach are also presented. The encouraging results especially for relatively large size test problems indicate that this heuristic can successfully be used for finding good solutions for highly constrained NP-hard problems.
Keywords: 0-1 Multi constrained Knapsack problem, heuristic, computational complexity, NP-Hard problems.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 18601369 Comparison of the Existing Methods in Determination of the Characteristic Polynomial
Authors: Mohammad Saleh Tavazoei, Mohammad Haeri
Abstract:
This paper presents comparison among methods of determination of the characteristic polynomial coefficients. First, the resultant systems from the methods are compared based on frequency criteria such as the closed loop bandwidth, gain and phase margins. Then the step responses of the resultant systems are compared on the basis of the transient behavior criteria including overshoot, rise time, settling time and error (via IAE, ITAE, ISE and ITSE integral indices). Also relative stability of the systems is compared together. Finally the best choices in regards to the above diverse criteria are presented.Keywords: Characteristic Polynomial, Transient Response, Filters, Stability.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 20191368 Simultaneous Tuning of Static Var Compensator and Power System Stabilizer Employing Real- Coded Genetic Algorithm
Authors: S. Panda, N. P. Patidar, R. Singh
Abstract:
Power system stability enhancement by simultaneous tuning of a Power System Stabilizer (PSS) and a Static Var Compensator (SVC)-based controller is thoroughly investigated in this paper. The coordination among the proposed damping stabilizers and the SVC internal voltage regulators has also been taken into consideration. The design problem is formulated as an optimization problem with a time-domain simulation-based objective function and Real-Coded Genetic Algorithm (RCGA) is employed to search for optimal controller parameters. The proposed stabilizers are tested on a weakly connected power system with different disturbances and loading conditions. The nonlinear simulation results are presented to show the effectiveness and robustness of the proposed control schemes over a wide range of loading conditions and disturbances. Further, the proposed design approach is found to be robust and improves stability effectively even under small disturbance and unbalanced fault conditions.
Keywords: Real-Coded Genetic Algorithm (RCGA), Static Var Compensator (SVC), Power System Stabilizer (PSS), Low Frequency Oscillations, Power System Stability.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 22601367 Measurement Fractional Order Sallen-Key Filters
Authors: Ahmed Soltan, Ahmed G. Radwan, Ahmed M. Soliman
Abstract:
This work aims to generalize the integer order Sallen-Key filters into the fractional-order domain. The analysis in the case of two different fractional-order elements introduced where the general transfer function becomes four terms which is unusual in the conventional case. In addition, the effect of the transfer function parameters on the filter poles and hence the stability is introduced and closed forms for the filter critical frequencies are driven. Finally, different examples for the fractional order Sallen-Key filter design are presented with circuit simulations using ADS where a great matching between the numerical and simulation results is obtained.
Keywords: Analog Filter, Low-Pass Filter, Fractance, Sallen-Key, Stability.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 31491366 Turing Pattern in the Oregonator Revisited
Authors: Elragig Aiman, Dreiwi Hanan, Townley Stuart, Elmabrook Idriss
Abstract:
In this paper, we reconsider the analysis of the Oregonator model. We highlight an error in this analysis which leads to an incorrect depiction of the parameter region in which diffusion driven instability is possible. We believe that the cause of the oversight is the complexity of stability analyses based on eigenvalues and the dependence on parameters of matrix minors appearing in stability calculations. We regenerate the parameter space where Turing patterns can be seen, and we use the common Lyapunov function (CLF) approach, which is numerically reliable, to further confirm the dependence of the results on diffusion coefficients intensities.Keywords: Diffusion driven instability, common Lyapunov function (CLF), turing pattern, positive-definite matrix.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 10511365 The Effect of Slow Variation of Base Flow Profile on the Stability of Slightly Curved Mixing Layers
Authors: Irina Eglite, Andrei A. Kolyshkin
Abstract:
The effect of small non-parallelism of the base flow on the stability of slightly curved mixing layers is analyzed in the present paper. Assuming that the instability wavelength is much smaller than the length scale of the variation of the base flow we derive an amplitude evolution equation using the method of multiple scales. The proposed asymptotic model provides connection between parallel flow approximations and takes into account slow longitudinal variation of the base flow.Keywords: shallow water, parallel flow assumption, weaklynonlinear analysis, method of multiple scales
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 14781364 Anti-periodic Solutions for Cohen-Grossberg Shunting Inhibitory Neural Networks with Delays
Authors: Yongkun Li, Tianwei Zhang, Shufa Bai
Abstract:
By using the method of coincidence degree theory and constructing suitable Lyapunov functional, several sufficient conditions are established for the existence and global exponential stability of anti-periodic solutions for Cohen-Grossberg shunting inhibitory neural networks with delays. An example is given to illustrate our feasible results.
Keywords: Anti-periodic solution, coincidence degree, global exponential stability, Cohen-Grossberg shunting inhibitory cellular neural networks.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 15061363 Stability Analysis of Three-Dimensional Flow and Heat Transfer over a Permeable Shrinking Surface in a Cu-Water Nanofluid
Authors: Roslinda Nazar, Amin Noor, Khamisah Jafar, Ioan Pop
Abstract:
In this paper, the steady laminar three-dimensional boundary layer flow and heat transfer of a copper (Cu)-water nanofluid in the vicinity of a permeable shrinking flat surface in an otherwise quiescent fluid is studied. The nanofluid mathematical model in which the effect of the nanoparticle volume fraction is taken into account is considered. The governing nonlinear partial differential equations are transformed into a system of nonlinear ordinary differential equations using a similarity transformation which is then solved numerically using the function bvp4c from Matlab. Dual solutions (upper and lower branch solutions) are found for the similarity boundary layer equations for a certain range of the suction parameter. A stability analysis has been performed to show which branch solutions are stable and physically realizable. The numerical results for the skin friction coefficient and the local Nusselt number as well as the velocity and temperature profiles are obtained, presented and discussed in detail for a range of various governing parameters.
Keywords: Heat Transfer, Nanofluid, Shrinking Surface, Stability Analysis, Three-Dimensional Flow.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 21961362 Sliding Mode Power System Stabilizer for Synchronous Generator Stability Improvement
Authors: J. Ritonja, R. Brezovnik, M. Petrun, B. Polajžer
Abstract:
Many modern synchronous generators in power systems are extremely weakly damped. The reasons are cost optimization of the machine building and introduction of the additional control equipment into power systems. Oscillations of the synchronous generators and related stability problems of the power systems are harmful and can lead to failures in operation and to damages. The only useful solution to increase damping of the unwanted oscillations represents the implementation of the power system stabilizers. Power system stabilizers generate the additional control signal which changes synchronous generator field excitation voltage. Modern power system stabilizers are integrated into static excitation systems of the synchronous generators. Available commercial power system stabilizers are based on linear control theory. Due to the nonlinear dynamics of the synchronous generator, current stabilizers do not assure optimal damping of the synchronous generator’s oscillations in the entire operating range. For that reason the use of the robust power system stabilizers which are convenient for the entire operating range is reasonable. There are numerous robust techniques applicable for the power system stabilizers. In this paper the use of sliding mode control for synchronous generator stability improvement is studied. On the basis of the sliding mode theory, the robust power system stabilizer was developed. The main advantages of the sliding mode controller are simple realization of the control algorithm, robustness to parameter variations and elimination of disturbances. The advantage of the proposed sliding mode controller against conventional linear controller was tested for damping of the synchronous generator oscillations in the entire operating range. Obtained results show the improved damping in the entire operating range of the synchronous generator and the increase of the power system stability. The proposed study contributes to the progress in the development of the advanced stabilizer, which will replace conventional linear stabilizers and improve damping of the synchronous generators.
Keywords: Control theory, power system stabilizer, robust control, sliding mode control, stability, synchronous generator.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 10641361 Modeling of Supply Chains Delocalization Problems Taking into Account the New Financial Policies: Case of Multinational Firms Established in OECD Member Countries
Authors: Mouna Benfssahi, Zoubir El Felsoufi
Abstract:
For many enterprises, the delocalization of a part or the totality of their supply chain to low cost countries is the best way to reduce costs and remain competitive against the growing globalized market. This new tendency is driven by logistics advantages, as well as, financial and tax discount offered by the host countries. The objective of this article is to examine the new financial challenges introduced by the project of base erosion and profits shifting (BEPS), published in 2015, and also their impact on the decision of delocalization. In fact, the strategy adopted by multinational firms for determining the transfer price (TP) of goods and services, as well as the shared amount of revenues and expenses have a major impact upon group profit and may contribute to divergent results. In order to get more profit, a coherent decision of delocalization should be based on an evaluation of all the operational and financial characteristics associated with such movement. Therefore, it is interesting to model these new constraints and integrate them in a more global decision model. The established model will enable to measure how much these financial constraints impact the decision of delocalization and will give new helpful directives for enterprise managers.
Keywords: Delocalization, intragroup transaction, multinational firms, optimization model, supply chain management, transfer pricing.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 7691360 A New Time Discontinuous Expanded Mixed Element Method for Convection-dominated Diffusion Equation
Authors: Jinfeng Wang, Yuanhong Bi, Hong Li, Yang Liu, Meng Zhao
Abstract:
In this paper, a new time discontinuous expanded mixed finite element method is proposed and analyzed for two-order convection-dominated diffusion problem. The proofs of the stability of the proposed scheme and the uniqueness of the discrete solution are given. Moreover, the error estimates of the scalar unknown, its gradient and its flux in the L1( ¯ J,L2( )-norm are obtained.
Keywords: Convection-dominated diffusion equation, expanded mixed method, time discontinuous scheme, stability, error estimates.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1315