
 

  

Abstract—This work aims to generalize the integer order Sallen-

Key filters into the fractional-order domain. The analysis in the case 

of two different fractional-order elements introduced where the 

general transfer function becomes four terms which is unusual in the 

conventional case. In addition, the effect of the transfer function 

parameters on the filter poles and hence the stability is introduced 

and closed forms for the filter critical frequencies are driven. Finally, 

different examples for the fractional order Sallen-Key filter design 

are presented with circuit simulations using ADS where a great 

matching between the numerical and simulation results is obtained. 

 

Keywords—Analog Filter, Low-Pass Filter, Fractance, Sallen-

Key, Stability. 

I. INTRODUCTION  

ILTER design is one of the very few areas of electrical 

engineering for which a complete design theory exists. 

Whether passive or active, filters necessarily incorporate 

inductors and capacitors. Recently the scientists proved that 

the conventional inductor and capacitor are special cases from 

the more general so-called fractance device [1]. The 

impedance of this element in the complex frequency domain is 

given by ���� � ����. Therefore, when  
 �  1, 
1, and 0, 

this element represents an inductor, capacitor, and resistor 

respectively. Moreover, when 
 �  
2, it represents the well-

known frequency-dependent negative resistor (FDNR) [2]. 

Then, the known circuit elements can be represented by this 

element by controlling on the fractional-order parameter 
. 

Generally, this element is an intermediate element whose 

properties are combinations between the known elements. 

Sallen-Key filters are considered one of the most common 

and well-known filter families [3]. The conventional Sallen-

Key family provides a second order filters by using two 

integer order capacitors and can be used to produce any of the 

special filters like the Butterworth filter response [4], [5]. 

Consequently, due to the importance of these filter family, this 

paper aims to convert the integer order Sallen-Key filters to 

the fractional domain and investigate the new fundamentals 

and properties in the presence of the two extra fractional-order 

parameters. So, this paper is organized as follows; Section II 

discusses the filter transfer function. Then, Section III 

determines a closed form for the filter critical frequencies. 

Section IV, presents different examples and circuit simulations 

                                                           
Ahmed Soltan is with the Electronics and Communications Engineering 

Department, Fayoum University, Egypt (corresponding author to e-mail: 

asa03@fayoum.edu.eg). 
Ahmed G. Radwan is with the Engineering Mathematics Department, 

Faculty of Engineering, Cairo University, Egypt (e-mail: agradwan@ 

ieee.org). 
Ahmed M. Soliman is with the Electronics and Communications 

Engineering Department, Faculty of Engineering, Cairo University, Egypt (e-

mail: asoliman@ieee.org). 

using advanced design system (ADS) for the proposed design 

procedure. Finally the conclusion section concludes the work. 

II. FILTER TRANSFER FUNCTION 

Conventionally, the number of terms in the characteristic 

equation of any second order filters is three. However, 

fractional-order filters based on two fractional-elements can be 

divided into two types based on the number of terms in the 

characteristic equation either three or four terms. Many of the 

filter topologies have three terms in the denominator like the 

KHN and Tow-Tomas filters where their low pass transfer 

function is given by 

 

T�s� � �
�α�β���α��                                  (1) 

 

These Filters with transfer function similar to that of (1) 

have been discussed before in [6]–[8]. So, the aim of this work 

is to study the filters whose characteristic equation has four 

different terms as in the case of the Sallen-Key family where 

its low pass filter transfer function is given by 

 

T�s� � �
�α�β���α���β��                             (2) 

 

The characteristic equation for the low pass filter of the 

transfer function given in (2) is as follows: 

 

D�jω, α. β� � "ω#�$ cos�0.5�α ( β�π� ( aω# cos�0.5απ� (
bω$ cos�0.5βπ� ( c� ( j"ω#�$ sin�0.5�α ( β�π� ( aω# sin�0.5απ� (

bω$ sin�0.5βπ��  

(3) 

 

Then, the magnitude squared of the characteristic equation 

|D�jω, α, β�|-can be obtained as 

 

|D�jω, α, β�|- � ω-�#�$� ( b-ω-$ 

(a-ω-# ( 2aω-#�$ cos�0.5βπ� ( 2bω#�-$ cos�0.5απ� 

(�2ab cos�0.5�α 
 β�π� ( 2c cos�0.5�α ( β�π��ω#�$

( 2caω# cos�0.5απ� ( 2cbω$ cos�0.5βπ� ( c-    
(4) 

 

As a special case when 
 � ., then (4) returns back to the 

special case presented in [6]. The stability of the filter 

represents one of the most important parameters of the filter 

design [9]. To study the filter stability, the effect of the transfer 

function parameters /, and 0 on the filter poles when �
, .� �
�1.6, 1.3� is presented in Fig. 1. When 0 � 10 and at large 

negative values of / and 3, the filter becomes unstable but as / 

or 3 increase the filter poles moves toward the stable region as 

shown in Fig. 1 (a). An interesting difference between the 

integer and the fractional-order cases is that the number of 
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poles in the integer order system is fixed and depends only on 

the maximum order in the characteristic equation and doesn't 

affect by the other system parameter. However, the number of

poles in the fractional-order systems becomes variable and 

dependent on the transfer function parameters besides the 

fractional orders 
 and .. 
 

TABLE I 

SUMMARY OF THE STABILITY ANALYSIS AT �
2-poles 3-poles 4-poles Unstable 

�3, 0� � �10,10� 

/ 4 
8.04 - / 7 
8.04 / 4
�/, 0� � �10,10� 

3 4 
13.79 - 3 7 
13.79 3 4
�/, 3� � �10,10� 

0 � 0  0 4 0 0 : 0 0
 

(a) 

 

(b) 

Fig. 1 Change in the filter poles for �α, β� � �
10, and (c)a � b � 10 

 

For example when  �3, 0, 
, .� � �10,10
has two poles for / 4 
8.04 and four poles for

This great advantage adds an extra degree of freedom to 

control the number of the filter poles without affecting the 

system order. The filter starts to be stable for

means the filter can be designed for negative values of 

and remains stable which adds an extra degree of freedom in 

the filter design. Similar analysis can be made for the 

parameters 3 and 0 of the filter as shown in Fig. 1 (b). A 

summary of the stability analysis and the effect of the 

parameters /, 3, /;< 0 on the poles movement and the number 

of poles at �
. .� � �1.6,1.3� are tabulated in Table I.
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poles in the integer order system is fixed and depends only on 

the maximum order in the characteristic equation and doesn't 

affect by the other system parameter. However, the number of 

order systems becomes variable and 

dependent on the transfer function parameters besides the 
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�
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5.41 

�
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� �1.6,1.3� (a) b � c �
 

� 10,1.6,1.3�, the filter 

and four poles for / 7 
8.04. 

s great advantage adds an extra degree of freedom to 

control the number of the filter poles without affecting the 

system order. The filter starts to be stable for / 7 
2.94, this 

means the filter can be designed for negative values of / or 3 

table which adds an extra degree of freedom in 

the filter design. Similar analysis can be made for the 

of the filter as shown in Fig. 1 (b). A 

summary of the stability analysis and the effect of the 

poles movement and the number 

are tabulated in Table I. 

III. CRITICAL FREQUENCIES 

The following subsections studies the general formulas of 

the three critical frequencies of interest for the filter design 

=>?, >@, >ABC [7]. 

A. The Maximum and Minimum Frequencies 

The maximum and minimum frequencies points are 

considered very important because they determine the ripples 

in the pass-band. Hence, these frequency points can be used as 

a measure for the attenuation in the filter pass

frequency points are obtained by solving the equation

 �<|D�E>, 
, .�| <>⁄ �GHGI �
and minimum frequency points can be obtained by:

(a)                                                    (b)

Fig. 2 (a) Effect of . on >? at different values of 

10 ,(b) Change in >? with respect to 

for / � 3 � 10 ,(c) Effect of / on 

for 3

>?
-���J� ( JKL

��J >?
-J ( �M

��

 �-J���K �N�OPQ
L R

��J >?
-J�� ( �MS

0 cos O���J�T
- RR >?

��J

 

From (5), the maximum and minimum frequency points 

depend on the fractional orders 

function parameters /, 3, and

parameters on >? is depicted in Fig. 2 at different conditions.

The solution of (5) can produce no, one, two or three

depending on the value of the transfer function parameters as 

shown in Figs. 2 (a)-(c). To demonstrate these different cases 

of the solution of (5), the frequency response of (2) is presented 

in Fig. 3 at different conditions. The frequency response of Fig. 

3 (a) has three values of >?
�
2,10,10,1.6,1.3� which confirms the result presented in Fig. 

-1 0 1

c=0.1
c=-20

RITICAL FREQUENCIES  

The following subsections studies the general formulas of 

the three critical frequencies of interest for the filter design 

Maximum and Minimum Frequencies �>?� 

The maximum and minimum frequencies points are 

considered very important because they determine the ripples 

and. Hence, these frequency points can be used as 

a measure for the attenuation in the filter pass-band. These 

frequency points are obtained by solving the equation 

� 0. Consequently, the maximum 

y points can be obtained by: 

 

 

(a)                                                    (b) 

 

 

(c) 

at different values of 
 for / � 3 � 0 �
with respect to 0 at different values of 
 and . 

on >? at different values of 
 and . 

� 0 � 10 

 

ML

�J >?
-� ( �-��J�M �N�OUQ

L R
��J >?

-��J (
�MS �N�OPQ

L R
��J >?� ( O/3 cos O��VJ�T

- R (
R J ( JKS

��J >?
J � 0                       (5) 

From (5), the maximum and minimum frequency points 

l orders 
 and . besides the transfer 

and 0. The effect of these design 

is depicted in Fig. 2 at different conditions. 

The solution of (5) can produce no, one, two or three solutions 

ue of the transfer function parameters as 

c). To demonstrate these different cases 

of the solution of (5), the frequency response of (2) is presented 

in Fig. 3 at different conditions. The frequency response of Fig. 

? at the condition �/, 3, 0, 
, .� �
which confirms the result presented in Fig. 

-40 -30 -20 -10 0 10 20 30 40
0

1
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c

ωω ωω
m (αααα,ββββ)=(1.6,1.3)
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2 (c). Also, the frequency response of Figs. 3 (b), (c) has two 

and one value of >? respectively at conditions obtained from 

Fig. 2 (a). The frequency response for the case of no valid 

solution of >? is presented in Fig. 3 (d). Due to the symmetry 

of the transfer function, the effect of 
 on >? is the same as 

that of  .. As shown in Fig. 2 (c), the solution of (5) with 

respect to / results one solution or three solutions. This means 

that, for the case of three values of >?, the filter is suffering 

from damping in the pass-band of the filter as shown in the 

frequency response of Fig. 3 (a). In addition, the filter has a 

valid solution for >? for negative values of /, this means that 

the filter can be designed for negative impedance which 

increases the design degree of freedom. 

 Also, the effect of b on ωW is the same as the effect of a 

because of the symmetry of the transfer function. Finally, the 

effect of c on ωW is presented in Fig. 2 (b) which depicts that 

the filter can has a solution also for negative values of c which 

increases the design flexibility. 

 

 

         (a)                                                                       (b) 

 

 

            (c)                                                                       (d) 

Fig. 3 Magnitude response of the fractional Sallen-Key filter when (a) �/, 3, 0, 
, .� � �
2,10,10,1.6,1.3�, (b) 

�/, 3, 0, 
, .� � �10,10,10,1.6,0.9�, (c) �/, 3, 0, 
, .� � �10,10,10,1.6,1.3�, (d) �/, 3, 0, 
, .� � �10,10,10,1.6,0.7� 

 

B.  The Half Power Frequency 

The half power frequency�>@� point is used to calculate the 

filter bandwidth. Then, the value of >@ is calculated from the 

relation|D�E>@�| � "1 √2⁄ YZD"E>BM[KM\]YZ. Hence from (3), 

the value of >@ can be calculated from the following relation: 

 

>@
-���J� ( 3->@

-J ( /->@
-� 

(2/>@
-��J cos�0.5.^� ( 23>@

��-J cos�0.5
^�
( �2/3 cos�0.5�
 
 .�^� ( 20 cos�0.5�
 ( .�^��>@

��J

( 20/>@
� cos�0.5
^� ( 203>@

J cos�0.5.^� 
 0- � 0 

(6) 

 

Consequently, the half power frequency depends on the 

value of /, 3, 0, 
 and ., which adds an extra degree of design 

freedom. It is clear from Fig. 4 that the solution of (6) has at 

least one solution for >@ which is expected, but some of these 

values lie in the unstable region. In addition, near the unstable 

region the filter is suffering from a very strong damping where 

more than one solution of (6) exists as shown in Fig. 4 (a). 

When / � 3 � 10 and for a wide range of 0, the filter has a 

single >@ as shown in Fig. 4 (b). As shown in Fig. 4 (c), the 

filter can be designed for negative values of / if the filter is 

stable under these conditions which add extra degree of 

freedom. Due to the symmetry of the filter transfer function, 

the effect of 
 and 3 on >@ is the same as that of . and / 

respectively. 

C. The Right Phase Frequency 

The right phase frequency ">ABY is the frequency where its 

phase response  _D"E>ABY � ` T
-  and the transfer function 

T(s) becomes pure imaginary at >AB. Hence, the >AB can be 

calculated as follows:  

 

>AB
��J cos�0.5�
 ( .�^� ( />AB

� cos�0.5
^� ( 3>AB
J cos�0.5.^� ( 0 � 0                           

(7) 
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For the traditional case �
 � . � 1�, the value of the right 

phase frequency is given by >AB � √0  [6

phase frequency ">ABY is dependent on the fractional orders 

and . besides the transfer function parameters

shown in Fig. 5, the effect of the fractional orders 

symmetric. So, the filter can be designed for a different values 

of ωa and ωbc. 

 

(a)                                                   (b)
 

(c) 

Fig. 4 (a) Change in >@with respect to . at diff

/ � 3 � 0 � 10 ,(b) Effect of 0 on >@at different values of 

for / � 3 � 10, and (c) Change in >@with respect to 

values of 
 /;< . for 3 � 0
 

Fig. 5 Change in >AB with respect to 
 and .
 

It is clear from Fig. 5 that the change in 

and β 4 1. On the other hand, the change is negligible 

for α and β : 1. 

IV. SIMULATION RESULTS

The effect of the fractional orders 

response is demonstrated in the 3D plot for 

at  ωa � 1rad/sec . It is interesting to note here that, as the 

value of 
 increase, the filter bandwidth decrease for the same 

parameters. Yet, a notch appears for large values of

adds an independent control on the filter bandwidth

increases the design degree of freedom. Finally, the effect of 

is the same as the effect of 
 on the filter frequency response 

because of the symmetry of the transfer function of (1).
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�, the value of the right 

]. From (7), the right 

is dependent on the fractional orders 
, 
parameters /, 3, and 0. As 

ctional orders α and β is 

So, the filter can be designed for a different values 

 

(a)                                                   (b) 

 

at different values of 
 for 

at different values of 
 and . 

with respect to / at different 

� 10 

 

. for / � 3 � 0 � 10 

It is clear from Fig. 5 that the change in ωbc is large when α  
. On the other hand, the change is negligible 

ESULTS 


 and . on the filter 

3D plot for (1) given in Fig. 6 

. It is interesting to note here that, as the 

increase, the filter bandwidth decrease for the same 

parameters. Yet, a notch appears for large values of  
 which 

independent control on the filter bandwidth and 

. Finally, the effect of . 

on the filter frequency response 

f the transfer function of (1). 

During the last ten years, several promising trials have been 

introduced for the realizations of the 

based on different techniques

fractal shapes [11], and graphene

many finite circuit approximations 

the fractional order elements 

Fig. 7 (a). The fractional order Sallen

the integer order capacitors with two fractional order elements 

of orders 
 and . is presented in Fig. 7

order filter transfer function can be written as follows:

 

ghij
gkl

� m

[P�U�nomp mq⁄
mLrL

[P�O

 

Fig. 6 Effect of 
 on the frequency response of the filter at 

and for / � 3 � 0 �
 

Consequently, to design the SK filter for a specific 

bandwidth�>@�, then (6) can be

value of the missing design parameter for a given

same steps can be followed to design the filter for a specific 

>? or  >AB. In addition, the filter can be 

values of three critical frequency points

solving (5), (6), and (7) to calculate the transfer function 

parameters. Besides, there are remaining two parameters as a 

design degree of freedom and to control the filter stability, 

then the circuit components using (8) or the relation 

summarized in Table II can be achieved.

By using the previous described procedure

key filter of Fig. 7 (a), the circuit simulation using ADS for 

the fractional order Sallen-Key filter is

ωa � 10rad/sec with two different orders.

TABLE

RELATION BETWEEN THE CIRCUIT 

FUNCTION 

Parameter 

/ 

3 

0 

< 

 

-10 0 10 20 30 40

c

(αααα,ββββ)=(1.6,1.3)

(αααα,ββββ)=(0.4,0.3)

)=(0.6,1.3)

20 30 40

0 20 40

(αααα,ββββ)=(1.6,1.3)

(αααα,ββββ)=(0.6,1.3)

ten years, several promising trials have been 

realizations of the fractional element and 

techniques such as chemical reactions [10], 

graphene material [12]. Moreover, 

imations were suggested to model 

 [13], [14] such as the subplot of 

The fractional order Sallen-Key filter after replacing 

the integer order capacitors with two fractional order elements 

nted in Fig. 7 (a). The fractional 

order filter transfer function can be written as follows: 

n
mnmLrnrL
O n

mLrn
� n

mnrn
R[U� n

mnmLrnrL
          (8) 

 

on the frequency response of the filter at . � 1.3  
� 10  and >@ � 1s/</�t0 

Consequently, to design the SK filter for a specific 

, then (6) can be rearranged to calculate the 

value of the missing design parameter for a given >@. The 

same steps can be followed to design the filter for a specific 

In addition, the filter can be designed for specific 

requency points >?, >@, and >AB by 

) to calculate the transfer function 

Besides, there are remaining two parameters as a 

design degree of freedom and to control the filter stability, and 

the circuit components using (8) or the relation 

summarized in Table II can be achieved. 

y using the previous described procedure on the Sallen-

the circuit simulation using ADS for 

Key filter is depicted in Fig. 7 (b) at 

with two different orders. 
 

TABLE II 

IRCUIT COMPONENTS AND THE TRANSFER 

UNCTION PARAMETERS 

Relation 

�1 
 uv uw⁄ � u-x-⁄  

 �1/xy��1/uy ( 1/u-� 
1 �xyx-uyu-�⁄  

1 �xyx-uyu-�⁄  
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(a) 

 

 

(b) 

Fig. 7 (a) Fractional order Sallen-Key filter, (b) circuit simulation of 

the filter at >@ � 10s/</�t0  for different orders 

 

The slops of both simulations are different as shown in Fig. 

7 (b) where the slope equals �α ( β�20dB/decade and for two 

different cases �Ry, R-, Cy, C-, Rv/Rw, α, β� =�8.44kΩ, 86.8kΩ,
10µ, 10µ, 12.8, 1.6,1.3� and �7.11kΩ, 30.63kΩ, 20µ, 50n,
0.8836, 0.8, 1.2�. Finally, frequency scaling can be used to 

obtain the required ωa for the demonstrated fractional orders 

[8]. 

V. CONCLUSION 

A design procedure for designing fractional order Sallen-

Key filter with different fractional-orders was proposed here. 

More design flexibility is obtained due to the large number of 

the transfer function parameters. So, the design degree of 

freedom is increase in the fractional-order domain. The effect 

of the transfer function parameters and the fractional orders on 

the filter poles and stability are discussed. Besides, a closed 

form for the critical frequency points is introduced. Circuit 

simulation for the practical Sallen-Key filter is also presented.  
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