Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 64

Search results for: Partitioning

64 Simulation Data Summarization Based on Spatial Histograms

Authors: Jing Zhao, Yoshiharu Ishikawa, Chuan Xiao, Kento Sugiura

Abstract:

In order to analyze large-scale scientific data, research on data exploration and visualization has gained popularity. In this paper, we focus on the exploration and visualization of scientific simulation data, and define a spatial V-Optimal histogram for data summarization. We propose histogram construction algorithms based on a general binary hierarchical partitioning as well as a more specific one, the l-grid partitioning. For effective data summarization and efficient data visualization in scientific data analysis, we propose an optimal algorithm as well as a heuristic algorithm for histogram construction. To verify the effectiveness and efficiency of the proposed methods, we conduct experiments on the massive evacuation simulation data.

Keywords: data summarization, simulation data, spatial histograms, exploration and visualization

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 254
63 Automatic Extraction of Arbitrarily Shaped Buildings from VHR Satellite Imagery

Authors: Evans Belly, Imdad Rizvi, M. M. Kadam

Abstract:

Satellite imagery is one of the emerging technologies which are extensively utilized in various applications such as detection/extraction of man-made structures, monitoring of sensitive areas, creating graphic maps etc. The main approach here is the automated detection of buildings from very high resolution (VHR) optical satellite images. Initially, the shadow, the building and the non-building regions (roads, vegetation etc.) are investigated wherein building extraction is mainly focused. Once all the landscape is collected a trimming process is done so as to eliminate the landscapes that may occur due to non-building objects. Finally the label method is used to extract the building regions. The label method may be altered for efficient building extraction. The images used for the analysis are the ones which are extracted from the sensors having resolution less than 1 meter (VHR). This method provides an efficient way to produce good results. The additional overhead of mid processing is eliminated without compromising the quality of the output to ease the processing steps required and time consumed.

Keywords: label, shadow detection, partitioning, building detection, landscape generation, very high resolution satellite imagery

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 270
62 Real-Time Data Stream Partitioning over a Sliding Window in Real-Time Spatial Big Data

Authors: Sana Hamdi, Emna Bouazizi, Sami Faiz

Abstract:

In recent years, real-time spatial applications, like location-aware services and traffic monitoring, have become more and more important. Such applications result dynamic environments where data as well as queries are continuously moving. As a result, there is a tremendous amount of real-time spatial data generated every day. The growth of the data volume seems to outspeed the advance of our computing infrastructure. For instance, in real-time spatial Big Data, users expect to receive the results of each query within a short time period without holding in account the load of the system. But with a huge amount of real-time spatial data generated, the system performance degrades rapidly especially in overload situations. To solve this problem, we propose the use of data partitioning as an optimization technique. Traditional horizontal and vertical partitioning can increase the performance of the system and simplify data management. But they remain insufficient for real-time spatial Big data; they can’t deal with real-time and stream queries efficiently. Thus, in this paper, we propose a novel data partitioning approach for real-time spatial Big data named VPA-RTSBD (Vertical Partitioning Approach for Real-Time Spatial Big data). This contribution is an implementation of the Matching algorithm for traditional vertical partitioning. We find, firstly, the optimal attribute sequence by the use of Matching algorithm. Then, we propose a new cost model used for database partitioning, for keeping the data amount of each partition more balanced limit and for providing a parallel execution guarantees for the most frequent queries. VPA-RTSBD aims to obtain a real-time partitioning scheme and deals with stream data. It improves the performance of query execution by maximizing the degree of parallel execution. This affects QoS (Quality Of Service) improvement in real-time spatial Big Data especially with a huge volume of stream data. The performance of our contribution is evaluated via simulation experiments. The results show that the proposed algorithm is both efficient and scalable, and that it outperforms comparable algorithms.

Keywords: quality of service, vertical partitioning, real-time spatial big data, horizontal partitioning, matching algorithm, hamming distance, stream query

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 438
61 An Improved K-Means Algorithm for Gene Expression Data Clustering

Authors: Billel Kenidra, Mohamed Benmohammed

Abstract:

Data mining technique used in the field of clustering is a subject of active research and assists in biological pattern recognition and extraction of new knowledge from raw data. Clustering means the act of partitioning an unlabeled dataset into groups of similar objects. Each group, called a cluster, consists of objects that are similar between themselves and dissimilar to objects of other groups. Several clustering methods are based on partitional clustering. This category attempts to directly decompose the dataset into a set of disjoint clusters leading to an integer number of clusters that optimizes a given criterion function. The criterion function may emphasize a local or a global structure of the data, and its optimization is an iterative relocation procedure. The K-Means algorithm is one of the most widely used partitional clustering techniques. Since K-Means is extremely sensitive to the initial choice of centers and a poor choice of centers may lead to a local optimum that is quite inferior to the global optimum, we propose a strategy to initiate K-Means centers. The improved K-Means algorithm is compared with the original K-Means, and the results prove how the efficiency has been significantly improved.

Keywords: K-means algorithm, microarray data mining, biological pattern recognition, partitional clustering, centroid initialization

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 559
60 Analysis of the Elastic Energy Released and Characterization of the Eruptive Episodes Intensity’s during 2014-2015 at El Reventador Volcano, Ecuador

Authors: Paúl I. Cornejo

Abstract:

The elastic energy released through Strombolian explosions has been quite studied, detailing various processes, sources, and precursory events at several volcanoes. We realized an analysis based on the relative partitioning of the elastic energy radiated into the atmosphere and ground by Strombolian-type explosions recorded at El Reventador volcano, using infrasound and seismic signals at high and moderate seismicity episodes during intense eruptive stages of explosive and effusive activity. Our results show that considerable values of Volcano Acoustic-Seismic Ratio (VASR or η) are obtained at high seismicity stages. VASR is a physical diagnostic of explosive degassing that we used to compare eruption mechanisms at El Reventador volcano for two datasets of explosions recorded at a Broad-Band BB seismic and infrasonic station located at ~5 kilometers from the vent. We conclude that the acoustic energy EA released during explosive activity (VASR η = 0.47, standard deviation σ = 0.8) is higher than the EA released during effusive activity; therefore, producing the highest values of η. Furthermore, we realized the analysis and characterization of the eruptive intensity for two episodes at high seismicity, calculating a η three-time higher for an episode of effusive activity with an occasional explosive component (η = 0.32, and σ = 0.42), than a η for an episode of only effusive activity (η = 0.11, and σ = 0.18), but more energetic.

Keywords: Explosive, effusive, explosion quakes, Strombolian, VASR

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 425
59 Feature Selection and Predictive Modeling of Housing Data Using Random Forest

Authors: Bharatendra Rai

Abstract:

Predictive data analysis and modeling involving machine learning techniques become challenging in presence of too many explanatory variables or features. Presence of too many features in machine learning is known to not only cause algorithms to slow down, but they can also lead to decrease in model prediction accuracy. This study involves housing dataset with 79 quantitative and qualitative features that describe various aspects people consider while buying a new house. Boruta algorithm that supports feature selection using a wrapper approach build around random forest is used in this study. This feature selection process leads to 49 confirmed features which are then used for developing predictive random forest models. The study also explores five different data partitioning ratios and their impact on model accuracy are captured using coefficient of determination (r-square) and root mean square error (rsme).

Keywords: Feature selection, random forest, root mean square error, housing data, Boruta algorithm

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1167
58 Efficient Filtering of Graph Based Data Using Graph Partitioning

Authors: Nileshkumar Vaishnav, Aditya Tatu

Abstract:

An algebraic framework for processing graph signals axiomatically designates the graph adjacency matrix as the shift operator. In this setup, we often encounter a problem wherein we know the filtered output and the filter coefficients, and need to find out the input graph signal. Solution to this problem using direct approach requires O(N3) operations, where N is the number of vertices in graph. In this paper, we adapt the spectral graph partitioning method for partitioning of graphs and use it to reduce the computational cost of the filtering problem. We use the example of denoising of the temperature data to illustrate the efficacy of the approach.

Keywords: Graph Partitioning, graph signal processing, algebraic signal processing, inverse filtering on graphs

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 654
57 CFD Study of Subcooled Boiling Flow at Elevated Pressure Using a Mechanistic Wall Heat Partitioning Model

Authors: Machimontorn Promtong, Sherman C. P. Cheung, Guan H. Yeoh, Sara Vahaji, Jiyuan Tu

Abstract:

The wide range of industrial applications involved with boiling flows promotes the necessity of establishing fundamental knowledge in boiling flow phenomena. For this purpose, a number of experimental and numerical researches have been performed to elucidate the underlying physics of this flow. In this paper, the improved wall boiling models, implemented on ANSYS CFX 14.5, were introduced to study subcooled boiling flow at elevated pressure. At the heated wall boundary, the Fractal model, Force balance approach and Mechanistic frequency model are given for predicting the nucleation site density, bubble departure diameter, and bubble departure frequency. The presented wall heat flux partitioning closures were modified to consider the influence of bubble sliding along the wall before the lift-off, which usually happens in the flow boiling. The simulation was performed based on the Two-fluid model, where the standard k-ω SST model was selected for turbulence modelling. Existing experimental data at around 5 bars were chosen to evaluate the accuracy of the presented mechanistic approach. The void fraction and Interfacial Area Concentration (IAC) are in good agreement with the experimental data. However, the predicted bubble velocity and Sauter Mean Diameter (SMD) are over-predicted. This over-prediction may be caused by consideration of only dispersed and spherical bubbles in the simulations. In the future work, the important physical mechanisms of bubbles, such as merging and shrinking during sliding on the heated wall will be incorporated into this mechanistic model to enhance its capability for a wider range of flow prediction.

Keywords: CFD, subcooled boiling flow, two-fluid model, mechanistic model

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 614
56 System Survivability in Networks in the Context of Defense/Attack Strategies: The Large Scale

Authors: A. Ben Yaghlane, M. N. Azaiez, M. Mrad

Abstract:

We investigate the large scale of networks in the context of network survivability under attack. We use appropriate techniques to evaluate and the attacker-based- and the defenderbased- network survivability. The attacker is unaware of the operated links by the defender. Each attacked link has some pre-specified probability to be disconnected. The defender choice is so that to maximize the chance of successfully sending the flow to the destination node. The attacker however will select the cut-set with the highest chance to be disabled in order to partition the network. Moreover, we extend the problem to the case of selecting the best p paths to operate by the defender and the best k cut-sets to target by the attacker, for arbitrary integers p,k>1. We investigate some variations of the problem and suggest polynomial-time solutions.

Keywords: Networks, Large Scale, defense/attack strategies, partitioning a network

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1147
55 A Comparative Study of Image Segmentation Algorithms

Authors: Mehdi Hosseinzadeh, Parisa Khoshvaght

Abstract:

In some applications, such as image recognition or compression, segmentation refers to the process of partitioning a digital image into multiple segments. Image segmentation is typically used to locate objects and boundaries (lines, curves, etc.) in images. Image segmentation is to classify or cluster an image into several parts (regions) according to the feature of image, for example, the pixel value or the frequency response. More precisely, image segmentation is the process of assigning a label to every pixel in an image such that pixels with the same label share certain visual characteristics. The result of image segmentation is a set of segments that collectively cover the entire image, or a set of contours extracted from the image. Several image segmentation algorithms were proposed to segment an image before recognition or compression. Up to now, many image segmentation algorithms exist and be extensively applied in science and daily life. According to their segmentation method, we can approximately categorize them into region-based segmentation, data clustering, and edge-base segmentation. In this paper, we give a study of several popular image segmentation algorithms that are available.

Keywords: Image Segmentation, density estimation, hierarchical segmentation, partitional segmentation

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2340
54 Biocompatible Ionic Liquids in Liquid – Liquid Extraction of Lactic Acid: A Comparative Study

Authors: Konstantza Tonova, Ivan Svinyarov, Milen G. Bogdanov

Abstract:

Ionic liquids consisting of a phosphonium cationic moiety and a saccharinate anion are synthesized and compared with their precursors, phosphonium chlorides, in reference to their extraction efficiency towards L-lactic acid. On the base of measurements of the acid and the water partitioning in the equilibrium biphasic systems, the molar ratios between acid, water and ionic liquid are estimated which allows to deduce the lactic acid extractive pathway. The effect of a salting-out addition that strengthens hydrophobicity in both phases is studied in view to reveal the best biphasic system with respect to IL low toxicity and high extraction efficiency.

Keywords: Ionic Liquids, Extraction, biphasic system, Lactic acid

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2176
53 MCOKE: Multi-Cluster Overlapping K-Means Extension Algorithm

Authors: Said Baadel, Fadi Thabtah, Joan Lu

Abstract:

Clustering involves the partitioning of n objects into k clusters. Many clustering algorithms use hard-partitioning techniques where each object is assigned to one cluster. In this paper we propose an overlapping algorithm MCOKE which allows objects to belong to one or more clusters. The algorithm is different from fuzzy clustering techniques because objects that overlap are assigned a membership value of 1 (one) as opposed to a fuzzy membership degree. The algorithm is also different from other overlapping algorithms that require a similarity threshold be defined a priori which can be difficult to determine by novice users.

Keywords: Data Mining, k-means, MCOKE, overlapping

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2245
52 A Genetic Based Algorithm to Generate Random Simple Polygons Using a New Polygon Merge Algorithm

Authors: Ali Nourollah, Mohsen Movahedinejad

Abstract:

In this paper a new algorithm to generate random simple polygons from a given set of points in a two dimensional plane is designed. The proposed algorithm uses a genetic algorithm to generate polygons with few vertices. A new merge algorithm is presented which converts any two polygons into a simple polygon. This algorithm at first changes two polygons into a polygonal chain and then the polygonal chain is converted into a simple polygon. The process of converting a polygonal chain into a simple polygon is based on the removal of intersecting edges. The experiments results show that the proposed algorithm has the ability to generate a great number of different simple polygons and has better performance in comparison to celebrated algorithms such as space partitioning and steady growth.

Keywords: Genetic Algorithm, Divide and conquer, Random simple polygon generation, merge polygons

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2311
51 Model-Based Automotive Partitioning and Mapping for Embedded Multicore Systems

Authors: Robert H¨ottger, Lukas Krawczyk, Burkhard Igel

Abstract:

This paper introduces novel approaches to partitioning and mapping in terms of model-based embedded multicore system engineering and further discusses benefits, industrial relevance and features in common with existing approaches. In order to assess and evaluate results, both approaches have been applied to a real industrial application as well as to various prototypical demonstrative applications, that have been developed and implemented for different purposes. Evaluations show, that such applications improve significantly according to performance, energy efficiency, meeting timing constraints and covering maintaining issues by using the AMALTHEA platform and the implemented approaches. Furthermore, the model-based design provides an open, expandable, platform independent and scalable exchange format between OEMs, suppliers and developers on different levels. Our proposed mechanisms provide meaningful multicore system utilization since load balancing by means of partitioning and mapping is effectively performed with regard to the modeled systems including hardware, software, operating system, scheduling, constraints, configuration and more data.

Keywords: Distributed Systems, Scheduling, Mapping, System Analysis, partitioning, embedded multicore systems, model-based

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2808
50 Automatic Segmentation of the Clean Speech Signal

Authors: M. A. Ben Messaoud, A. Bouzid, N. Ellouze

Abstract:

Speech Segmentation is the measure of the change point detection for partitioning an input speech signal into regions each of which accords to only one speaker. In this paper, we apply two features based on multi-scale product (MP) of the clean speech, namely the spectral centroid of MP, and the zero crossings rate of MP. We focus on multi-scale product analysis as an important tool for segmentation extraction. The MP is based on making the product of the speech wavelet transform coefficients (WTC). We have estimated our method on the Keele database. The results show the effectiveness of our method. It indicates that the two features can find word boundaries, and extracted the segments of the clean speech.

Keywords: speech segmentation, zero crossings rate, Multi-scale product, Spectral centroid

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2122
49 Passivity Analysis of Stochastic Neural Networks With Multiple Time Delays

Authors: Biao Qin, Jin Huang, Jiaojiao Ren, Wei Kang

Abstract:

This paper deals with the problem of passivity analysis for stochastic neural networks with leakage, discrete and distributed delays. By using delay partitioning technique, free weighting matrix method and stochastic analysis technique, several sufficient conditions for the passivity of the addressed neural networks are established in terms of linear matrix inequalities (LMIs), in which both the time-delay and its time derivative can be fully considered. A numerical example is given to show the usefulness and effectiveness of the obtained results.

Keywords: linear matrix inequalities (LMIs), Passivity, Stochastic neural networks, Multiple time delays

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1371
48 Stability Criteria for Uncertainty Markovian Jumping Parameters of BAM Neural Networks with Leakage and Discrete Delays

Authors: Qingqing Wang, Baocheng Chen, Shouming Zhong

Abstract:

In this paper, the problem of stability criteria for Markovian jumping BAM neural networks with leakage and discrete delays has been investigated. Some new sufficient condition are derived based on a novel Lyapunov-Krasovskii functional approach. These new criteria based on delay partitioning idea are proved to be less conservative because free-weighting matrices method and a convex optimization approach are considered. Finally, one numerical example is given to illustrate the the usefulness and feasibility of the proposed main results.

Keywords: Stability, linear matrix inequality, Markovian jumping neural networks, Timevarying delays

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 4777
47 Sequential Partitioning Brainbow Image Segmentation Using Bayesian

Authors: Yayun Hsu, Henry Horng-Shing Lu

Abstract:

This paper proposes a data-driven, biology-inspired neural segmentation method of 3D drosophila Brainbow images. We use Bayesian Sequential Partitioning algorithm for probabilistic modeling, which can be used to detect somas and to eliminate crosstalk effects. This work attempts to develop an automatic methodology for neuron image segmentation, which nowadays still lacks a complete solution due to the complexity of the image. The proposed method does not need any predetermined, risk-prone thresholds, since biological information is inherently included inside the image processing procedure. Therefore, it is less sensitive to variations in neuron morphology; meanwhile, its flexibility would be beneficial for tracing the intertwining structure of neurons.

Keywords: Biological Data Mining, Image Segmentation, brainbow, neuron morphology, non-parametric learning

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1832
46 Modified Montgomery for RSA Cryptosystem

Authors: Rupali Verma, Maitreyee Dutta, Renu Vig

Abstract:

Encryption and decryption in RSA are done by modular exponentiation which is achieved by repeated modular multiplication. Hence efficiency of modular multiplication directly determines the efficiency of RSA cryptosystem. This paper designs a Modified Montgomery Modular Multiplication in which addition of operands is computed by 4:2 compressor. The basic logic operations in addition are partitioned over two iterations such that parallel computations are performed. This reduces the critical path delay of proposed Montgomery design. The proposed design and RSA are implemented on Virtex 2 and Virtex 5 FPGAs. The two factors partitioning and parallelism have improved the frequency and throughput of proposed design.

Keywords: FPGA, RSA, montgomery modular multiplication

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2221
45 Effect of Partial Rootzone Drying on Growth, Yield and Biomass Partitioning of a Soilless Tomato Crop

Authors: N. Affi, A. El Fadl, M. El Otmani, M.C. Benismail, L.M. Idrissi

Abstract:

The object of the present research was to assess the effects of partial rootzone drying (PRD) on tomato growth, productivity, biomass allocation and water use efficiency (WUE). Plants were grown under greenhouse, on a sand substrate. Three treatments were applied: a control that was fully and conventionally irrigated, PRD-70 and PRD-50 in which, respectively, 70% and 50% of water requirements were supplied using PRD. Alternation of irrigation between the two root halves took place each three days. The Control produces the highest total yield (252tons/ha). In terms of fruit number, PRD-50 showed 23% and 16% less fruits than PRD-70 and control, respectively. Fruit size was affected by treatment with PRD-50 treatment producing 66% and 53% more class 3 fruits than, control and PRD-70, respectively. For plant growth, the difference was not significant when comparing control to PRD-70 but was significant when comparing PRD-70 and control to PRD-50. No effect was on total biomass but root biomass was higher for stressed plants compared to control. WUE was 66% and 27% higher for PRD-50 and PRD-70 respectively compared to control.

Keywords: biomass, Growth, partial rootzone drying, water use efficiency yield

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1737
44 Globally Exponential Stability and Dissipativity Analysis of Static Neural Networks with Time Delay

Authors: Lijiang Xiang, Shouming Zhong, Yucai Ding

Abstract:

The problems of globally exponential stability and dissipativity analysis for static neural networks (NNs) with time delay is investigated in this paper. Some delay-dependent stability criteria are established for static NNs with time delay using the delay partitioning technique. In terms of this criteria, the delay-dependent sufficient condition is given to guarantee the dissipativity of static NNs with time delay. All the given results in this paper are not only dependent upon the time delay but also upon the number of delay partitions. Two numerical examples are used to show the effectiveness of the proposed methods.

Keywords: Time Delay, globally exponential stability, Dissipativity, Static neural networks

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1134
43 Unsupervised Outlier Detection in Streaming Data Using Weighted Clustering

Authors: Yogita, Durga Toshniwal

Abstract:

Outlier detection in streaming data is very challenging because streaming data cannot be scanned multiple times and also new concepts may keep evolving. Irrelevant attributes can be termed as noisy attributes and such attributes further magnify the challenge of working with data streams. In this paper, we propose an unsupervised outlier detection scheme for streaming data. This scheme is based on clustering as clustering is an unsupervised data mining task and it does not require labeled data, both density based and partitioning clustering are combined for outlier detection. In this scheme partitioning clustering is also used to assign weights to attributes depending upon their respective relevance and weights are adaptive. Weighted attributes are helpful to reduce or remove the effect of noisy attributes. Keeping in view the challenges of streaming data, the proposed scheme is incremental and adaptive to concept evolution. Experimental results on synthetic and real world data sets show that our proposed approach outperforms other existing approach (CORM) in terms of outlier detection rate, false alarm rate, and increasing percentages of outliers.

Keywords: Concept Evolution, Irrelevant Attributes, Streaming Data, Unsupervised Outlier Detection

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2257
42 A Mapping Approach of Code Generation for Arinc653-Based Avionics Software

Authors: Lu Zou, Dianfu MA, Ying Wang, Xianqi Zhao

Abstract:

Avionic software architecture has transit from a federated avionics architecture to an integrated modular avionics (IMA) .ARINC 653 (Avionics Application Standard Software Interface) is a software specification for space and time partitioning in Safety-critical avionics Real-time operating systems. Methods to transform the abstract avionics application logic function to the executable model have been brought up, however with less consideration about the code generating input and output model specific for ARINC 653 platform and inner-task synchronous dynamic interaction order sequence. In this paper, we proposed an AADL-based model-driven design methodology to fulfill the purpose to automatically generating Cµ executable model on ARINC 653 platform from the ARINC653 architecture which defined as AADL653 in order to facilitate the development of the avionics software constructed on ARINC653 OS. This paper presents the mapping rules between the AADL653 elements and the elements in Cµ language, and define the code generating rules , designs an automatic C µ code generator .Then, we use a case to illustrate our approach. Finally, we give the related work and future research directions.

Keywords: Code Generation, Arinc653, IMA, AADL653

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2613
41 Studying on ARINC653 Partition Run-time Scheduling and Simulation

Authors: Dongliang Wang, Jun Han, Dianfu Ma, Xianqi Zhao

Abstract:

Avionics software is safe-critical embedded software and its architecture is evolving from traditional federated architectures to Integrated Modular Avionics (IMA) to improve resource usability. ARINC 653 (Avionics Application Standard Software Interface) is a software specification for space and time partitioning in Safety-critical avionics Real-time operating systems. Arinc653 uses two-level scheduling strategies, but current modeling tools only apply to simple problems of Arinc653 two-level scheduling, which only contain time property. In avionics industry, we are always manually allocating tasks and calculating the timing table of a real-time system to ensure it-s running as we design. In this paper we represent an automatically generating strategy which applies to the two scheduling problems with dependent constraints in Arinc653 partition run-time environment. It provides the functionality of automatic generation from the task and partition models to scheduling policy through allocating the tasks to the partitions while following the constraints, and then we design a simulating mechanism to check whether our policy is schedulable or not

Keywords: Simulation, Scheduling, task allocation, Arinc653

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1934
40 Low Cost Chip Set Selection Algorithm for Multi-way Partitioning of Digital System

Authors: Jae Young Park, Soongyu Kwon, Kyu Han Kim, Hyeong Geon Lee, Jong Tae Kim

Abstract:

This paper considers the problem of finding low cost chip set for a minimum cost partitioning of a large logic circuits. Chip sets are selected from a given library. Each chip in the library has a different price, area, and I/O pin. We propose a low cost chip set selection algorithm. Inputs to the algorithm are a netlist and a chip information in the library. Output is a list of chip sets satisfied with area and maximum partitioning number and it is sorted by cost. The algorithm finds the sorted list of chip sets from minimum cost to maximum cost. We used MCNC benchmark circuits for experiments. The experimental results show that all of chip sets found satisfy the multiple partitioning constraints.

Keywords: lowest cost chip set, MCNC benchmark, multi-way partitioning

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1173
39 Accelerating Sparse Matrix Vector Multiplication on Many-Core GPUs

Authors: Weizhi Xu, Zhiyong Liu, Dongrui Fan, Shuai Jiao, Xiaochun Ye, Fenglong Song, Chenggang Yan

Abstract:

Many-core GPUs provide high computing ability and substantial bandwidth; however, optimizing irregular applications like SpMV on GPUs becomes a difficult but meaningful task. In this paper, we propose a novel method to improve the performance of SpMV on GPUs. A new storage format called HYB-R is proposed to exploit GPU architecture more efficiently. The COO portion of the matrix is partitioned recursively into a ELL portion and a COO portion in the process of creating HYB-R format to ensure that there are as many non-zeros as possible in ELL format. The method of partitioning the matrix is an important problem for HYB-R kernel, so we also try to tune the parameters to partition the matrix for higher performance. Experimental results show that our method can get better performance than the fastest kernel (HYB) in NVIDIA-s SpMV library with as high as 17% speedup.

Keywords: gpu, HYB-R, Many-core, Performance Tuning, SpMV

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1674
38 Corporate Credit Rating using Multiclass Classification Models with order Information

Authors: Hyunchul Ahn, Kyoung-Jae Kim

Abstract:

Corporate credit rating prediction using statistical and artificial intelligence (AI) techniques has been one of the attractive research topics in the literature. In recent years, multiclass classification models such as artificial neural network (ANN) or multiclass support vector machine (MSVM) have become a very appealing machine learning approaches due to their good performance. However, most of them have only focused on classifying samples into nominal categories, thus the unique characteristic of the credit rating - ordinality - has been seldom considered in their approaches. This study proposes new types of ANN and MSVM classifiers, which are named OMANN and OMSVM respectively. OMANN and OMSVM are designed to extend binary ANN or SVM classifiers by applying ordinal pairwise partitioning (OPP) strategy. These models can handle ordinal multiple classes efficiently and effectively. To validate the usefulness of these two models, we applied them to the real-world bond rating case. We compared the results of our models to those of conventional approaches. The experimental results showed that our proposed models improve classification accuracy in comparison to typical multiclass classification techniques with the reduced computation resource.

Keywords: Support Vector Machines, Artificial Neural Network, Corporate credit rating, Ordinal pairwise partitioning

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2874
37 Development Partitioning Intervalwise Block Method for Solving Ordinary Differential Equations

Authors: K.H.Khairul Anuar, K.I.Othman, F.Ishak, Z.B.Ibrahim, Z.Majid

Abstract:

Solving Ordinary Differential Equations (ODEs) by using Partitioning Block Intervalwise (PBI) technique is our aim in this paper. The PBI technique is based on Block Adams Method and Backward Differentiation Formula (BDF). Block Adams Method only use the simple iteration for solving while BDF requires Newtonlike iteration involving Jacobian matrix of ODEs which consumes a considerable amount of computational effort. Therefore, PBI is developed in order to reduce the cost of iteration within acceptable maximum error

Keywords: Adam Block Method, BDF, Ordinary Differential Equations, Partitioning Block Intervalwise

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1283
36 Fuzzy Rules Generation and Extraction from Support Vector Machine Based on Kernel Function Firing Signals

Authors: Prasan Pitiranggon, Nunthika Benjathepanun, Somsri Banditvilai, Veera Boonjing

Abstract:

Our study proposes an alternative method in building Fuzzy Rule-Based System (FRB) from Support Vector Machine (SVM). The first set of fuzzy IF-THEN rules is obtained through an equivalence of the SVM decision network and the zero-ordered Sugeno FRB type of the Adaptive Network Fuzzy Inference System (ANFIS). The second set of rules is generated by combining the first set based on strength of firing signals of support vectors using Gaussian kernel. The final set of rules is then obtained from the second set through input scatter partitioning. A distinctive advantage of our method is the guarantee that the number of final fuzzy IFTHEN rules is not more than the number of support vectors in the trained SVM. The final FRB system obtained is capable of performing classification with results comparable to its SVM counterpart, but it has an advantage over the black-boxed SVM in that it may reveal human comprehensible patterns.

Keywords: support vector machine, rule generation, rule extraction, Fuzzy Rule Base

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1558
35 Fuzzy Metric Approach for Fuzzy Time Series Forecasting based on Frequency Density Based Partitioning

Authors: Tahseen Ahmed Jilani, Syed Muhammad Aqil Burney, C. Ardil

Abstract:

In the last 15 years, a number of methods have been proposed for forecasting based on fuzzy time series. Most of the fuzzy time series methods are presented for forecasting of enrollments at the University of Alabama. However, the forecasting accuracy rates of the existing methods are not good enough. In this paper, we compared our proposed new method of fuzzy time series forecasting with existing methods. Our method is based on frequency density based partitioning of the historical enrollment data. The proposed method belongs to the kth order and time-variant methods. The proposed method can get the best forecasting accuracy rate for forecasting enrollments than the existing methods.

Keywords: fuzzy time series, fuzzified enrollments, Fuzzy logical groups, fuzzysets

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2452