Search results for: genetic diversity
617 Coding based Synchronization Algorithm for Secondary Synchronization Channel in WCDMA
Authors: Deng Liao, Dongyu Qiu, Ahmed K. Elhakeem
Abstract:
A new code synchronization algorithm is proposed in this paper for the secondary cell-search stage in wideband CDMA systems. Rather than using the Cyclically Permutable (CP) code in the Secondary Synchronization Channel (S-SCH) to simultaneously determine the frame boundary and scrambling code group, the new synchronization algorithm implements the same function with less system complexity and less Mean Acquisition Time (MAT). The Secondary Synchronization Code (SSC) is redesigned by splitting into two sub-sequences. We treat the information of scrambling code group as data bits and use simple time diversity BCH coding for further reliability. It avoids involved and time-costly Reed-Solomon (RS) code computations and comparisons. Analysis and simulation results show that the Synchronization Error Rate (SER) yielded by the new algorithm in Rayleigh fading channels is close to that of the conventional algorithm in the standard. This new synchronization algorithm reduces system complexities, shortens the average cell-search time and can be implemented in the slot-based cell-search pipeline. By taking antenna diversity and pipelining correlation processes, the new algorithm also shows its flexible application in multiple antenna systems.Keywords: WCDMA cell-search, synchronization algorithm, secondary synchronization channel, antenna diversity.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2392616 Spread Spectrum Code Estimationby Particle Swarm Algorithm
Authors: Vahid R. Asghari, Mehrdad Ardebilipour
Abstract:
In the context of spectrum surveillance, a new method to recover the code of spread spectrum signal is presented, while the receiver has no knowledge of the transmitter-s spreading sequence. In our previous paper, we used Genetic algorithm (GA), to recover spreading code. Although genetic algorithms (GAs) are well known for their robustness in solving complex optimization problems, but nonetheless, by increasing the length of the code, we will often lead to an unacceptable slow convergence speed. To solve this problem we introduce Particle Swarm Optimization (PSO) into code estimation in spread spectrum communication system. In searching process for code estimation, the PSO algorithm has the merits of rapid convergence to the global optimum, without being trapped in local suboptimum, and good robustness to noise. In this paper we describe how to implement PSO as a component of a searching algorithm in code estimation. Swarm intelligence boasts a number of advantages due to the use of mobile agents. Some of them are: Scalability, Fault tolerance, Adaptation, Speed, Modularity, Autonomy, and Parallelism. These properties make swarm intelligence very attractive for spread spectrum code estimation. They also make swarm intelligence suitable for a variety of other kinds of channels. Our results compare between swarm-based algorithms and Genetic algorithms, and also show PSO algorithm performance in code estimation process.Keywords: Code estimation, Particle Swarm Optimization(PSO), Spread spectrum.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2136615 Intelligent Aid-Analysis Based on the Use of Digital Twin: Application to Electronic Warfare System
Authors: L. Chaussy, M. Nouvel
Abstract:
Workload of the system engineers during Integration Validation Verification process of Electronic Warfare Systems (EWS) is growing with complexity of the systems and with the diversity of tested cases (diversity of operational scenario in front of EWS). Even if the use of Digital Twin makes easier conception and development phases in term of planning and test equipment availability, time to analyze tests results is still too long and too complex. The idea to reduce the system engineer’s workload and improve test coverage is to introduce some intelligent and aid-analysis algorithms to improve this step.
Keywords: Analysis tools, automatic testing, digital twin, electronic warfare system.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 386614 Computer Simulations of an Augmented Automatic Choosing Control Using Automatic Choosing Functions of Gradient Optimization Type
Authors: Toshinori Nawata
Abstract:
In this paper we consider a nonlinear feedback control called augmented automatic choosing control (AACC) using the automatic choosing functions of gradient optimization type for nonlinear systems. Constant terms which arise from sectionwise linearization of a given nonlinear system are treated as coefficients of a stable zero dynamics. Parameters included in the control are suboptimally selected by minimizing the Hamiltonian with the aid of the genetic algorithm. This approach is applied to a field excitation control problem of power system to demonstrate the splendidness of the AACC. Simulation results show that the new controller can improve performance remarkably well.Keywords: augmented automatic choosing control, nonlinear control, genetic algorithm, zero dynamics.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1375613 Analysis of Different Combining Schemes of Two Amplify-Forward Relay Branches with Individual Links Experiencing Nakagami Fading
Authors: Babu Sena Paul, Ratnajit Bhattacharjee
Abstract:
Relay based communication has gained considerable importance in the recent years. In this paper we find the end-toend statistics of a two hop non-regenerative relay branch, each hop being Nakagami-m faded. Closed form expressions for the probability density functions of the signal envelope at the output of a selection combiner and a maximal ratio combiner at the destination node are also derived and analytical formulations are verified through computer simulation. These density functions are useful in evaluating the system performance in terms of bit error rate and outage probability.
Keywords: co-operative diversity, diversity combining, maximal ratio combining, selection combining.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1607612 Statistical Properties and Performance of Ecological Indices Based On Relative Abundances
Authors: Gebriel M. Shamia
Abstract:
The Improved Generalized Diversity Index (IGDI) has been proposed as a tool that can be used to identify areas that have high conservation value and measure the ecological condition of an area. IGDI is based on the species relative abundances. This paper is concerned with particular attention is given to comparisons involving the MacArthur model of species abundances. The properties and performance of various species indices were assessed. Both IGDI and species richness increased with sampling area according to a power function. IGDI were also found to be acceptable ecological indicators of conditions and consistently outperformed coefficient of conservatism indices.Keywords: Statistical ecology, MacArthur model, Functional Diversity.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2028611 UPFC Supplementary Controller Design Using Real-Coded Genetic Algorithm for Damping Low Frequency Oscillations in Power Systems
Authors: A.K. Baliarsingh, S. Panda, A.K. Mohanty, C. Ardil
Abstract:
This paper presents a systematic approach for designing Unified Power Flow Controller (UPFC) based supplementary damping controllers for damping low frequency oscillations in a single-machine infinite-bus power system. Detailed investigations have been carried out considering the four alternatives UPFC based damping controller namely modulating index of series inverter (mB), modulating index of shunt inverter (mE), phase angle of series inverter (δB ) and phase angle of the shunt inverter (δE ). The design problem of the proposed controllers is formulated as an optimization problem and Real- Coded Genetic Algorithm (RCGA) is employed to optimize damping controller parameters. Simulation results are presented and compared with a conventional method of tuning the damping controller parameters to show the effectiveness and robustness of the proposed design approach.
Keywords: Power System Oscillations, Real-Coded Genetic Algorithm (RCGA), Flexible AC Transmission Systems (FACTS), Unified Power Flow Controller (UPFC), Damping Controller.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2084610 Transmission Expansion Planning Considering Network Adequacy and Investment Cost Limitation using Genetic Algorithm
Authors: M. Mahdavi, E. Mahdavi
Abstract:
In this research, STNEP is being studied considering network adequacy and limitation of investment cost by decimal codification genetic algorithm (DCGA). The goal is obtaining the maximum of network adequacy with lowest expansion cost for a specific investment. Finally, the proposed idea is applied to the Garvers 6-bus network. The results show that considering the network adequacy for solution of STNEP problem is caused that among of expansion plans for a determined investment, configuration which has relatively lower expansion cost and higher adequacy is proposed by GA based method. Finally, with respect to the curve of adequacy versus expansion cost it can be said that more optimal configurations for expansion of network are obtained with lower investment costs.
Keywords: TNEP, Network Adequacy, Investment Cost, GA
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1515609 Disability Diversity Management: A Case Study of the Banking Sector in the KSA
Authors: Nada Azhar
Abstract:
This paper is drawn from a wider study of the management of gender, age and disability diversity in the banking sector in the Kingdom of Saudi Arabia (KSA), which aims to develop a framework for diversity management (DM) in this sector. The paper focuses on the management of disability diversity. The purpose of the paper is to assist in understanding disability DM in the banking sector in KSA and to make suggestions for its enhancement. Hence, it contributes to filling a research gap, as there is a dearth of literature on disability DM, in KSA in general, and in the banking sector specifically. Discrimination against people with disabilities is a social issue that has not been entirely overcome in any society. However, in KSA, Islam informs almost every aspect of daily life including work, and Islam is against discrimination. Hence, in KSA, there are regulations to accommodate people with disabilities; however, employers are still free not to hire job applicants with disabilities specifically because of their condition. Indeed, disabled people are almost entirely absent from the labour market. There are 12 Saudi-owned or part-Saudi-owned banks in KSA and two managers from each of these were interviewed, making a total of 24. The interviews aimed to investigate empirically the understanding of managers in the banking sector in KSA of diversity management, including disability DM, in the banking sector. The interview data were analysed using thematic analysis. Two interviewees stated that banks used the employment of people with disabilities to enhance their corporate image, while five expressed the opinion that disabled employees could contribute to the bank provided they did not have to deal with customers face-to-face. Nine of the interviewees perceived that disabled employees could be of value to the bank for their own sake, not only in ‘behind the scenes’ roles. Another two interviewees mentioned that employing disabled people could be part of the bank’s community service programme and one thought it would be part of the bank’s Saudisation efforts. The remaining five interviewees did not know how disabled people could contribute to the bank. The findings show that disability DM in the banking sector in KSA is a relatively new concept, and is not yet well understood. In the light of the findings, in order to achieve the purpose of the paper, the following suggestions were made for the enhancement of disability DM in the banking sector in KSA. A change in attitudes towards disabled people is necessary. Such a change in the workplace can only be achieved if a top-down approach is taken to the integration of disabled people. Hence, it is suggested that management and employees follow a course in disability awareness. Further, a diversity officer in the HR department could enhance the integration of disabled people into the banking workforce. It is also suggested that greater government support is required through closely monitored and enforced anti-discrimination legislation. Moreover, flexible working arrangements such as part-time work would facilitate the employment of disabled people and benefit other groups of employees.
Keywords: Banking, disability, diversity management, Kingdom of Saudi Arabia.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 3920608 A Fuzzy Classifier with Evolutionary Design of Ellipsoidal Decision Regions
Authors: Leehter Yao, Kuei-Song Weng, Cherng-Dir Huang
Abstract:
A fuzzy classifier using multiple ellipsoids approximating decision regions for classification is to be designed in this paper. An algorithm called Gustafson-Kessel algorithm (GKA) with an adaptive distance norm based on covariance matrices of prototype data points is adopted to learn the ellipsoids. GKA is able toadapt the distance norm to the underlying distribution of the prototypedata points except that the sizes of ellipsoids need to be determined a priori. To overcome GKA's inability to determine appropriate size ofellipsoid, the genetic algorithm (GA) is applied to learn the size ofellipsoid. With GA combined with GKA, it will be shown in this paper that the proposed method outperforms the benchmark algorithms as well as algorithms in the field.
Keywords: Ellipsoids, genetic algorithm, classification, fuzzyc-means (FCM)
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1693607 Computer Aided Design Solution Based on Genetic Algorithms for FMEA and Control Plan in Automotive Industry
Authors: Nadia Belu, Laurentiu M. Ionescu, Agnieszka Misztal
Abstract:
In this paper we propose a computer-aided solution with Genetic Algorithms in order to reduce the drafting of reports: FMEA analysis and Control Plan required in the manufacture of the product launch and improved knowledge development teams for future projects. The solution allows to the design team to introduce data entry required to FMEA. The actual analysis is performed using Genetic Algorithms to find optimum between RPN risk factor and cost of production. A feature of Genetic Algorithms is that they are used as a means of finding solutions for multi criteria optimization problems. In our case, along with three specific FMEA risk factors is considered and reduce production cost. Analysis tool will generate final reports for all FMEA processes. The data obtained in FMEA reports are automatically integrated with other entered parameters in Control Plan. Implementation of the solution is in the form of an application running in an intranet on two servers: one containing analysis and plan generation engine and the other containing the database where the initial parameters and results are stored. The results can then be used as starting solutions in the synthesis of other projects. The solution was applied to welding processes, laser cutting and bending to manufacture chassis for buses. Advantages of the solution are efficient elaboration of documents in the current project by automatically generating reports FMEA and Control Plan using multiple criteria optimization of production and build a solid knowledge base for future projects. The solution which we propose is a cheap alternative to other solutions on the market using Open Source tools in implementation.Keywords: Automotive industry, control plan, FMEA.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2877606 Energy Resources Management for Sustainable Development in Nigeria Niger Delta Region: Women Issues and the Environment
Authors: Chizoba Chinweze, Gwen Abiola-Oloke, Chike Jideani
Abstract:
There is an urgent need to conserve the biological diversity of the Nigerian Environment for the future and present generation in the face of current energy resources development. This paper gives an in-depth analysis of the impact of oil and gas activities on the biological diversity of the Nigerian Niger Delta area and its consequences on the sustainable development of the host communities as it relates to their social, economic and environmental issues, particularly on the womenfolk who are the key managers of environmental resources. Also reviewed is the frustration of these communities that is reflected in unending conflicts.
Keywords: Biodiversity, energy resources, sustainable development, and women issues.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2440605 Evolutionary Feature Selection for Text Documents using the SVM
Authors: Daniel I. Morariu, Lucian N. Vintan, Volker Tresp
Abstract:
Text categorization is the problem of classifying text documents into a set of predefined classes. After a preprocessing step, the documents are typically represented as large sparse vectors. When training classifiers on large collections of documents, both the time and memory restrictions can be quite prohibitive. This justifies the application of feature selection methods to reduce the dimensionality of the document-representation vector. In this paper, we present three feature selection methods: Information Gain, Support Vector Machine feature selection called (SVM_FS) and Genetic Algorithm with SVM (called GA_SVM). We show that the best results were obtained with GA_SVM method for a relatively small dimension of the feature vector.Keywords: Feature Selection, Learning with Kernels, Support Vector Machine, Genetic Algorithm, and Classification.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1706604 Evolving Neural Networks using Moment Method for Handwritten Digit Recognition
Authors: H. El Fadili, K. Zenkouar, H. Qjidaa
Abstract:
This paper proposes a neural network weights and topology optimization using genetic evolution and the backpropagation training algorithm. The proposed crossover and mutation operators aims to adapt the networks architectures and weights during the evolution process. Through a specific inheritance procedure, the weights are transmitted from the parents to their offsprings, which allows re-exploitation of the already trained networks and hence the acceleration of the global convergence of the algorithm. In the preprocessing phase, a new feature extraction method is proposed based on Legendre moments with the Maximum entropy principle MEP as a selection criterion. This allows a global search space reduction in the design of the networks. The proposed method has been applied and tested on the well known MNIST database of handwritten digits.Keywords: Genetic algorithm, Legendre Moments, MEP, Neural Network.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1664603 The Optimal Placement of Capacitor in Order to Reduce Losses and the Profile of Distribution Network Voltage with GA, SA
Authors: Limouzade E., Joorabian M.
Abstract:
Most of the losses in a power system relate to the distribution sector which always has been considered. From the important factors which contribute to increase losses in the distribution system is the existence of radioactive flows. The most common way to compensate the radioactive power in the system is the power to use parallel capacitors. In addition to reducing the losses, the advantages of capacitor placement are the reduction of the losses in the release peak of network capacity and improving the voltage profile. The point which should be considered in capacitor placement is the optimal placement and specification of the amount of the capacitor in order to maximize the advantages of capacitor placement. In this paper, a new technique has been offered for the placement and the specification of the amount of the constant capacitors in the radius distribution network on the basis of Genetic Algorithm (GA). The existing optimal methods for capacitor placement are mostly including those which reduce the losses and voltage profile simultaneously. But the retaliation cost and load changes have not been considered as influential UN the target function .In this article, a holistic approach has been considered for the optimal response to this problem which includes all the parameters in the distribution network: The price of the phase voltage and load changes. So, a vast inquiry is required for all the possible responses. So, in this article, we use Genetic Algorithm (GA) as the most powerful method for optimal inquiry.Keywords: Genetic Algorithm (GA), capacitor placement, voltage profile, network losses, Simulating Annealing (SA), distribution network.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1537602 Evolutionary Training of Hybrid Systems of Recurrent Neural Networks and Hidden Markov Models
Authors: Rohitash Chandra, Christian W. Omlin
Abstract:
We present a hybrid architecture of recurrent neural networks (RNNs) inspired by hidden Markov models (HMMs). We train the hybrid architecture using genetic algorithms to learn and represent dynamical systems. We train the hybrid architecture on a set of deterministic finite-state automata strings and observe the generalization performance of the hybrid architecture when presented with a new set of strings which were not present in the training data set. In this way, we show that the hybrid system of HMM and RNN can learn and represent deterministic finite-state automata. We ran experiments with different sets of population sizes in the genetic algorithm; we also ran experiments to find out which weight initializations were best for training the hybrid architecture. The results show that the hybrid architecture of recurrent neural networks inspired by hidden Markov models can train and represent dynamical systems. The best training and generalization performance is achieved when the hybrid architecture is initialized with random real weight values of range -15 to 15.Keywords: Deterministic finite-state automata, genetic algorithm, hidden Markov models, hybrid systems and recurrent neural networks.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1890601 Design of an Augmented Automatic Choosing Control with Constrained Input by Lyapunov Functions Using Gradient Optimization Automatic Choosing Functions
Authors: Toshinori Nawata
Abstract:
In this paper a nonlinear feedback control called augmented automatic choosing control (AACC) for a class of nonlinear systems with constrained input is presented. When designed the control, a constant term which arises from linearization of a given nonlinear system is treated as a coefficient of a stable zero dynamics. Parameters of the control are suboptimally selected by maximizing the stable region in the sense of Lyapunov with the aid of a genetic algorithm. This approach is applied to a field excitation control problem of power system to demonstrate the splendidness of the AACC. Simulation results show that the new controller can improve performance remarkably well.
Keywords: Augmented automatic choosing control, nonlinear control, genetic algorithm, zero dynamics.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1734600 Design of an Augmented Automatic Choosing Control by Lyapunov Functions Using Gradient Optimization Automatic Choosing Functions
Authors: Toshinori Nawata
Abstract:
In this paper we consider a nonlinear feedback control called augmented automatic choosing control (AACC) using the gradient optimization automatic choosing functions for nonlinear systems. Constant terms which arise from sectionwise linearization of a given nonlinear system are treated as coefficients of a stable zero dynamics. Parameters included in the control are suboptimally selected by expanding a stable region in the sense of Lyapunov with the aid of the genetic algorithm. This approach is applied to a field excitation control problem of power system to demonstrate the splendidness of the AACC. Simulation results show that the new controller can improve performance remarkably well.Keywords: augmented automatic choosing control, nonlinear control, genetic algorithm, zero dynamics.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1504599 Application of Soft Computing Methods for Economic Dispatch in Power Systems
Authors: Jagabondhu Hazra, Avinash Sinha
Abstract:
Economic dispatch problem is an optimization problem where objective function is highly non linear, non-convex, non-differentiable and may have multiple local minima. Therefore, classical optimization methods may not converge or get trapped to any local minima. This paper presents a comparative study of four different evolutionary algorithms i.e. genetic algorithm, bacteria foraging optimization, ant colony optimization and particle swarm optimization for solving the economic dispatch problem. All the methods are tested on IEEE 30 bus test system. Simulation results are presented to show the comparative performance of these methods.
Keywords: Ant colony optimization, bacteria foraging optimization, economic dispatch, evolutionary algorithm, genetic algorithm, particle swarm optimization.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2481598 A Multi-Level GA Search with Application to the Resource-Constrained Re-Entrant Flow Shop Scheduling Problem
Authors: Danping Lin, C.K.M. Lee
Abstract:
Re-entrant scheduling is an important search problem with many constraints in the flow shop. In the literature, a number of approaches have been investigated from exact methods to meta-heuristics. This paper presents a genetic algorithm that encodes the problem as multi-level chromosomes to reflect the dependent relationship of the re-entrant possibility and resource consumption. The novel encoding way conserves the intact information of the data and fastens the convergence to the near optimal solutions. To test the effectiveness of the method, it has been applied to the resource-constrained re-entrant flow shop scheduling problem. Computational results show that the proposed GA performs better than the simulated annealing algorithm in the measure of the makespanKeywords: Resource-constrained, re-entrant, genetic algorithm (GA), multi-level encoding
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1792597 Solving Part Type Selection and Loading Problem in Flexible Manufacturing System Using Real Coded Genetic Algorithms – Part II: Optimization
Authors: Wayan F. Mahmudy, Romeo M. Marian, Lee H. S. Luong
Abstract:
This paper presents modeling and optimization of two NP-hard problems in flexible manufacturing system (FMS), part type selection problem and loading problem. Due to the complexity and extent of the problems, the paper was split into two parts. The first part of the papers has discussed the modeling of the problems and showed how the real coded genetic algorithms (RCGA) can be applied to solve the problems. This second part discusses the effectiveness of the RCGA which uses an array of real numbers as chromosome representation. The novel proposed chromosome representation produces only feasible solutions which minimize a computational time needed by GA to push its population toward feasible search space or repair infeasible chromosomes. The proposed RCGA improves the FMS performance by considering two objectives, maximizing system throughput and maintaining the balance of the system (minimizing system unbalance). The resulted objective values are compared to the optimum values produced by branch-and-bound method. The experiments show that the proposed RCGA could reach near optimum solutions in a reasonable amount of time.
Keywords: Flexible manufacturing system, production planning, part type selection problem, loading problem, real-coded genetic algorithm
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1970596 Performance Analysis of Genetic Algorithm with kNN and SVM for Feature Selection in Tumor Classification
Authors: C. Gunavathi, K. Premalatha
Abstract:
Tumor classification is a key area of research in the field of bioinformatics. Microarray technology is commonly used in the study of disease diagnosis using gene expression levels. The main drawback of gene expression data is that it contains thousands of genes and a very few samples. Feature selection methods are used to select the informative genes from the microarray. These methods considerably improve the classification accuracy. In the proposed method, Genetic Algorithm (GA) is used for effective feature selection. Informative genes are identified based on the T-Statistics, Signal-to-Noise Ratio (SNR) and F-Test values. The initial candidate solutions of GA are obtained from top-m informative genes. The classification accuracy of k-Nearest Neighbor (kNN) method is used as the fitness function for GA. In this work, kNN and Support Vector Machine (SVM) are used as the classifiers. The experimental results show that the proposed work is suitable for effective feature selection. With the help of the selected genes, GA-kNN method achieves 100% accuracy in 4 datasets and GA-SVM method achieves in 5 out of 10 datasets. The GA with kNN and SVM methods are demonstrated to be an accurate method for microarray based tumor classification.
Keywords: F-Test, Gene Expression, Genetic Algorithm, k- Nearest-Neighbor, Microarray, Signal-to-Noise Ratio, Support Vector Machine, T-statistics, Tumor Classification.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 4540595 Holistic Face Recognition using Multivariate Approximation, Genetic Algorithms and AdaBoost Classifier: Preliminary Results
Authors: C. Villegas-Quezada, J. Climent
Abstract:
Several works regarding facial recognition have dealt with methods which identify isolated characteristics of the face or with templates which encompass several regions of it. In this paper a new technique which approaches the problem holistically dispensing with the need to identify geometrical characteristics or regions of the face is introduced. The characterization of a face is achieved by randomly sampling selected attributes of the pixels of its image. From this information we construct a set of data, which correspond to the values of low frequencies, gradient, entropy and another several characteristics of pixel of the image. Generating a set of “p" variables. The multivariate data set with different polynomials minimizing the data fitness error in the minimax sense (L∞ - Norm) is approximated. With the use of a Genetic Algorithm (GA) it is able to circumvent the problem of dimensionality inherent to higher degree polynomial approximations. The GA yields the degree and values of a set of coefficients of the polynomials approximating of the image of a face. By finding a family of characteristic polynomials from several variables (pixel characteristics) for each face (say Fi ) in the data base through a resampling process the system in use, is trained. A face (say F ) is recognized by finding its characteristic polynomials and using an AdaBoost Classifier from F -s polynomials to each of the Fi -s polynomials. The winner is the polynomial family closer to F -s corresponding to target face in data base.
Keywords: AdaBoost Classifier, Holistic Face Recognition, Minimax Multivariate Approximation, Genetic Algorithm.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1498594 Modeling and Optimization of Part Type Selection and Loading Problem in Flexible Manufacturing System Using Real Coded Genetic Algorithms
Authors: Wayan F. Mahmudy, Romeo M. Marian, Lee H. S. Luong
Abstract:
This paper deals with modeling and optimization of two NP-hard problems in production planning of flexible manufacturing system (FMS), part type selection problem and loading problem. The part type selection problem and the loading problem are strongly related and heavily influence the system’s efficiency and productivity. These problems have been modeled and solved simultaneously by using real coded genetic algorithms (RCGA) which uses an array of real numbers as chromosome representation. The novel proposed chromosome representation produces only feasible solutions which minimize a computational time needed by GA to push its population toward feasible search space or repair infeasible chromosomes. The proposed RCGA improves the FMS performance by considering two objectives, maximizing system throughput and maintaining the balance of the system (minimizing system unbalance). The resulted objective values are compared to the optimum values produced by branch-and-bound method. The experiments show that the proposed RCGA could reach near optimum solutions in a reasonable amount of time.
Keywords: Flexible manufacturing system, production planning, part type selection problem, loading problem, real-coded genetic algorithm.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2633593 The Economic Lot Scheduling Problem in Flow Lines with Sequence-Dependent Setups
Authors: M. Heydari, S. A. Torabi
Abstract:
The problem of lot sizing, sequencing and scheduling multiple products in flow line production systems has been studied by several authors. Almost all of the researches in this area assumed that setup times and costs are sequence –independent even though sequence dependent setups are common in practice. In this paper we present a new mixed integer non linear program (MINLP) and a heuristic method to solve the problem in sequence dependent case. Furthermore, a genetic algorithm has been developed which applies this constructive heuristic to generate initial population. These two proposed solution methods are compared on randomly generated problems. Computational results show a clear superiority of our proposed GA for majority of the test problems.Keywords: Economic lot scheduling problem, finite horizon, genetic algorithm, mixed zero-one nonlinear programming, sequence-dependent.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1538592 Methodology for the Multi-Objective Analysis of Data Sets in Freight Delivery
Authors: Dale Dzemydiene, Aurelija Burinskiene, Arunas Miliauskas, Kristina Ciziuniene
Abstract:
Data flow and the purpose of reporting the data are different and dependent on business needs. Different parameters are reported and transferred regularly during freight delivery. This business practices form the dataset constructed for each time point and contain all required information for freight moving decisions. As a significant amount of these data is used for various purposes, an integrating methodological approach must be developed to respond to the indicated problem. The proposed methodology contains several steps: (1) collecting context data sets and data validation; (2) multi-objective analysis for optimizing freight transfer services. For data validation, the study involves Grubbs outliers analysis, particularly for data cleaning and the identification of statistical significance of data reporting event cases. The Grubbs test is often used as it measures one external value at a time exceeding the boundaries of standard normal distribution. In the study area, the test was not widely applied by authors, except when the Grubbs test for outlier detection was used to identify outsiders in fuel consumption data. In the study, the authors applied the method with a confidence level of 99%. For the multi-objective analysis, the authors would like to select the forms of construction of the genetic algorithms, which have more possibilities to extract the best solution. For freight delivery management, the schemas of genetic algorithms' structure are used as a more effective technique. Due to that, the adaptable genetic algorithm is applied for the description of choosing process of the effective transportation corridor. In this study, the multi-objective genetic algorithm methods are used to optimize the data evaluation and select the appropriate transport corridor. The authors suggest a methodology for the multi-objective analysis, which evaluates collected context data sets and uses this evaluation to determine a delivery corridor for freight transfer service in the multi-modal transportation network. In the multi-objective analysis, authors include safety components, the number of accidents a year, and freight delivery time in the multi-modal transportation network. The proposed methodology has practical value in the management of multi-modal transportation processes.
Keywords: Multi-objective decision support, analysis, data validation, freight delivery, multi-modal transportation, genetic programming methods.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 485591 Modeling and Analysis of Concrete Slump Using Hybrid Artificial Neural Networks
Authors: Vinay Chandwani, Vinay Agrawal, Ravindra Nagar
Abstract:
Artificial Neural Networks (ANN) trained using backpropagation (BP) algorithm are commonly used for modeling material behavior associated with non-linear, complex or unknown interactions among the material constituents. Despite multidisciplinary applications of back-propagation neural networks (BPNN), the BP algorithm possesses the inherent drawback of getting trapped in local minima and slowly converging to a global optimum. The paper present a hybrid artificial neural networks and genetic algorithm approach for modeling slump of ready mix concrete based on its design mix constituents. Genetic algorithms (GA) global search is employed for evolving the initial weights and biases for training of neural networks, which are further fine tuned using the BP algorithm. The study showed that, hybrid ANN-GA model provided consistent predictions in comparison to commonly used BPNN model. In comparison to BPNN model, the hybrid ANNGA model was able to reach the desired performance goal quickly. Apart from the modeling slump of ready mix concrete, the synaptic weights of neural networks were harnessed for analyzing the relative importance of concrete design mix constituents on the slump value. The sand and water constituents of the concrete design mix were found to exhibit maximum importance on the concrete slump value.
Keywords: Artificial neural networks, Genetic algorithms, Back-propagation algorithm, Ready Mix Concrete, Slump value.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2904590 An Augmented Automatic Choosing Control with Constrained Input Using Weighted Gradient Optimization Automatic Choosing Functions
Authors: Toshinori Nawata
Abstract:
In this paper we consider a nonlinear feedback control called augmented automatic choosing control (AACC) for nonlinear systems with constrained input using weighted gradient optimization automatic choosing functions. Constant term which arises from linearization of a given nonlinear system is treated as a coefficient of a stable zero dynamics. Parameters of the control are suboptimally selected by maximizing the stable region in the sense of Lyapunov with the aid of a genetic algorithm. This approach is applied to a field excitation control problem of power system to demonstrate the splendidness of the AACC. Simulation results show that the new controller can improve performance remarkably well.
Keywords: Augmented automatic choosing control, nonlinear control, genetic algorithm, zero dynamics.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1843589 BeamGA Median: A Hybrid Heuristic Search Approach
Authors: Ghada Badr, Manar Hosny, Nuha Bintayyash, Eman Albilali, Souad Larabi Marie-Sainte
Abstract:
The median problem is significantly applied to derive the most reasonable rearrangement phylogenetic tree for many species. More specifically, the problem is concerned with finding a permutation that minimizes the sum of distances between itself and a set of three signed permutations. Genomes with equal number of genes but different order can be represented as permutations. In this paper, an algorithm, namely BeamGA median, is proposed that combines a heuristic search approach (local beam) as an initialization step to generate a number of solutions, and then a Genetic Algorithm (GA) is applied in order to refine the solutions, aiming to achieve a better median with the smallest possible reversal distance from the three original permutations. In this approach, any genome rearrangement distance can be applied. In this paper, we use the reversal distance. To the best of our knowledge, the proposed approach was not applied before for solving the median problem. Our approach considers true biological evolution scenario by applying the concept of common intervals during the GA optimization process. This allows us to imitate a true biological behavior and enhance genetic approach time convergence. We were able to handle permutations with a large number of genes, within an acceptable time performance and with same or better accuracy as compared to existing algorithms.Keywords: Median problem, phylogenetic tree, permutation, genetic algorithm, beam search, genome rearrangement distance.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 979588 Reconfiguration of Deregulated Distribution Network for Minimizing Energy Supply Cost by using Multi-Objective BGA
Authors: H. Kazemi Karegar, S. Jalilzadeh, V. Nabaei, A. Shabani
Abstract:
In this paper, the problem of finding the optimal topological configuration of a deregulated distribution network is considered. The new features of this paper are proposing a multiobjective function and its application on deregulated distribution networks for finding the optimal configuration. The multi-objective function will be defined for minimizing total Energy Supply Costs (ESC) and energy losses subject to load flow constraints. The optimal configuration will be obtained by using Binary Genetic Algorithm (BGA).The proposed method has been tested to analyze a sample and a practical distribution networks.Keywords: Binary Genetic Algorithm, Deregulated Distribution Network, Minimizing Cost, Reconfiguration.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1412