Search results for: Non-linear quasi-static solution.
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 3457

Search results for: Non-linear quasi-static solution.

3067 Concrete Gravity Dams and Traveling Wave Effect along Reservoir Bottom

Authors: H. Mirzabozorg, M. Varmazyari

Abstract:

In the present article, effect of non-uniform excitation of reservoir bottom on nonlinear response of concrete gravity dams is considered. Anisotropic damage mechanics approach is used to model nonlinear behavior of mass concrete in 2D space. The tallest monolith of Pine Flat dam is selected as a case study. The horizontal and vertical components of 1967 Koyna earthquake is used to excite the system. It is found that crest response and stresses within the dam body decrease significantly when the reservoir is excited nonuniformly. In addition, the crack profiles within the dam body and in vicinity of the neck decreases.

Keywords: Concrete gravity dam, dam-reservoir-foundation interaction, traveling wave, damage mechanics.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1781
3066 Two Dimensionnal Model for Extraction Packed Column Simulation using Finite Element Method

Authors: N. Outili, A-H. Meniai

Abstract:

Modeling transfer phenomena in several chemical engineering operations leads to the resolution of partial differential equations systems. According to the complexity of the operations mechanisms, the equations present a nonlinear form and analytical solution became difficult, we have then to use numerical methods which are based on approximations in order to transform a differential system to an algebraic one.Finite element method is one of numerical methods which can be used to obtain an accurate solution in many complex cases of chemical engineering.The packed columns find a large application like contactor for liquid-liquid systems such solvent extraction. In the literature, the modeling of this type of equipment received less attention in comparison with the plate columns.A mathematical bidimensionnal model with radial and axial dispersion, simulating packed tower extraction behavior was developed and a partial differential equation was solved using the finite element method by adopting the Galerkine model. We developed a Mathcad program, which can be used for a similar equations and concentration profiles are obtained along the column. The influence of radial dispersion was prooved and it can-t be neglected, the results were compared with experimental concentration at the top of the column in the extraction system: acetone/toluene/water.

Keywords: finite element method, Galerkine method, liquidliquid extraction modelling, packed column simulation, two dimensional model

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1671
3065 Arsenate Removal by Nano Zero-valent Iron in the Gas Bubbling System

Authors: V. Tanboonchuy, J.C. Hsu, N. Grisdanurak, C.H. Liao

Abstract:

This study focused on arsenate removal by nano zero-valent iron (NZVI) in the gas-bubbled aqueous solution. It appears that solution acidified by H2SO4 is far more favorable than by CO2-bubbled acidification. In addition, as dissolved oxygen was stripped out of solution by N2 gas bubbling, the arsenate removal dropped significantly. To take advantages of common practice of carbonation and oxic condition, pretreatment of CO2 and air bubbling in sequence are recommended for a better removal of arsenate.

Keywords: Arsenic, arsenate, zero-valent iron.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1669
3064 Observer Based Control of a Class of Nonlinear Fractional Order Systems using LMI

Authors: Elham Amini Boroujeni, Hamid Reza Momeni

Abstract:

Design of an observer based controller for a class of fractional order systems has been done. Fractional order mathematics is used to express the system and the proposed observer. Fractional order Lyapunov theorem is used to derive the closed-loop asymptotic stability. The gains of the observer and observer based controller are derived systematically using the linear matrix inequality approach. Finally, the simulation results demonstrate validity and effectiveness of the proposed observer based controller.

Keywords: Fractional order calculus, Fractional order observer, Linear matrix inequality, Nonlinear Systems, Observer based Controller.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2854
3063 A Collusion-Resistant Distributed Signature Delegation Based on Anonymous Mobile Agent

Authors: Omaima Bamasak

Abstract:

This paper presents a novel method that allows an agent host to delegate its signing power to an anonymous mobile agent in such away that the mobile agent does not reveal any information about its host-s identity and, at the same time, can be authenticated by the service host, hence, ensuring fairness of service provision. The solution introduces a verification server to verify the signature generated by the mobile agent in such a way that even if colluding with the service host, both parties will not get more information than what they already have. The solution incorporates three methods: Agent Signature Key Generation method, Agent Signature Generation method, Agent Signature Verification method. The most notable feature of the solution is that, in addition to allowing secure and anonymous signature delegation, it enables tracking of malicious mobile agents when a service host is attacked. The security properties of the proposed solution are analyzed, and the solution is compared with the most related work.

Keywords: Anonymous signature delegation, collusion resistance, e-commerce fairness, mobile agent security.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1415
3062 Exact Solution of the Ising Model on the 15 X 15 Square Lattice with Free Boundary Conditions

Authors: Seung-Yeon Kim

Abstract:

The square-lattice Ising model is the simplest system showing phase transitions (the transition between the paramagnetic phase and the ferromagnetic phase and the transition between the paramagnetic phase and the antiferromagnetic phase) and critical phenomena at finite temperatures. The exact solution of the squarelattice Ising model with free boundary conditions is not known for systems of arbitrary size. For the first time, the exact solution of the Ising model on the square lattice with free boundary conditions is obtained after classifying all ) spin configurations with the microcanonical transfer matrix. Also, the phase transitions and critical phenomena of the square-lattice Ising model are discussed using the exact solution on the square lattice with free boundary conditions.

Keywords: Phase transition, Ising magnet, Square lattice, Freeboundary conditions, Exact solution.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1809
3061 Microstructure and Aging Behavior of Nonflammable AZ91D Mg Alloy

Authors: Seok Hong Min, Tae Kwon Ha

Abstract:

Phase equilibria of AZ91D Mg alloys for nonflammable use, containing Ca and Y, were carried out by using FactSage® and FTLite database, which revealed that solid solution treatment could be performed at temperatures from 400 to 450oC. Solid solution treatment of AZ91D Mg alloy without Ca and Y was successfully conducted at 420oC and supersaturated microstructure with all beta phase resolved into matrix was obtained. In the case of AZ91D Mg alloy with some Ca and Y; however, a little amount of intermetallic particles were observed after solid solution treatment. After solid solution treatment, each alloy was annealed at temperatures of 180 and 200oC for time intervals from 1 min to 48 hrs and hardness of each condition was measured by micro-Vickers method. Peak aging conditions were deduced as at the temperature of 200oC for 10 hrs.

Keywords: Mg alloy, AZ91D, nonflammable alloy, phase equilibrium, peak aging.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2206
3060 Load Frequency Control of Nonlinear Interconnected Hydro-Thermal System Using Differential Evolution Technique

Authors: Banaja Mohanty, Prakash Kumar Hota

Abstract:

This paper presents a differential evolution algorithm to design a robust PI and PID controllers for Load Frequency Control (LFC) of nonlinear interconnected power systems considering the boiler dynamics, Governor Dead Band (GDB), Generation Rate Constraint (GRC). Differential evolution algorithm is employed to search for the optimal controller parameters. The proposed method easily copes of with nonlinear constraints. Further the proposed controller is simple, effective and can ensure the desirable overall system performance. The superiority of the proposed approach has been shown by comparing the results with published fuzzy logic controller for the same power systems. The comparison is done using various performance measures like overshoot, settling time and standard error criteria of frequency and tie-line power deviation following a 1% step load perturbation in hydro area. It is noticed that, the dynamic performance of proposed controller is better than fuzzy logic controller. Furthermore, it is also seen that the proposed system is robust and is not affected by change in the system parameters.

Keywords: Automatic Generation control (AGC), Generation Rate Constraint (GRC), Governor Dead Band (GDB), Differential Evolution (DE)

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 3339
3059 Nonlinear Structural Behavior of Micro- and Nano-Actuators Using the Galerkin Discretization Technique

Authors: Hassen M. Ouakad

Abstract:

In this paper, the influence of van der Waals, as well as electrostatic forces on the structural behavior of MEMS and NEMS actuators, has been investigated using of a Euler-Bernoulli beam continuous model. In the proposed nonlinear model, the electrostatic fringing-fields and the mid-plane stretching (geometric nonlinearity) effects have been considered. The nonlinear integro-differential equation governing the static structural behavior of the actuator has been derived. An original Galerkin-based reduced-order model has been developed to avoid problems arising from the nonlinearities in the differential equation. The obtained reduced-order model equations have been solved numerically using the Newton-Raphson method. The basic design parameters such as the pull-in parameters (voltage and deflection at pull-in), as well as the detachment length due to the van der Waals force of some investigated micro- and nano-actuators have been calculated. The obtained numerical results have been compared with some other existing methods (finite-elements method and finite-difference method) and the comparison showed good agreement among all assumed numerical techniques.

Keywords: MEMS, NEMS, fringing-fields, mid-plane stretching, Galerkin method.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1410
3058 Nonlinear Effects in Stiffness Modeling of Robotic Manipulators

Authors: A. Pashkevich, A. Klimchik, D. Chablat

Abstract:

The paper focuses on the enhanced stiffness modeling of robotic manipulators by taking into account influence of the external force/torque acting upon the end point. It implements the virtual joint technique that describes the compliance of manipulator elements by a set of localized six-dimensional springs separated by rigid links and perfect joints. In contrast to the conventional formulation, which is valid for the unloaded mode and small displacements, the proposed approach implicitly assumes that the loading leads to the non-negligible changes of the manipulator posture and corresponding amendment of the Jacobian. The developed numerical technique allows computing the static equilibrium and relevant force/torque reaction of the manipulator for any given displacement of the end-effector. This enables designer detecting essentially nonlinear effects in elastic behavior of manipulator, similar to the buckling of beam elements. It is also proposed the linearization procedure that is based on the inversion of the dedicated matrix composed of the stiffness parameters of the virtual springs and the Jacobians/Hessians of the active and passive joints. The developed technique is illustrated by an application example that deals with the stiffness analysis of a parallel manipulator of the Orthoglide family

Keywords: Robotic manipulators, Stiffness model, Loaded mode, Nonlinear effects, Buckling, Orthoglide manipulator

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1430
3057 Magneto-Thermo-Mechanical Analysis of Electromagnetic Devices Using the Finite Element Method

Authors: Michael G. Pantelyat

Abstract:

Fundamental basics of pure and applied research in the area of magneto-thermo-mechanical numerical analysis and design of innovative electromagnetic devices (modern induction heaters, novel thermoelastic actuators, rotating electrical machines, induction cookers, electrophysical devices) are elaborated. Thus, mathematical models of magneto-thermo-mechanical processes in electromagnetic devices taking into account main interactions of interrelated phenomena are developed. In addition, graphical representation of coupled (multiphysics) phenomena under consideration is proposed. Besides, numerical techniques for nonlinear problems solution are developed. On this base, effective numerical algorithms for solution of actual problems of practical interest are proposed, validated and implemented in applied 2D and 3D computer codes developed. Many applied problems of practical interest regarding modern electrical engineering devices are numerically solved. Investigations of the influences of various interrelated physical phenomena (temperature dependences of material properties, thermal radiation, conditions of convective heat transfer, contact phenomena, etc.) on the accuracy of the electromagnetic, thermal and structural analyses are conducted. Important practical recommendations on the choice of rational structures, materials and operation modes of electromagnetic devices under consideration are proposed and implemented in industry.

Keywords: Electromagnetic devices, multiphysics, numerical analysis, simulation and design.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1679
3056 Heat Transfer of an Impinging Jet on a Plane Surface

Authors: Jian-Jun Shu

Abstract:

A cold, thin film of liquid impinging on an isothermal hot, horizontal surface has been investigated. An approximate solution for the velocity and temperature distributions in the flow along the horizontal surface is developed, which exploits the hydrodynamic similarity solution for thin film flow. The approximate solution may provide a valuable basis for assessing flow and heat transfer in more complex settings.

Keywords: Flux, free impinging jet, solid-surface, uniform wall temperature.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1962
3055 Determining Optimal Demand Rate and Production Decisions: A Geometric Programming Approach

Authors: Farnaz G. Nezami, Mir B. Aryanezhad, Seyed J. Sadjadi

Abstract:

In this paper a nonlinear model is presented to demonstrate the relation between production and marketing departments. By introducing some functions such as pricing cost and market share loss functions it will be tried to show some aspects of market modelling which has not been regarded before. The proposed model will be a constrained signomial geometric programming model. For model solving, after variables- modifications an iterative technique based on the concept of geometric mean will be introduced to solve the resulting non-standard posynomial model which can be applied to a wide variety of models in non-standard posynomial geometric programming form. At the end a numerical analysis will be presented to accredit the validity of the mentioned model.

Keywords: Geometric programming, marketing, nonlinear optimization, production.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1399
3054 Almost Periodic Solution for a Food-limited Population Model with Delay and Feedback Control

Authors: Xiaoyan Dou, Yongkun Li

Abstract:

In this paper, we consider a food-limited population model with delay and feedback control. By applying the comparison theorem of the differential equation and constructing a suitable Lyapunov functional, sufficient conditions which guarantee the permanence and existence of a unique globally attractive positive almost periodic solution of the system are obtained.

Keywords: Almost periodic solution, food-limited population, feedback control, permanence.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1931
3053 Limit State of Heterogeneous Smart Structures under Unknown Cyclic Loading

Authors: M. Chen, S-Q. Zhang, X. Wang, D. Tate

Abstract:

This paper presents a numerical solution, namely limit and shakedown analysis, to predict the safety state of smart structures made of heterogeneous materials under unknown cyclic loadings, for instance, the flexure hinge in the micro-positioning stage driven by piezoelectric actuator. In combination of homogenization theory and finite-element method (FEM), the safety evaluation problem is converted to a large-scale nonlinear optimization programming for an acceptable bounded loading as the design reference. Furthermore, a general numerical scheme integrated with the FEM and interior-point-algorithm based optimization tool is developed, which makes the practical application possible.

Keywords: Limit state, shakedown analysis, homogenization, heterogeneous structure.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 807
3052 n-Butanol as an Extractant for Lactic Acid Recovery

Authors: Kanungnit Chawong, Panarat Rattanaphanee

Abstract:

Extraction of lactic acid from aqueous solution using n-butanol as an extractant was studied. Effect of mixing time, pH of the aqueous solution, initial lactic acid concentration, and volume ratio between the organic and the aqueous phase were investigated. Distribution coefficient and degree of lactic acid extraction was found to increase when the pH of aqueous solution was decreased. The pH Effect was substantially pronounced at pH of the aqueous solution less than 1. Initial lactic acid concentration and organic-toaqueous volume ratio appeared to have positive effect on the distribution coefficient and the degree of extraction. Due to the nature of n-butanol that is partially miscible in water, incorporation of aqueous solution into organic phase was observed in the extraction with large organic-to-aqueous volume ratio.

Keywords: Lactic acid, liquid-liquid extraction, n-Butanol, Solvating extractant.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 3135
3051 On Symmetry Analysis and Exact Wave Solutions of New Modified Novikov Equation

Authors: Anupma Bansal, R. K. Gupta

Abstract:

In this paper, we study a new modified Novikov equation for its classical and nonclassical symmetries and use the symmetries to reduce it to a nonlinear ordinary differential equation (ODE). With the aid of solutions of the nonlinear ODE by using the modified (G/G)-expansion method proposed recently, multiple exact traveling wave solutions are obtained and the traveling wave solutions are expressed by the hyperbolic functions, trigonometric functions and rational functions.

Keywords: New Modified Novikov Equation, Lie Classical Method, Nonclassical Method, Modified (G'/G)-Expansion Method, Traveling Wave Solutions.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1599
3050 The Inverse Problem of Nonsymmetric Matrices with a Submatrix Constraint and its Approximation

Authors: Yongxin Yuan, Hao Liu

Abstract:

In this paper, we first give the representation of the general solution of the following least-squares problem (LSP): Given matrices X ∈ Rn×p, B ∈ Rp×p and A0 ∈ Rr×r, find a matrix A ∈ Rn×n such that XT AX − B = min, s. t. A([1, r]) = A0, where A([1, r]) is the r×r leading principal submatrix of the matrix A. We then consider a best approximation problem: given an n × n matrix A˜ with A˜([1, r]) = A0, find Aˆ ∈ SE such that A˜ − Aˆ = minA∈SE A˜ − A, where SE is the solution set of LSP. We show that the best approximation solution Aˆ is unique and derive an explicit formula for it. Keyw

Keywords: Inverse problem, Least-squares solution, model updating, Singular value decomposition (SVD), Optimal approximation.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1619
3049 CuO Thin Films Deposition by Spray Pyrolysis: Influence of Precursor Solution Properties

Authors: M. Lamri Zeggar, F. Bourfaa, A. Adjimi, F. Boutbakh, M. S. Aida, N. Attaf

Abstract:

CuO thin films were deposited by spray ultrasonic pyrolysis with different precursor solution. Two staring solution slats were used namely: copper acetate and copper chloride. The influence of these solutions on CuO thin films proprieties of is instigated. The X rays diffraction (XDR) analysis indicated that the films deposed with copper acetate are amorphous however the films elaborated with copper chloride have monoclinic structure. UV- Visible transmission spectra showed a strong absorbance of the deposited CuO thin films in the visible region. Electrical characterization has shown that CuO thin films prepared with copper acetate have a higher electrical conductivity.

Keywords: Thin films, cuprous oxide, spray pyrolysis, precursor solution.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 3271
3048 Moving From Problem Space to Solution Space

Authors: Bilal Saeed Raja, M. Ali Iqbal, Imran Ihsan

Abstract:

Extracting and elaborating software requirements and transforming them into viable software architecture are still an intricate task. This paper defines a solution architecture which is based on the blurred amalgamation of problem space and solution space. The dependencies between domain constraints, requirements and architecture and their importance are described that are to be considered collectively while evolving from problem space to solution space. This paper proposes a revised version of Twin Peaks Model named Win Peaks Model that reconciles software requirements and architecture in more consistent and adaptable manner. Further the conflict between stakeholders- win-requirements is resolved by proposed Voting methodology that is simple adaptation of win-win requirements negotiation model and QARCC.

Keywords: Functional Requirements, Non Functional Requirements, Twin Peaks Model, QARCC.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1836
3047 Statistical Evaluation of Nonlinear Distortion using the Multi-Canonical Monte Carlo Method and the Split Step Fourier Method

Authors: Ioannis Neokosmidis, Nikos Gkekas, Thomas Kamalakis, Thomas Sphicopoulos

Abstract:

In high powered dense wavelength division multiplexed (WDM) systems with low chromatic dispersion, four-wave mixing (FWM) can prove to be a major source of noise. The MultiCanonical Monte Carlo Method (MCMC) and the Split Step Fourier Method (SSFM) are combined to accurately evaluate the probability density function of the decision variable of a receiver, limited by FWM. The combination of the two methods leads to more accurate results, and offers the possibility of adding other optical noises such as the Amplified Spontaneous Emission (ASE) noise.

Keywords: Monte Carlo, Nonlinear optics, optical crosstalk, Wavelength-division Multiplexing (WDM).

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1660
3046 Enhanced GA-Fuzzy OPF under both Normal and Contingent Operation States

Authors: Ashish Saini, A.K. Saxena

Abstract:

The genetic algorithm (GA) based solution techniques are found suitable for optimization because of their ability of simultaneous multidimensional search. Many GA-variants have been tried in the past to solve optimal power flow (OPF), one of the nonlinear problems of electric power system. The issues like convergence speed and accuracy of the optimal solution obtained after number of generations using GA techniques and handling system constraints in OPF are subjects of discussion. The results obtained for GA-Fuzzy OPF on various power systems have shown faster convergence and lesser generation costs as compared to other approaches. This paper presents an enhanced GA-Fuzzy OPF (EGAOPF) using penalty factors to handle line flow constraints and load bus voltage limits for both normal network and contingency case with congestion. In addition to crossover and mutation rate adaptation scheme that adapts crossover and mutation probabilities for each generation based on fitness values of previous generations, a block swap operator is also incorporated in proposed EGA-OPF. The line flow limits and load bus voltage magnitude limits are handled by incorporating line overflow and load voltage penalty factors respectively in each chromosome fitness function. The effects of different penalty factors settings are also analyzed under contingent state.

Keywords: Contingent operation state, Fuzzy rule base, Genetic Algorithms, Optimal Power Flow.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1586
3045 Ultrasound Assisted Method to Increase the Aluminum Dissolve Rate from Acidified Water

Authors: Wen Po Cheng, Chi Hua Fu, Ping Hung Chen, Ruey Fang Yu

Abstract:

Aluminum salt that is generally presents as a solid phase in the water purification sludge (WPS) can be dissolved, recovering a liquid phase, by adding strong acid to the sludge solution. According to the reaction kinetics, when reactant is in the form of small particles with a large specific surface area, or when the reaction temperature is high, the quantity of dissolved aluminum salt or reaction rate, respectively are high. Therefore, in this investigation, water purification sludge (WPS) solution was treated with ultrasonic waves to break down the sludge, and different acids (1 N HCl and 1 N H2SO4) were used to acidify it. Acid dosages that yielded the solution pH of less than two were used. The results thus obtained indicate that the quantity of dissolved aluminum in H2SO4-acidified solution exceeded that in HCl-acidified solution. Additionally, ultrasonic treatment increased the rate of dissolution of aluminum and the amount dissolved. The quantity of aluminum dissolved at 60℃ was 1.5 to 2.0 times higher than that at 25℃.

Keywords: Coagulant, Aluminum, Ultrasonic, Acidification, Temperature, Sludge.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2239
3044 Solving of the Fourth Order Differential Equations with the Neumann Problem

Authors: Marziyeh Halimi, Roushanak Lotfikar, Simin Mansouri Borojeni

Abstract:

In this paper we considered the Neumann problem for the fourth order differential equation. First we define the weighted Sobolev space 2 Wα and generalized solution for this equation. Then we consider the existence and uniqueness of the generalized solution, as well as give the description of the spectrum and of the domain of definition of the corresponding operator.

Keywords: Neumann problem, weighted Sobolev spaces, generalized solution, spectrum of linear operators.2000 mathematic subject classification: 34A05, 34A30.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1398
3043 Iterative solutions to the linear matrix equation AXB + CXTD = E

Authors: Yongxin Yuan, Jiashang Jiang

Abstract:

In this paper the gradient based iterative algorithm is presented to solve the linear matrix equation AXB +CXTD = E, where X is unknown matrix, A,B,C,D,E are the given constant matrices. It is proved that if the equation has a solution, then the unique minimum norm solution can be obtained by choosing a special kind of initial matrices. Two numerical examples show that the introduced iterative algorithm is quite efficient.

Keywords: matrix equation, iterative algorithm, parameter estimation, minimum norm solution.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1531
3042 On the Solution of Fully Fuzzy Linear Systems

Authors: Hsuan-Ku Liu

Abstract:

A linear system is called a fully fuzzy linear system (FFLS) if quantities in this system are all fuzzy numbers. For the FFLS, we investigate its solution and develop a new approximate method for solving the FFLS. Observing the numerical results, we find that our method is accurate than the iterative Jacobi and Gauss- Seidel methods on approximating the solution of FFLS.

Keywords: Fully fuzzy linear equations, iterative method, homotopy perturbation method, approximate solutions.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1721
3041 A New Approach to the Approximate Solutions of Hamilton-Jacobi Equations

Authors: Joe Imae, Kenjiro Shinagawa, Tomoaki Kobayashi, Guisheng Zhai

Abstract:

We propose a new approach on how to obtain the approximate solutions of Hamilton-Jacobi (HJ) equations. The process of the approximation consists of two steps. The first step is to transform the HJ equations into the virtual time based HJ equations (VT-HJ) by introducing a new idea of ‘virtual-time’. The second step is to construct the approximate solutions of the HJ equations through a computationally iterative procedure based on the VT-HJ equations. It should be noted that the approximate feedback solutions evolve by themselves as the virtual-time goes by. Finally, we demonstrate the effectiveness of our approximation approach by means of simulations with linear and nonlinear control problems.

Keywords: Nonlinear Control, Optimal Control, Hamilton-Jacobi Equation, Virtual-Time

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1484
3040 Recent Trends in Nonlinear Methods of HRV Analysis: A Review

Authors: Ramesh K. Sunkaria

Abstract:

The linear methods of heart rate variability analysis such as non-parametric (e.g. fast Fourier transform analysis) and parametric methods (e.g. autoregressive modeling) has become an established non-invasive tool for marking the cardiac health, but their sensitivity and specificity were found to be lower than expected with positive predictive value <30%. This may be due to considering the RR-interval series as stationary and re-sampling them prior to their use for analysis, whereas actually it is not. This paper reviews the non-linear methods of HRV analysis such as correlation dimension, largest Lyupnov exponent, power law slope, fractal analysis, detrended fluctuation analysis, complexity measure etc. which are currently becoming popular as these uses the actual RR-interval series. These methods are expected to highly accurate cardiac health prognosis.

Keywords: chaos, nonlinear dynamics, sample entropy, approximate entropy, detrended fluctuation analysis.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2322
3039 Control of Pendulum on a Cart with State Dependent Riccati Equations

Authors: N. M. Singh, Jayant Dubey, Ghanshyam Laddha

Abstract:

State Dependent Riccati Equation (SDRE) approach is a modification of the well studied LQR method. It has the capability of being applied to control nonlinear systems. In this paper the technique has been applied to control the single inverted pendulum (SIP) which represents a rich class of nonlinear underactuated systems. SIP modeling is based on Euler-Lagrange equations. A procedure is developed for judicious selection of weighting parameters and constraint handling. The controller designed by SDRE technique here gives better results than existing controllers designed by energy based techniques.

Keywords: State Dependent Riccati Equation (SDRE), Single Inverted Pendulum (SIP), Linear Quadratic Regulator (LQR)

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 3052
3038 Balanced and Unbalanced Voltage Sag Mitigation Using DSTATCOM with Linear and Nonlinear Loads

Authors: H. Nasiraghdam, A. Jalilian

Abstract:

DSTATCOM is one of the equipments for voltage sag mitigation in power systems. In this paper a new control method for balanced and unbalanced voltage sag mitigation using DSTATCOM is proposed. The control system has two loops in order to regulate compensator current and load voltage. Delayed signal cancellation has been used for sequence separation. The compensator should protect sensitive loads against different types of voltage sag. Performance of the proposed method is investigated under different types of voltage sags for linear and nonlinear loads. Simulation results show appropriate operation of the proposed control system.

Keywords: Custom power, power quality, voltage sagmitigation, current vector control.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2803