Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 33122
Exact Solution of the Ising Model on the 15 X 15 Square Lattice with Free Boundary Conditions
Authors: Seung-Yeon Kim
Abstract:
The square-lattice Ising model is the simplest system showing phase transitions (the transition between the paramagnetic phase and the ferromagnetic phase and the transition between the paramagnetic phase and the antiferromagnetic phase) and critical phenomena at finite temperatures. The exact solution of the squarelattice Ising model with free boundary conditions is not known for systems of arbitrary size. For the first time, the exact solution of the Ising model on the square lattice with free boundary conditions is obtained after classifying all ) spin configurations with the microcanonical transfer matrix. Also, the phase transitions and critical phenomena of the square-lattice Ising model are discussed using the exact solution on the square lattice with free boundary conditions.Keywords: Phase transition, Ising magnet, Square lattice, Freeboundary conditions, Exact solution.
Digital Object Identifier (DOI): doi.org/10.5281/zenodo.1329366
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1847References:
[1] C. Domb, The Critical Point, Taylor and Francis, London, 1996.
[2] L. Onsager, "Crystal statistics. I. A two-dimensional model with an order-disorder transition", Physical Review, 65 (1944) 117-149.
[3] B. Kaufman, "Crystal statistics. II. Partition function evaluated by spinor analysis", Physical Review, 76 (1949) 1232-1243.
[4] A. E. Ferdinand and M. E. Fisher, "Bounded and inhomogeneous Ising models. I. Specific-heat anomaly of a finite lattice", Physical Review, 185 (1969) 832-846.
[5] G. Bhanot, "A numerical method to compute exactly the partition function with application to theories in two dimensions", Journal of Statistical Physics, 60 (1990) 55-75.
[6] B. Stosic, S. Milosevic, and M. E. Stanley, "Exact results for the twodimensional Ising model in a magnetic field: Tests of finite-size scaling theory", Physical Review B, 41 (1990) 11466-11478.
[7] L. Stodolsky and J. Wosiek, "Exact density of states and its critical behavior", Nuclear Physics B, 413 (1994) 813-826.
[8] S.-Y. Kim, "Yang-Lee zeros of the antiferromagnetic Ising model", Physical Review Letters, 93 (2004) 130604:1-4.
[9] S.-Y. Kim, "Density of Yang-Lee zeros and Yang-Lee edge singularity for the antiferromagnetic Ising model", Nuclear Physics B, 705 (2005) 504-520.
[10] S.-Y. Kim, "Fisher zeros of the Ising antiferromagnet in an arbitrary nonzero magnetic field plane", Physical Review E, 71 (2005) 017102:1- 4.
[11] R. J. Creswick, "Transfer matrix for the restricted canonical and microcanonical ensembles", Physical Review E, 52 (1995) R5735-R5738.
[12] R. J. Creswick and S.-Y. Kim, "Finite-size scaling of the density of zeros of the partition function in first- and second-order phase transitions", Physical Review E, 56 (1997) 2418-2422.
[13] S.-Y. Kim and R. J. Creswick, "Yang-Lee zeros of the Q-state Potts model in the complex magnetic field plane", Physical Review Letters, 81 (1998) 2000-2003.
[14] S.-Y. Kim and R. J. Creswick, "Fisher zeros of the Q-state Potts model in the complex temperature plane for nonzero external magnetic field", Physical Review E, 58 (1998) 7006-7012.
[15] R. J. Creswick and S.-Y. Kim, "Microcanonical transfer matrix study of the Q-state Potts model", Computer Physics Communications, 121 (1999) 26-29.
[16] S.-Y. Kim and R. J. Creswick, "Exact results for the zeros of the partition function of the Potts model on finite lattices", Physica A, 281 (2000) 252-261.
[17] S.-Y. Kim and R. J. Creswick, "Density of states, Potts zeros, and Fisher zeros of the Q-state Potts model for continuous Q", Physical Review E, 63 (2001) 066107:1-12.
[18] S.-Y. Kim, "Partition function zeros of the Q-state Potts model on the simple-cubic lattice", Nuclear Physics B, 637 (2002) 409-426.
[19] S.-Y. Kim, "Density of the Fisher zeros for the three-state and four-state Potts models", Physical Review E, 70 (2004) 016110:1-5.
[20] S.-Y. Kim, "Density of Yang-Lee zeros for the Ising ferromagnet", Physical Review E, 74 (2006) 011119:1-7.
[21] S.-Y. Kim, "Honeycomb-lattice antiferromagnetic Ising model in a magnetic field", Physics Letters A, 358 (2006) 245-250.
[22] J. L. Monroe and S.-Y. Kim, "Phase diagram and critical exponent for the nearest-neighbor and next-nearest-neighbor interaction Ising model", Physical Review E, 76 (2007) 021123:1-5.
[23] C.-O. Hwang, S.-Y. Kim, D. Kang, and J. M. Kim, "Ising antiferromagnets in a nonzero uniform magnetic field", Journal of Statistical Mechanics, 7 (2007) L05001:1-8.
[24] S.-Y. Kim, C.-O. Hwang, and J. M. Kim, "Partition function zeros of the antiferromagnetic Ising model on triangular lattice in the complex temperature plane for nonzero magnetic field", Nuclear Physics B, 805 (2008) 441-450.
[25] S.-Y. Kim, "Ground-state entropy of the square-lattice Q-state Potts antiferromagnet", Journal of the Korean Physical Society, 52 (2008) 551-556.
[26] S.-Y. Kim, "Specific heat of the square-lattice Ising antiferromagnet in a magnetic field", Journal of Physical Studies, 13 (2009) 4006:1-3.
[27] S.-Y. Kim, "Partition function zeros of the square-lattice Ising model with nearest- and next-nearest-neighbor interactions", Physical Review E, 81 (2010) 031120:1-7.
[28] S.-Y. Kim, "Partition function zeros of the honeycomb-lattice Ising antiferromagnet in the complex magnetic-field plane", Physical Review E, 82 (2010) 041107:1-7.
[29] C.-O. Hwang and S.-Y. Kim, "Yang-Lee zeros of triangular Ising antiferromagnets", Physica A, 389 (2010) 5650-5654.
[30] R. Bulirsch and J. Stoer, "Fehlerabsch¨atzungen und extrapolation mit rationalen funktionen bei verfahren vom Richardson-typus", Numerische Mathematik, 6 (1964) 413-427; "Numerical treatment of ordinary differential equations by extrapolation methods", Numerische Mathematik, 8 (1966) 1-13.