Search results for: Excitation Angle
392 Application of 1-MCP on ‘Centro’ Melon at Different Days after Harvest
Authors: L. P. L. Nguyen, G. Hitka, T. Zsom, Z. Kókai
Abstract:
This study is aimed to investigate the influence of postharvest delays of 1-Methylcyclopropene (1-MCP) treatment on prolonging the storage potential of melon. Melons were treated with 625-650 ppb 1-MCP at 10 °C for 24 hours on the 1st, 3rd and 5th day after harvest. Decreased ethylene production and retarded softening of melon fruits after 7 days of storage at 10 °C plus 3 days of shelflife were obtained by 1-MCP applications. 1-MCP strongly affected the chlorophyll fluorescence characteristics and hue angle values of melon. After shelf-life, the peel color of treated melon was slow in turning to yellow compared to the control. Additionally, firmness of melons treated on the first day after harvest was 38% higher than that of the control fruit. Results showed that fruits treated on the 1st and the 3rd day after harvest could maintain the quality of melon.Keywords: 1-MCP, delay, muskmelon, storage.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1418391 Retrospective Synthetic Focusing with Correlation Weighting for Very High Frame Rate Ultrasound
Authors: Chang-Lin Hu, Yao-You Cheng, Meng-Lin Li
Abstract:
The need of high frame-rate imaging has been triggered by the new applications of ultrasound imaging to transient elastography and real-time 3D ultrasound. Using plane wave excitation (PWE) is one of the methods to achieve very high frame-rate imaging since an image can be formed with a single insonification. However, due to the lack of transmit focusing, the image quality with PWE is lower compared with those using conventional focused transmission. To solve this problem, we propose a filter-retrieved transmit focusing (FRF) technique combined with cross-correlation weighting (FRF+CC weighting) for high frame-rate imaging with PWE. A restrospective focusing filter is designed to simultaneously minimize the predefined sidelobe energy associated with single PWE and the filter energy related to the signal-to-noise-ratio (SNR). This filter attempts to maintain the mainlobe signals and to reduce the sidelobe ones, which gives similar mainlobe signals and different sidelobes between the original PWE and the FRF baseband data. Normalized cross-correlation coefficient at zero lag is calculated to quantify the degree of similarity at each imaging point and used as a weighting matrix to the FRF baseband data to further suppress sidelobes, thus improving the filter-retrieved focusing quality.
Keywords: retrospective synthetic focusing, high frame rate, correlation weighting.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1853390 Reliability Indices Evaluation of SEIG Rotor Core Magnetization with Minimum Capacitive Excitation for WECs
Authors: Lokesh Varshney, R. K. Saket
Abstract:
This paper presents reliability indices evaluation of the rotor core magnetization of the induction motor operated as a self excited induction generator by using probability distribution approach and Monte Carlo simulation. Parallel capacitors with calculated minimum capacitive value across the terminals of the induction motor operated as a SEIG with unregulated shaft speed have been connected during the experimental study. A three phase, 4 poles, 50Hz, 5.5 hp, 12.3A, 230V induction motor coupled with DC Shunt Motor was tested in the electrical machine laboratory with variable reactive loads. Based on this experimental study, it is possible to choose a reliable induction machines operated as a SEIG for unregulated renewable energy application in remote area or where grid is not available. Failure density function, cumulative failure distribution function, survivor function, hazard model, probability of success and probability of failure for reliability evaluation of the three phase induction motor operating as a SEIG have been presented graphically in this paper.
Keywords: Residual magnetism, magnetization curve, induction motor, self excited induction generator, probability distribution, Monte Carlo simulation.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2127389 Investigation and Perfection of Centrifugal Compressor Stages by CFD Methods
Authors: Y. Galerkin, L. Marenina
Abstract:
Stator elements «Vane diffuser + crossover + return channel» of stages with different specific speed were investigated by CFD calculations. The regime parameter was introduced to present efficiency and loss coefficient performance of all elements together. Flow structure demonstrated advantages and disadvantages of design. Flow separation in crossovers was eliminated by its shape modification. Efficiency increased visibly. Calculated CFD performances are in acceptable correlation with predicted ones by engineering design method. The information obtained is useful for design method better calibration.
Keywords: Vane diffuser, return channel, crossover, efficiency, loss coefficient, inlet flow angle.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2190388 Computational Investigation of the Combined Effects of Yaw, Rotation and Ground Proximity on the Aerodynamics of an Isolated Wheel
Authors: T. D. Kothalawala, A. Gatto, L. Wrobel
Abstract:
An exploratory computational investigation using RANS & URANS was carried out to understand the aerodynamics around an isolatedsingle rotating wheel with decreasing ground proximity. The wheel was initially modeled in free air conditions, then with decreasing ground proximity and increased yaw angle with rotational speeds. Three speeds of rotation were applied to the wheel so that the effect of different angular velocities can be investigated. In addition to rotation, three different yaw angles were applied to the rotating wheel in order to understand how these two variables combined affect the aerodynamic flow field around the wheel.
Keywords: Aerodynamics, CFD, Ground Proximity, Landing Gear, Wheel, Rotation, Yaw.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2366387 Speeding up Nonlinear Time History Analysis of Base-Isolated Structures Using a Nonlinear Exponential Model
Authors: Nicolò Vaiana, Giorgio Serino
Abstract:
The nonlinear time history analysis of seismically base-isolated structures can require a significant computational effort when the behavior of each seismic isolator is predicted by adopting the widely used differential equation Bouc-Wen model. In this paper, a nonlinear exponential model, able to simulate the response of seismic isolation bearings within a relatively large displacements range, is described and adopted in order to reduce the numerical computations and speed up the nonlinear dynamic analysis. Compared to the Bouc-Wen model, the proposed one does not require the numerical solution of a nonlinear differential equation for each time step of the analysis. The seismic response of a 3d base-isolated structure with a lead rubber bearing system subjected to harmonic earthquake excitation is simulated by modeling each isolator using the proposed analytical model. The comparison of the numerical results and computational time with those obtained by modeling the lead rubber bearings using the Bouc-Wen model demonstrates the good accuracy of the proposed model and its capability to reduce significantly the computational effort of the analysis.
Keywords: Base isolation, computational efficiency, nonlinear exponential model, nonlinear time history analysis.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 985386 Flow Behavior and Performances of Centrifugal Compressor Stage Vaneless Diffusers
Authors: Y. Galerkin, O. Solovieva
Abstract:
Parameters of flow are calculated in vaneless diffusers with relative width 0,014–0,10. Inlet angles of flow and similarity criteria were varied. There is information on flow separation, boundary layer development, configuration of streamlines. Polytrophic efficiency, loss coefficient and recovery coefficient are used to compare effectiveness of diffusers. The sample of optimization of narrow diffuser with conical walls is presented. Three wide diffusers with narrowing walls are compared. The work is made in the R&D laboratory “Gas dynamics of turbo machines” of the TU SPb.
Keywords: Vaneless diffuser, relative width, flow angle, flow separation, loss coefficient, similarity criteria.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2268385 Thermographic Tests of Curved GFRP Structures with Delaminations: Numerical Modelling vs. Experimental Validation
Authors: P. D. Pastuszak
Abstract:
The present work is devoted to thermographic studies of curved composite panels (unidirectional GFRP) with subsurface defects. Various artificial defects, created by inserting PTFE stripe between individual layers of a laminate during manufacturing stage are studied. The analysis is conducted both with the use finite element method and experiments. To simulate transient heat transfer in 3D model with embedded various defect sizes, the ANSYS package is used. Pulsed Thermography combined with optical excitation source provides good results for flat surfaces. Composite structures are mostly used in complex components, e.g., pipes, corners and stiffeners. Local decrease of mechanical properties in these regions can have significant influence on strength decrease of the entire structure. Application of active procedures of thermography to defect detection and evaluation in this type of elements seems to be more appropriate that other NDT techniques. Nevertheless, there are various uncertainties connected with correct interpretation of acquired data. In this paper, important factors concerning Infrared Thermography measurements of curved surfaces in the form of cylindrical panels are considered. In addition, temperature effects on the surface resulting from complex geometry and embedded and real defect are also presented.Keywords: Active thermography, finite element analysis, composite, curved structures, defects.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1712384 Fragility Assessment for Vertically Irregular Buildings with Soft Storey
Authors: N. Akhavan, Sh. Tavousi Tafreshi, A. Ghasemi
Abstract:
Seismic behavior of irregular structures through the past decades indicate that the stated buildings do not have appropriate performance. Among these subjects, the current paper has investigated the behavior of special steel moment frame with different configuration of soft storey vertically. The analyzing procedure has been evaluated with respect to incremental dynamic analysis (IDA), and numeric process was carried out by OpenSees finite element analysis package. To this end, nine 2D steel frames, with different numbers of stories and irregularity positions, which were subjected to seven pairs of ground motion records orthogonally with respect to Ibarra-Krawinkler deterioration model, have been investigated. This paper aims at evaluating the response of two-dimensional buildings incorporating soft storey which subjected to bi-directional seismic excitation. The IDAs were implemented for different stages of PGA with various ground motion records, in order to determine maximum inter-storey drift ratio. According to statistical elements and fracture range (standard deviation), the vulnerability or exceedance from above-mentioned cases has been examined. For this reason, fragility curves for different placement of soft storey in the first, middle and the last floor for 4, 8, and 16 storey buildings have been generated and compared properly.
Keywords: Special steel moment frame, soft storey, incremental dynamic analysis, fragility curve.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1482383 Performance of Steel Frame with a Viscoelastic Damper Device under Earthquake Excitation
Authors: M. H. Mehrabi, S. S. Ghodsi, Zainah Ibrahim, Meldi Suhatril
Abstract:
Standard routes for upgrading existing buildings to improve their seismic response can be expensive in terms of both time and cost due to the modifications required to the foundations. As a result, interest has grown in the installation of viscoelastic dampers (VEDs) in mid and high-rise buildings. Details of a low-cost viscoelastic passive control device, the rotary rubber braced damper (RRBD), are presented in this paper. This design has the added benefits of being lightweight and simple to install. Experimental methods and finite element modeling were used to assess the performance of the proposed VED design and its effect on building response during earthquakes. The analyses took into account the behaviors of non-linear materials and large deformations. The results indicate that the proposed RRBD provides high levels of energy absorption, ensuring the stable cyclical response of buildings in all scenarios considered. In addition, time history analysis was employed in this study to evaluate the RRBD’s ability to control the displacements and accelerations experienced by steel frame structures. It was demonstrated that the device responds well even at low displacements, highlighting its suitability for use in seismic events of varying severity.
Keywords: Dynamic response, passive control, performance test, seismic protection.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 947382 Characterization of Organic Matter in Spodosol Amazonian by Fluorescence Spectroscopy
Authors: Amanda M. Tadini, Houssam Hajjoul, Gustavo Nicolodelli, Stéphane Mounier, Célia R. Montes, Débora M. B. P. Milori
Abstract:
Soil organic matter (SOM) plays an important role in maintaining soil productivity and accounting for the promotion of biological diversity. The main components of the SOM are the humic substances which can be fractionated according to its solubility in humic acid (HA), fulvic acids (FA) and humin (HU). The determination of the chemical properties of organic matter as well as its interaction with metallic species is an important tool for understanding the structure of the humic fractions. Fluorescence spectroscopy has been studied as a source of information about what is happening at the molecular level in these compounds. Specially, soils of Amazon region are an important ecosystem of the planet. The aim of this study is to understand the molecular and structural composition of HA samples from Spodosol of Amazonia using the fluorescence Emission-Excitation Matrix (EEM) and Time Resolved Fluorescence Spectroscopy (TRFS). The results showed that the samples of HA showed two fluorescent components; one has a more complex structure and the other one has a simpler structure, which was also seen in TRFS through the evaluation of each sample lifetime. Thus, studies of this nature become important because it aims to evaluate the molecular and structural characteristics of the humic fractions in the region that is considered as one of the most important regions in the world, the Amazon.
Keywords: Amazonian soil, characterization, fluorescence, humic acid, lifetime.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1122381 Optometric-lab: a Stereophotogrammetry Tool for Eye Movements Records
Authors: E. F. P. Leme, L. J. R. Lopez, D. G. Goroso
Abstract:
In this paper as showed a non-invasive 3D eye tracker for optometry clinical applications. Measurements of biomechanical variables in clinical practice have many font of errors associated with traditional procedments such cover test (CT), near point of accommodation (NPC), eye ductions (ED), eye vergences (EG) and, eye versions (ES). Ocular motility should always be tested but all evaluations have a subjective interpretations by practitioners, the results is based in clinical experiences, repeatability and accuracy don-t exist. Optometric-lab is a tool with 3 (tree) analogical video cameras triggered and synchronized in one acquisition board AD. The variables globe rotation angle and velocity can be quantified. Data record frequency was performed with 27Hz, camera calibration was performed in a know volume and image radial distortion adjustments.Keywords: Eye Tracking, strabismus, eye movements, optometry.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1831380 A Computational Comparison between Revetec Engine and Conventional Internal Combustion Engines on the Indicated Torque
Authors: Maisara Mohyeldin Gasim, A. K. Amirruddin, A. Shahrani
Abstract:
This paper investigates the effect of replacing crankshaft with cam on the indicated torque during compression and power strokes in internal combustion engines. A Cycloidal cam profile was used in Revetec engine to calculate and compare the torque to a conventional engine, using a computational method. Firstly, the cylinder pressure was calculated using Ferguson equation, and then the torque calculated depending on cylinder pressure values in every crank angle. the results showed that by using Cycloidal cam profile in Revetec engine the torque can increased by 14% compared with conventional engines, which means an increase in engine efficiency.Keywords: Revetec engine, indicated torque, cam profile.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2012379 Experimental and Numerical Investigation of Air Ejector with Diffuser with Boundary Layer Suction
Authors: Vaclav Dvorak
Abstract:
The article deals with experimental and numerical investigation of axi-symmetric subsonic air to air ejector with diffuser adapted for boundary layer suction. The diffuser, which is placed behind the mixing chamber of the ejector, has high divergence angle and therefore low efficiency. To increase the efficiency, the diffuser is equipped with slot enabling boundary layer suction. The effect of boundary layer suction on flow in ejector, static pressure distribution on the mixing chamber wall and characteristic were measured and studied numerically. Both diffuser and ejector efficiency were evaluated. The diffuser efficiency was increased, however, the efficiency of ejector itself remained low.Keywords: Air ejector, boundary layer suction, CFD, diffuser.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2817378 A Comparative Study on the Performance of Viscous and Friction Dampers under Seismic Excitation
Authors: Apetsi K. Ampiah, Zhao Xin
Abstract:
Earthquakes over the years have been known to cause devastating damage on buildings and induced huge loss on human life and properties. It is for this reason that engineers have devised means of protecting buildings and thus protecting human life. Since the invention of devices such as the viscous and friction dampers, scientists/researchers have been able to incorporate these devices into buildings and other engineering structures. The viscous damper is a hydraulic device which dissipates the seismic forces by pushing fluid through an orifice, producing a damping pressure which creates a force. In the friction damper, the force is mainly resisted by converting the kinetic energy into heat by friction. Devices such as viscous and friction dampers are able to absorb almost all the earthquake energy, allowing the structure to remain undamaged (or with some amount of damage) and ready for immediate reuse (with some repair works). Comparing these two devices presents the engineer with adequate information on the merits and demerits of these devices and in which circumstances their use would be highly favorable. This paper examines the performance of both viscous and friction dampers under different ground motions. A two-storey frame installed with both devices under investigation are modeled in commercial computer software and analyzed under different ground motions. The results of the performance of the structure are then tabulated and compared. Also included in this study is the ease of installation and maintenance of these devices.
Keywords: Friction damper, seismic, slip load, viscous damper.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 715377 Evaluation of Exerting Force on the Heating Surface Due to Bubble Ebullition in Subcooled Flow Boiling
Authors: M. R. Nematollahi
Abstract:
Vibration characteristics of subcooled flow boiling on thin and long structures such as a heating rod were recently investigated by the author. The results show that the intensity of the subcooled boiling-induced vibration (SBIV) was influenced strongly by the conditions of the subcooling temperature, linear power density and flow velocity. Implosive bubble formation and collapse are the main nature of subcooled boiling, and their behaviors are the only sources to originate from SBIV. Therefore, in order to explain the phenomenon of SBIV, it is essential to obtain reliable information about bubble behavior in subcooled boiling conditions. This was investigated at different conditions of coolant subcooling temperatures of 25 to 75°C, coolant flow velocities of 0.16 to 0.53m/s, and linear power densities of 100 to 600 W/cm. High speed photography at 13,500 frames per second was performed at these conditions. The results show that even at the highest subcooling condition, the absolute majority of bubbles collapse very close to the surface after detaching from the heating surface. Based on these observations, a simple model of surface tension and momentum change is introduced to offer a rough quantitative estimate of the force exerted on the heating surface during the bubble ebullition. The formation of a typical bubble in subcooled boiling is predicted to exert an excitation force in the order of 10-4 N.Keywords: Subcooled boiling, vibration mechanism, bubble behavior.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1542376 Investigating the Dynamic Response of the Ballast
Authors: Osama Brinji, Wing Kong Chiu, Graham Tew
Abstract:
Understanding the stability of rail ballast is one of the most important aspects in the railways. An unstable track may cause some issues such as unnecessary vibration and ultimately loss of track quality. The track foundation plays an important role in the stabilization of the railway. The dynamic response of rail ballast in the vicinity of the rail sleeper can affect the stability of the rail track and this has not been studied in detail. A review of literature showed that most of the works focused on the area under the concrete sleeper. Although there are some theories about the shear (longitudinal) effect of the rail ballast, these have not properly been studied and hence are not well understood. The stability of a rail track will depend on the compactness of the ballast in its vicinity. This paper will try to determine the dynamic response of the ballast to identify its resonant behaviour. This preliminary research is one of several studies that examine the vibration response of the granular materials. The main aim is to use this information for future design of sleepers to ensure that any dynamic response of the sleeper will not compromise the state of compactness of the ballast. This paper will report on the dependence of damping and the natural frequency of the ballast as a function of depth and distance from the point of excitation introduced through a concrete block. The concrete block is used to simulate a sleeper and the ballast is simulated with gravel. In spite of these approximations, the results presented in the paper will show an agreement with theories and the assumptions that are used in study the mechanical behaviour of the rail ballast.
Keywords: Ballast, dynamic response, sleeper, stability.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1651375 Implementation of Lower-Limb Rehabilitation System Using Attraction Motors with a Treadmill
Authors: Young-Lim Choi, Nak-Yun Choi, Jae-Yong Seo, Sang-Il Park, Jong-Wook Kim
Abstract:
This paper proposes a prototype of a lower-limb rehabilitation system for recovering and strengthening patients- injured lower limbs. The system is composed of traction motors for each leg position, a treadmill as a walking base, tension sensors, microcontrollers controlling motor functions and a main system with graphic user interface. For derivation of reference or normal velocity profiles of the body segment point, kinematic method is applied based on the humanoid robot model using the reference joint angle data of normal walking.Keywords: Rehabilitation, lower limb, treadmill, humanoid robot.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1441374 Progressive Collapse of Hyperbolic Cooling Tower Considering the Support Inclinations
Authors: Esmaeil Asadzadeh, Mehtab Alam
Abstract:
Progressive collapse of the layered hyperbolic tower shells are studied considering the influences of changes in the supporting columns’ types and angles. 3-D time history analyses employing the finite element method are performed for the towers supported with I-type and ᴧ-type column. It is found that the inclination angle of the supporting columns is a very important parameter in optimization and safe design of the cooling towers against the progressive collapse. It is also concluded that use of Demand Capacity Ratio (DCR) criteria of the linear elastic approach recommended by GSA is un-conservative for the hyperbolic tower shells.
Keywords: Progressive collapse, cooling towers, finite element analysis, crack generation, reinforced concrete.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1360373 The Exploitation of Balancing an Inverted Pendulum System Using Sliding Mode Control
Authors: Sheren H. Salah, Ahmed Y. Ben Sasi
Abstract:
The inverted pendulum system is a classic control problem that is used in universities around the world. It is a suitable process to test prototype controllers due to its high non-linearities and lack of stability. The inverted pendulum represents a challenging control problem, which continually moves toward an uncontrolled state. This paper presents the possibility of balancing an inverted pendulum system using sliding mode control (SMC). The goal is to determine which control strategy delivers better performance with respect to pendulum’s angle and cart's position. Therefore, proportional-integral-derivative (PID) is used for comparison. Results have proven SMC control produced better response compared to PID control in both normal and noisy systems.Keywords: Inverted pendulum (IP) proportional-integralderivative (PID), sliding mode control (SMC).
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2060372 An Improved Adaptive Dot-Shape Beamforming Algorithm Research on Frequency Diverse Array
Authors: Yanping Liao, Zenan Wu, Ruigang Zhao
Abstract:
Frequency diverse array (FDA) beamforming is a technology developed in recent years, and its antenna pattern has a unique angle-distance-dependent characteristic. However, the beam is always required to have strong concentration, high resolution and low sidelobe level to form the point-to-point interference in the concentrated set. In order to eliminate the angle-distance coupling of the traditional FDA and to make the beam energy more concentrated, this paper adopts a multi-carrier FDA structure based on proposed power exponential frequency offset to improve the array structure and frequency offset of the traditional FDA. The simulation results show that the beam pattern of the array can form a dot-shape beam with more concentrated energy, and its resolution and sidelobe level performance are improved. However, the covariance matrix of the signal in the traditional adaptive beamforming algorithm is estimated by the finite-time snapshot data. When the number of snapshots is limited, the algorithm has an underestimation problem, which leads to the estimation error of the covariance matrix to cause beam distortion, so that the output pattern cannot form a dot-shape beam. And it also has main lobe deviation and high sidelobe level problems in the case of limited snapshot. Aiming at these problems, an adaptive beamforming technique based on exponential correction for multi-carrier FDA is proposed to improve beamforming robustness. The steps are as follows: first, the beamforming of the multi-carrier FDA is formed under linear constrained minimum variance (LCMV) criteria. Then the eigenvalue decomposition of the covariance matrix is performed to obtain the diagonal matrix composed of the interference subspace, the noise subspace and the corresponding eigenvalues. Finally, the correction index is introduced to exponentially correct the small eigenvalues of the noise subspace, improve the divergence of small eigenvalues in the noise subspace, and improve the performance of beamforming. The theoretical analysis and simulation results show that the proposed algorithm can make the multi-carrier FDA form a dot-shape beam at limited snapshots, reduce the sidelobe level, improve the robustness of beamforming, and have better performance.
Keywords: Multi-carrier frequency diverse array, adaptive beamforming, correction index, limited snapshot, robust.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 681371 Fuzzy Logic Control of Static Var Compensator for Power System Damping
Authors: N.Karpagam, D.Devaraj
Abstract:
Static Var Compensator (SVC) is a shunt type FACTS device which is used in power system primarily for the purpose of voltage and reactive power control. In this paper, a fuzzy logic based supplementary controller for Static Var Compensator (SVC) is developed which is used for damping the rotor angle oscillations and to improve the transient stability of the power system. Generator speed and the electrical power are chosen as input signals for the Fuzzy Logic Controller (FLC). The effectiveness and feasibility of the proposed control is demonstrated with Single Machine Infinite Bus (SMIB) system and multimachine system (WSCC System) which show improvement over the use of a fixed parameter controller.Keywords: FLC, SVC, Transient stability, SMIB, PIDcontroller.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 3447370 The Analysis of Knee Joint Movement During Golf Swing in Professional and Amateur Golfers
Authors: M.Somjarod, V. Tanawat, l. Weerawat
Abstract:
The understanding of knee movement during swing importance for golf swing improving and preventing injury. Thirty male professional and amateur golfers were assigned to swing time by time for 3 times. Data from a vedio-based motion capture were used to compute knee joint movement variables. The results showed that professional and amateur golfers were significantly in left knee flexion angle at the impact point and mid follow through phase. Nevertheless, left knee external rotation in both groups was also significant. The right knee were no significant different in all variable. However, pattern of knee joint movement are also likely between professional and amateur golfers.Keywords: Golfer, Knee joint, Movement, Swing
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 4410369 The Design of a Die for the Processing of Aluminum through Equal Channel Angular Pressing
Authors: P. G. F. Siqueira, N. G. S. Almeida, P. M. A. Stemler, P. R. Cetlin, M. T. P. Aguilar
Abstract:
The processing of metals through Equal Channel Angular Pressing (ECAP) leads to their remarkable strengthening. The ECAP dies control the amount of strain imposed on the material through its geometry, especially through the angle between the die channels, and thus the microstructural and mechanical properties evolution of the material. The present study describes the design of an ECAP die whose utilization and maintenance are facilitated, and that also controls the eventual undesired flow of the material during processing. The proposed design was validated through numerical simulations procedures using commercial software. The die was manufactured according to the present design and tested. Tests using aluminum alloys also indicated to be suitable for the processing of higher strength alloys.
Keywords: ECAP, mechanical design, numerical methods, SPD.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 787368 Higher Frequency Modeling of Synchronous Exciter Machines by Equivalent Circuits and Transfer Functions
Authors: Marcus Banda
Abstract:
In this article the influence of higher frequency effects in addition to a special damper design on the electrical behavior of a synchronous generator main exciter machine is investigated. On the one hand these machines are often highly stressed by harmonics from the bridge rectifier thus facing additional eddy current losses. On the other hand the switching may cause the excitation of dangerous voltage peaks in resonant circuits formed by the diodes of the rectifier and the commutation reactance of the machine. Therefore modern rotating exciters are treated like synchronous generators usually modeled with a second order equivalent circuit. Hence the well known Standstill Frequency Response Test (SSFR) method is applied to a test machine in order to determine parameters for the simulation. With these results it is clearly shown that higher frequencies have a strong impact on the conventional equivalent circuit model. Because of increasing field displacement effects in the stranded armature winding the sub-transient reactance is even smaller than the armature leakage at high frequencies. As a matter of fact this prevents the algorithm to find an equivalent scheme. This issue is finally solved using Laplace transfer functions fully describing the transient behavior at the model ports.Keywords: Synchronous exciter machine, Linear transfer function, SSFR, Equivalent Circuit
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2050367 Design of a Drift Assist Control System Applied to Remote Control Car
Authors: Sheng-Tse Wu, Wu-Sung Yao
Abstract:
In this paper, a drift assist control system is proposed for remote control (RC) cars to get the perfect drift angle. A steering servo control scheme is given powerfully to assist the drift driving. A gyroscope sensor is included to detect the machine's tail sliding and to achieve a better automatic counter-steering to prevent RC car from spinning. To analysis tire traction and vehicle dynamics is used to obtain the dynamic track of RC cars. It comes with a control gain to adjust counter-steering amount according to the sensor condition. An illustrated example of 1:10 RC drift car is given and the real-time control algorithm is realized by Arduino Uno.Keywords: Drift assist control system, remote control cars, gyroscope, vehicle dynamics.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2558366 Analysis of a Self-Acting Air Journal Bearing: Effect of Dynamic Deformation of Bump Foil
Authors: H. Bensouilah, H. Boucherit, M. Lahmar
Abstract:
A theoretical investigation on the effects of both steady-state and dynamic deformations of the foils on the dynamic performance characteristics of a self-acting air foil journal bearing operating under small harmonic vibrations is proposed. To take into account the dynamic deformations of foils, the perturbation method is used for determining the gas-film stiffness and damping coefficients for given values of excitation frequency, compressibility number, and compliance factor of the bump foil. The nonlinear stationary Reynolds’ equation is solved by means of the Galerkins’ finite element formulation while the finite differences method are used to solve the first order complex dynamic equations resulting from the perturbation of the nonlinear transient compressible Reynolds’ equation. The stiffness of a bump is uniformly distributed throughout the bearing surface (generation I bearing). It was found that the dynamic properties of the compliant finite length journal bearing are significantly affected by the compliance of foils especially whenthe dynamic deformation of foils is considered in addition to the static one by applying the principle of superposition.
Keywords: Elasto-aerodynamic lubrication, Air foil bearing, Steady-state deformation, Dynamic deformation, Stiffness and damping coefficients, Perturbation method, Fluid-structure interaction, Galerk infinite element method, Finite difference method.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2757365 Determining a Suitable Maintenance Measure for Gentelligent Components Using Case-Based Reasoning
Authors: M. Winkens, P. Nyhuis
Abstract:
Components with sensory properties such as gentelligent components developed at the Collaborative Research Centre 653 offer a new angle in terms of the full utilization of the remaining service life as well as preventive maintenance. The developed methodology of component status driven maintenance analyzes the stress data obtained during the component's useful life and on the basis of this knowledge assesses the type of maintenance required in this case. The procedure is derived from the case-based reasoning method and will be explained in detail. The method's functionality is demonstrated with real-life data obtained during test runs of a racing car prototype.
Keywords: Gentelligent Components, Preventive Maintenance, Case based Reasoning.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1907364 Role of Director's Philosophical Approach in Cinematographic Expression
Authors: Sedat Cereci
Abstract:
The original idea for a feature film may come from a writer, director or a producer. Director is the person responsible for the creative aspects, both interpretive and technical, of a motion picture production in a film. Director may be shot discussing his project with his or her cowriters, members of production staff, and producer, and director may be shown selecting locales or constructing sets. All these activities provide, of course, ways of externalizing director-s ideas about the film. A director sometimes pushes both the film image and techniques of narration to new artistic limits, but main responsibility of director is take the spectator to an original opinion in his philosophical approach. Director tries to find an artistic angle in every scene and change screenplay into an effective story and sets his film on a spiritual and philosophical base.Keywords: Director, role, film, approach, opinion.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1543363 Entropy Generation for Natural Convection in a Darcy – Brinkman Porous Cavity
Authors: Ali Mchirgui, Nejib Hidouri, Mourad Magherbi, Ammar Ben Brahim
Abstract:
The paper provides a numerical investigation of the entropy generation analysis due to natural convection in an inclined square porous cavity. The coupled equations of mass, momentum, energy and species conservation are solved using the Control Volume Finite-Element Method. Effect of medium permeability and inclination angle on entropy generation is analysed. It was found that according to the Darcy number and the porous thermal Raleigh number values, the entropy generation could be mainly due to heat transfer or to fluid friction irreversibility and that entropy generation reaches extremum values for specific inclination angles.Keywords: Porous media, entropy generation, convection, numerical method.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2610