Search results for: Cellular fatty acid methyl esters
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 1087

Search results for: Cellular fatty acid methyl esters

697 Hydrogen Storage In Single-Walled Carbon Nanotubes Purified By Microwave Digestion Method

Authors: Neslihan Yuca, Nilgün Karatepe

Abstract:

The aim of this study was to synthesize the single walled carbon nanotubes (SWCNTs) and determine their hydrogen storage capacities. SWCNTs were firstly synthesized by chemical vapor deposition (CVD) of acetylene (C2H2) on a magnesium oxide (MgO) powder impregnated with an iron nitrate (Fe(NO3)3·9H2O) solution. The synthesis parameters were selected as: the synthesis temperature of 800°C, the iron content in the precursor of 5% and the synthesis time of 30 min. Purification process of SWCNTs was fulfilled by microwave digestion at three different temperatures (120, 150 and 200 °C), three different acid concentrations (0.5, 1 and 1.5 M) and for three different time intervals (15, 30 and 60 min). Nitric acid (HNO3) was used in the removal of the metal catalysts. The hydrogen storage capacities of the purified materials were measured using volumetric method at the liquid nitrogen temperature and gas pressure up to 100 bar. The effects of the purification conditions such as temperature, time and acid concentration on hydrogen adsorption were investigated.

Keywords: Carbon nanotubes, purification, microwavedigestion, hydrogen storage

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2246
696 Identification Characterization and Production of Phytase from Endophytic Fungi

Authors: Yetti Marlida , Rina Delfita , Neni Gusmanizar, Gita Ciptaan

Abstract:

Phytases are acid phosphatase enzymes, which efficiently cleave phosphate moieties from phytic acid, thereby generating myo-inositol and inorganic phosphate. Thirty four isolates of endophytic fungi to produce of phytases were isolated from leaf, stem and root fragments of soybean. Screening of 34 isolates of endophytic fungi identified the phytases produced by Rhizoctonia sp. and Fusarium verticillioides . The phytase production were the best induced by phytic acid and rice bran compared the others inducer in submerged fermentation medium used. The phytase produced by both Rhizoctonia sp. and F. verticillioides have pH optimum at 4.0 and 5.0 respectively. The characterization of phytase from Fusarium verticillioides showed that temperature optimum was 500C and stability until 600C, the pH optimum 5.0 and pH stability was 2.5 – 6.0, and substrate specificity were rice bran>soybean meal>corn> coconut cake, respectively.

Keywords: endophytic fungus, phytase, soybean, Rhizoctoniasp., Fusarium verticillioides,

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2598
695 Calibration Model of %Titratable Acidity (Citric Acid) for Intact Tomato by Transmittance SW-NIR Spectroscopy

Authors: K. Petcharaporn, S. Kumchoo

Abstract:

The acidity (citric acid) is the one of chemical content that can be refer to the internal quality and it’s a maturity index of tomato, The titratable acidity (%TA) can be predicted by a non-destructive method prediction by using the transmittance short wavelength (SW-NIR) spectroscopy in the wavelength range between 665-955 nm. The set of 167 tomato samples divided into groups of 117 tomatoes sample for training set and 50 tomatoes sample for test set were used to establish the calibration model to predict and measure %TA by partial least squares regression (PLSR) technique. The spectra were pretreated with MSC pretreatment and it gave the optimal result for calibration model as (R = 0.92, RMSEC = 0.03%) and this model obtained high accuracy result to use for %TA prediction in test set as (R = 0.81, RMSEP = 0.05%). From the result of prediction in test set shown that the transmittance SW-NIR spectroscopy technique can be used for a non-destructive method for %TA prediction of tomato.

Keywords: Tomato, quality, prediction, transmittance, titratable acidity, citric acid.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2700
694 Effect of Temperature and Time on Dilute Acid Pretreatment of Corn Cobs

Authors: Sirikarn Satimanont, Apanee Luengnaruemitchai, Sujitra Wongkasemjit

Abstract:

Lignocellulosic materials are new targeted source to produce second generation biofuels like biobutanol. However, this process is significantly resisted by the native structure of biomass. Therefore, pretreatment process is always essential to remove hemicelluloses and lignin prior to the enzymatic hydrolysis. The goals of pretreatment are removing hemicelluloses and lignin, increasing biomass porosity, and increasing the enzyme accessibility. The main goal of this research is to study the important variables such as pretreatment temperature and time, which can give the highest total sugar yield in pretreatment step by using dilute phosphoric acid. After pretreatment, the highest total sugar yield of 13.61 g/L was obtained under an optimal condition at 140°C for 10 min of pretreatment time by using 1.75% (w/w) H3PO4 and at 15:1 liquid to solid ratio. The total sugar yield of two-stage process (pretreatment+enzymatic hydrolysis) of 27.38 g/L was obtained.

Keywords: Butanol production, Corn cobs, Phosphoric acid, Pretreatment

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2734
693 Inhibitory Effects of Extracts and Isolates from Kigelia africana Fruits against Pathogenic Bacteria and Yeasts

Authors: Deepak K. Semwal, Ruchi B. Semwal, Aijaz Ahmad, Guy P. Kamatou, Alvaro M. Viljoen

Abstract:

Kigelia africana (Lam.) Benth. (Bignoniaceae) is a reputed traditional remedy for various human ailments such as skin diseases, microbial infections, melanoma, stomach troubles, metabolic disorders, malaria and general pains. In spite of the fruit being widely used for purposes related to its antibacterial and antifungal properties, the chemical constituents associated with the activity have not been fully identified. To elucidate the active principles, we evaluated the antimicrobial activity of fruit extracts and purified fractions against Staphylococcus aureus, Enterococcus faecalis, Moraxella catarrhalis, Escherichia coli, Candida albicans and Candida tropicalis. Shade-dried fruits were powdered and extracted with hydroalcoholic (1:1) mixture by soaking at room temperature for 72 h. The crude extract was further fractionated by column chromatography, with successive elution using hexane, dichloromethane, ethyl acetate, acetone and methanol. The dichloromethane and ethyl acetate fractions were combined and subjected to column chromatography to furnish a wax and oil from the eluates of 20% and 40% ethyl acetate in hexane, respectively. The GC-MS and GC×GC-MS results revealed that linoleic acid, linolenic acid, palmitic acid, arachidic acid and stearic acid were the major constituents in both oil and wax. The crude hydroalcoholic extract exhibited the strongest activity with MICs of 0.125-0.5 mg/mL, followed by the ethyl acetate (MICs = 0.125-1.0 mg/mL), dichloromethane (MICs = 0.250-2.0 mg/mL), hexane (MICs = 0.25- 2.0 mg/mL), acetone (MICs = 0.5-2.0 mg/mL) and methanol (MICs = 1.0-2.0 mg/mL), whereas the wax (MICs = 2.0-4.0 mg/mL) and oil (MICs = 4.0-8.0 mg/mL) showed poor activity. The study concludes that synergistic interactions of chemical constituents could be responsible for the antimicrobial activity of K. africana fruits, which needs a more holistic approach to understand the mechanism of its antimicrobial activity.

Keywords: Kigelia Africana, traditional medicine, antimicrobial activity, Candida albicans, palmitic acid, synergistic interaction.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 3334
692 The Effects on Yield and Yield Components of Different Level Cluster Tip Reduction and Foliar Boric Acid Applications on Alphonse Lavallee Grape Cultivar

Authors: A. Akın, H. Çoban

Abstract:

This study was carried out to determine the effects of Control (C), 1/3 Cluster Tip Reduction (1/3 CTR), 1/6 Cluster Tip Reduction (1/6 CTR), 1/9 Cluster Tip Reduction (1/9 CTR), 1/3 CTR + Boric Acid (BA), 1/6 CTR + BA, 1/9 CTR + BA applications on yield and yield components of four years old Alphonse Lavallee grape variety (Vitis vinifera L.) grown on grafted 110 Paulsen rootstock in Konya province in Turkey in the vegetation period in 2015. According to the results, the highest maturity index 21.46 with 1/9 CTR application; the highest grape juice yields 736.67 ml with 1/3 CTR + BA application; the highest L* color value 32.07 with 1/9 CTR application; the highest a* color value 1.74 with 1/9 CTR application; the highest b* color value 3.72 with 1/9 CTR application were obtained. The effects of applications on grape fresh yield, cluster weight and berry weight were not found statistically significant.

Keywords: Alphonse Lavallee grape cultivar, different cluster tip reduction (1/3, 1/6, 1/9), foliar boric acid application, yield, quality.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1850
691 Estimated Human Absorbed Dose of 111In-BPAMD as a New Bone-Seeking SPECT-Imaging Agent

Authors: H. Yousefnia, S. Zolghadri

Abstract:

An early diagnosis of bone metastasis is very important for making a right decision on a subsequent therapy. One of the most important steps to be taken initially, for developing a new radiopharmaceutical is the measurement of organ radiation exposure dose. In this study, the dosimetric studies of a novel agent for SPECT-imaging of the bone metastasis, 111In-(4- {[(bis(phosphonomethyl))carbamoyl]methyl}7,10bis(carboxymethyl) -1,4,7,10-tetraazacyclododec-1-yl) acetic acid (111In-BPAMD) complex, have been carried out to estimate the dose in human organs based on the data derived from mice. The radiolabeled complex was prepared with high radiochemical purity in the optimal conditions. Biodistribution studies of the complex was investigated in the male Syrian mice at the selected times after injection (2, 4, 24 and 48 h). The human absorbed dose estimation of the complex was made based on data derived from the mice by the radiation absorbed dose assessment resource (RADAR) method. 111In-BPAMD complex was prepared with high radiochemical purity >95% (ITLC) and specific activities of 2.85 TBq/mmol. Total body effective absorbed dose for 111In-BPAMD was 0.205 mSv/MBq. This value is comparable to the other 111In clinically used complexes. The results show that the dose with respect to the critical organs is satisfactory within the acceptable range for diagnostic nuclear medicine procedures. Generally, 111In-BPAMD has interesting characteristics and it can be considered as a viable agent for SPECT-imaging of the bone metastasis in the near future.

Keywords: In-111, BPAMD, absorbed dose, RADAR.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2198
690 Passive Neutralization of Acid Mine Drainage Using Locally Produced Limestone

Authors: Reneiloe Seodigeng, Malwandla Hanabe, Haleden Chiririwa, Hilary Rutto, Tumisang Seodigeng

Abstract:

Neutralisation of acid-mine drainage (AMD) using limestone is cost effective, and good results can be obtained. However, this process has its limitations; it cannot be used for highly acidic water which consists of Fe(III). When Fe(III) reacts with CaCO3, it results in armoring. Armoring slows the reaction, and additional alkalinity can no longer be generated. Limestone is easily accessible, so this problem can be easily dealt with. Experiments were carried out to evaluate the effect of PVC pipe length on ferric and ferrous ions. It was found that the shorter the pipe length the more these dissolved metals precipitate. The effect of the pipe length on the hydrogen ions was also studied, and it was found that these two have an inverse relationship. Experimental data were further compared with the model prediction data to see if they behave in a similar fashion. The model was able to predict the behaviour of 1.5m and 2 m pipes in ferric and ferrous ion precipitation.

Keywords: Acid mine drainage, neutralization, limestone, modeling.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1330
689 Dissolution of Zeolite as a Sorbent in Flue Gas Desulphurization Process Using a pH Stat Apparatus

Authors: Hilary Rutto, John Kabuba

Abstract:

Sulphur dioxide is a harmful gaseous product that needs to be minimized in the atmosphere. This research work investigates the use of zeolite as a possible additive that can improve the sulphur dioxide capture in wet flue gas desulphurisation dissolution process. This work determines the effect of temperature, solid to liquid ratio, acid concentration and stirring speed on the leaching of zeolite using a pH stat apparatus. The atomic absorption spectrometer was used to measure the calcium ions from the solution. It was found that the dissolution rate of zeolite decreased with increase in solid to liquid ratio and increases with increase in temperature, stirring speed and acid concentration. The activation energy for the dissolution rate of zeolite in hydrochloric acid was found to be 9.29kJ/mol. and therefore the product layer diffusion was the rate limiting step.

Keywords: Calcium ion, pH stat apparatus, wet flue gas desulphurization, zeolite.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2102
688 A DMB-TCA Simulation Method for On-Road Traffic Travel Demand Impact Analysis

Authors: Zundong Zhang, Limin Jia, Zhao Tian, Yanfang Yang

Abstract:

Travel Demands influence micro-level traffic behavior, furthermore traffic states. In order to evaluate the effect of travel demands on traffic states, this paper introduces the Demand- Motivation-Behaviors (DMB) micro traffic behavior analysis model which denotes that vehicles behaviors are determines by motivations that relies on traffic demands from the perspective of behavior science. For vehicles, there are two kinds of travel demands: reaching travel destinations from orientations and meeting expectations of travel speed. To satisfy travel demands, the micro traffic behaviors are delivered such as car following behavior, optional and mandatory lane changing behaviors. Especially, mandatory lane changing behaviors depending on travel demands take strong impact on traffic states. In this paper, we define the DMB-based cellular automate traffic simulation model to evaluate the effect of travel demands on traffic states under the different δ values that reflect the ratio of mandatory lane-change vehicles.

Keywords: Demand-Motivation-Behavior, Mandatory Lane Changing, Traffic Cellular Automata.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1677
687 Electroremediation of Cu-Contaminated Soil

Authors: Darius Jay R. Bongay, Roberto L. Ngo

Abstract:

This study investigated the removal efficiency of electrokinetic remediation of copper-contaminated soil at different combinations of enhancement reagents used as anolyte and catholyte. Sodium hydroxide (at 0.1, 0.5, and 1.0 M concentrations) and distilled water were used as anolyte, while lactic acid (at 0.01, 0.1, and 0.5 M concentrations), ammonium citrate (also at 0.01, 0.1, and 0.5 M concentrations) and distilled water were used as catholyte. A continuous voltage application (1.0 VDC/cm) was employed for 240 hours for each experiment. The copper content of the catholyte was determined at the end of the 240-hour period. Optimization was carried out with a Response Surface Methodology - Optimal Design, including F test, and multiple comparison method, to determine which pair of anolyte-catholyte was the most significant for the removal efficiency. "1.0 M NaOH" was found to be the most significant anolyte while it was established that lactic acid was the most significant type of catholyte to be used for the most successful electrokinetic experiments. Concentrations of lactic acid should be at the range of 0.1 M to 0.5 M to achieve maximum percent removal values.

Keywords: Electrokinetic remediation, copper contamination, heavy metal contamination, soil remediation

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1727
686 MRI Compatible Fresnel Zone Plates made of Polylactic Acid

Authors: Daniel Tarrazó-Serrano, Sergio Pérez-López, Sergio Castiñeira-Ibáñez, Pilar Candelas, Constanza Rubio

Abstract:

Zone Plates (ZPs) are used in many areas of physics where planar fabrication is advantageous in comparison with conventional curved lenses. There are several types of ZPs, such as the well-known Fresnel ZPs or the more recent Fractal ZPs and Fibonacci ZPs. The material selection of the lens plays a very important role in the beam modulation control. This work presents a comparison between two Fresnel ZP made from different materials in the ultrasound domain: Polylactic Acid (PLA) and brass. PLA is the most common material used in commercial 3D-printers due to its high design flexibility and low cost. Numerical simulations based on Finite Element Method (FEM) and experimental results are shown, and they prove that the focusing capabilities of brass ZPs and PLA ZPs are similar. For this reason, PLA is proposed as a Magnetic Resonance Imaging (MRI) compatible material with great potential for therapeutic ultrasound focusing applications.

Keywords: Fresnel zone plate, magnetic resonance imaging polylactic acid, ultrasound focusing.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 816
685 Resistance to Sulfuric Acid Attacks of Self-Consolidating Concrete: Effect Metakaolin and Various Cements Types

Authors: Kianoosh Samimi, Farhad Estakhr, Mahdi Mahdikhani, Faramaz Moodi

Abstract:

Due to their fluidity and simplicity of use, self-compacting concretes (SCCs) have undeniable advantages. In recent years, the role of metakaolin as a one of pozzolanic materials in concrete has been considered by researchers. It can modify various properties of concrete, due to high pozzolanic reactions and also makes a denser microstructure. The objective of this paper is to examine the influence of three type of Portland cement and metakaolin on fresh state, compressive strength and sulfuric acid attacks in self- consolidating concrete at early age up to 90 days of curing in lime water. Six concrete mixtures were prepared with three types of different cement as Portland cement type II, Portland Slag Cement (PSC), Pozzolanic Portland Cement (PPC) and 15% substitution of metakaolin by every cement. The results show that the metakaolin admixture increases the viscosity and the demand amount of superplasticizer. According to the compressive strength results, the highest value of compressive strength was achieved for PSC and without any metakaolin at age of 90 days. Conversely, the lowest level of compressive strength at all ages of conservation was obtained for PPC and containing 15% metakaolin. According to this study, the total substitution of PSC and PPC by Portland cement type II is beneficial to the increasing in the chemical resistance of the SCC with respect to the sulfuric acid attack. On the other hand, this increase is more noticeable by the use of 15% of metakaolin. Therefore, it can be concluded that metakaolin has a positive effect on the chemical resistance of SCC containing of Portland cement type II, PSC, and PPC.

Keywords: SCC, metakaolin, cement type, durability, compressive strength, sulfuric acid attacks.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 895
684 Anti-Aging Effects of Retinol and Alpha Hydroxy Acid on Elastin Fibers of Artificially Photo-Aged Human Dermal Fibroblast Cell Lines

Authors: M. Jarrar, S. Behl, N. Shaheen, A. Fatima, R. Nasab

Abstract:

Skin aging is a slow multifactorial process influenced by both internal as well as external factors. Ultra-violet radiations (UV), diet, smoking and personal habits are the most common environmental factors that affect skin aging. Fat contents and fibrous proteins as collagen and elastin are core internal structural components. The direct influence of UV on elastin integrity and health is central on aging of skin especially by time. The deposition of abnormal elastic material is a major marker in a photo-aged skin. Searching for compounds that may protect against cutaneous photodamage is exceedingly valued. Retinoids and alpha hydroxy acids have been endorsed by some researchers as possible candidates for protecting and or repairing the effect of UV damaged skin. For consolidating a better system of anti- and protective effects of such anti-aging agents, we evaluated the combinatory effects of various dosages of lactic acid and retinol on the dermal fibroblast’s elastin levels exposed to UV. The UV exposed cells showed significant reduction in the elastin levels. A combination of drugs with a higher concentration of lactic acid (30 -35 mM) and a lower concentration of retinol (10-15mg/mL) showed to work better in maintaining elastin concentration in UV exposed cells. We assume this preservation could be the result of increased tropo-elastin gene expression stimulated by retinol whereas lactic acid probably repaired the UV irradiated damage by enhancing the amount and integrity of the elastin fibers.

Keywords: Alpha Hydroxy Acid, Elastin, Retinol, Ultraviolet radiations.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 3094
683 Synthesis, Characterization and Antibacterial Screening of 3-Hydroxy-2-[3-(2/3/4-Methoxybenzoyl)Thioureido]Butyric Acid

Authors: M. S. M. Yusof, R. Ramli, S. K. C. Soh, N. Ismail, N. Ngah

Abstract:

This study presents the synthesis of a series of methoxybenzoylthiourea amino acid derivatives. The compounds were obtained from the reactions between 2/3/4-methoxybenzoyl isothiocyanate with threonine. All of the compounds were characterized via mass spectrometry, 1H and 13C NMR spectrometry, UV-Vis spectrophotometer and FT-IR spectroscopy. Mass spectra for all of the compounds showed the presence of molecular ion [M]+ peaks at m/z 312, which are in agreement to the calculated molecular weight. For 1H NMR spectra, the presence of OCH3, C=S-NH and C=O-NH protons were observed within range of δH 3.8-4.0 ppm, 11.1-11.5 ppm and 10.0-11.5 ppm, respectively. 13C NMR spectra in all compounds displayed the presence of OCH3, C=O-NH, C=O-OH and C=S carbon resonances within range of δC 55.0-57.0 ppm, 165.0-168.0 ppm, 170.0-171.0 ppm and 180.0-182.0 ppm, respectively. In UV spectra, two absorption bands have been observed and both were assigned to the n-π* and π-π* transitions. Six vibrational modes of v(N-H), v(O-H), v(C=O-OH), v(C=O-NH), v(C=C) aromatic and v(C=S) appeared in the FT-IR spectra within the range of 3241-3467 cm-1, 2976-3302 cm-1, 1720-1768 cm-1, 1655-1672 cm-1, 1519-1525 cm-1 and 754-763 cm-1, respectively. The antibacterial activity for all of the compounds was screened against Staphylococcus aureus, Staphylococcus epidermidis, Salmonella typhimurium and Escherichia coli. However, no activity was observed.

Keywords: Methoxybenzoyl isothiocyanate, amino acid, threonine, antibacterial.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 925
682 The Phenolic Substances and Antioxidant Activity of White Saffron (Curcuma mangga Val.) as Affected by Blanching Methods

Authors: D. Pujimulyani, S. Raharjo, Y. Marsono, U. Santoso

Abstract:

Background and objectives: Most of the agricultural products are processed by blanching. Blanching can increase antioxidant activity in white saffron products. The objective of this research were to determine antioxidant activity, to identify, and to measure changes in phenolic substances of fresh and blanched white saffron rhizomes (Curcuma mangga Val.). Methods: White saffron rhizomes were peeled, washed and blanched in boiling water containing 0% or 0.05% citric acid solution for 5 and 10 minutes. Samples were extracted using methanol, rotaevaporated, and freezedried. Dried extract was determined antioxidant activity by DPPH method, identified and quantified for the phenolic substances by High Performance Liquid Chromatography (HPLC) equipped with coloumn C18 and Photodiode-array detector (PAD). Result: This research showed that the quantity of the 6 phenolic substances identified in blanched white saffron in citric acid solution increased significantly compared to that of the non-blanched. Blanching white saffron in 0.05% citric acid media for 5 minutes increased its antioxidant activity, and total phenolic content. Conclusions: The identified phenolic substances of white saffron were Gallic Acid (GA), Catechin (C), Epicatechin (EC), Epigallocatechin (EGC), Epigallocatechingallat (EGCG) and Gallocatechingallat (GCG). The blanched white saffron contained C and EGCG significantly higher than that of fresh rhizomes.

Keywords: White saffron, antioxidant activity, blanching, phenolic.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 3157
681 Development of NOx Emission Model for a Tangentially Fired Acid Incinerator

Authors: Elangeshwaran Pathmanathan, Rosdiazli Ibrahim, Vijanth Sagayan Asirvadam

Abstract:

This paper aims to develop a NOx emission model of an acid gas incinerator using Nelder-Mead least squares support vector regression (LS-SVR). Malaysia DOE is actively imposing the Clean Air Regulation to mandate the installation of analytical instrumentation known as Continuous Emission Monitoring System (CEMS) to report emission level online to DOE . As a hardware based analyzer, CEMS is expensive, maintenance intensive and often unreliable. Therefore, software predictive technique is often preferred and considered as a feasible alternative to replace the CEMS for regulatory compliance. The LS-SVR model is built based on the emissions from an acid gas incinerator that operates in a LNG Complex. Simulated Annealing (SA) is first used to determine the initial hyperparameters which are then further optimized based on the performance of the model using Nelder-Mead simplex algorithm. The LS-SVR model is shown to outperform a benchmark model based on backpropagation neural networks (BPNN) in both training and testing data.

Keywords: artificial neural networks, industrial pollution, predictive algorithms, support vector machines

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1975
680 Isolation and Identification of an Acetobacter Strain from Iranian White-Red Cherry with High Acetic Acid Productivity as a Potential Strain for Cherry Vinegar Production in Foodand Agriculture Biotechnology

Authors: K. Beheshti Maal, R. Shafiee

Abstract:

According to FDA (Food and Drug Administration of the United States), vinegar is definedas a sour liquid containing at least 4 grams acetic acid in 100 cubic centimeter (4% solution of acetic acid) of solution that is produced from sugary materials by alcoholic fermentation. In the base of microbial starters, vinegars could be contained of more than 50 types of volatile and aromatic substances that responsible for their sweet taste and smelling. Recently the vinegar industry has a great proportion in agriculture, food and microbial biotechnology. The acetic acid bacteria are from the family Acetobacteraceae. Regarding to the latest version of Bergy-s Mannual of Systematic Bacteriology that has categorized bacteria in the base of their 16s RNA differences, the most important acetic acid genera are included Acetobacter (genus I), Gluconacetobacter (genus VIII) and Gluconobacter (genus IX). The genus Acetobacter that is primarily used in vinegar manufacturing plants is a gram negative, obligate aerobe coccus or rod shaped bacterium with the size 0.6 - 0.8 X 1.0 - 4.0 μm, nonmotile or motile with peritrichous flagella and catalase positive – oxidase negative biochemically. Some strains are overoxidizer that could convert acetic acid to carbon dioxide and water.In this research one Acetobacter native strain with high acetic acid productivity was isolated from Iranian white – red cherry. We used two specific culture media include Carr medium [yeast extract, 3%; ethanol, 2% (v/v); bromocresol green, 0.002%; agar, 2% and distilled water, 1000 ml], Frateur medium [yeast extract, 10 g/l; CaCO3, 20 g/l; ethanol, 20 g/l; agar, 20 g/l and distilled water, 1000 ml] and an industrial culture medium. In addition to high acetic acid production and high growth rate, this strain had a good tolerance against ethanol concentration that was examined using modified Carr media with 5%, 7% and 9% ethanol concentrations. While the industrial strains of acetic acid bacteria grow in the thermal range of 28 – 30 °C, this strain was adapted for growth in 34 – 36 °C after 96 hours incubation period. These dramatic characteristics suggest a potential biotechnological strain in production of cherry vinegar with a sweet smell and different nutritional properties in comparison to recent vinegar types. The lack of growth after 24, 48 and 72 hours incubation at 34 – 36 °C and the growth after 96 hours indicates a good and fast thermal flexibility of this strain as a significant characteristic of biotechnological and industrial strains.

Keywords: Acetobacte, acetic acid bacteria, white – red cherry, food and agriculture biotechnology, industrial fermentation, vinegar

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 5020
679 A Mathematical Investigation of the Turkevich Organizer Theory in the Citrate Method for the Synthesis of Gold Nanoparticles

Authors: Emmanuel Agunloye, Asterios Gavriilidis, Luca Mazzei

Abstract:

Gold nanoparticles are commonly synthesized by reducing chloroauric acid with sodium citrate. This method, referred to as the citrate method, can produce spherical gold nanoparticles (NPs) in the size range 10-150 nm. Gold NPs of this size are useful in many applications. However, the NPs are usually polydisperse and irreproducible. A better understanding of the synthesis mechanisms is thus required. This work thoroughly investigated the only model that describes the synthesis. This model combines mass and population balance equations, describing the NPs synthesis through a sequence of chemical reactions. Chloroauric acid reacts with sodium citrate to form aurous chloride and dicarboxy acetone. The latter organizes aurous chloride in a nucleation step and concurrently degrades into acetone. The unconsumed precursor then grows the formed nuclei. However, depending on the pH, both the precursor and the reducing agent react differently thus affecting the synthesis. In this work, we investigated the model for different conditions of pH, temperature and initial reactant concentrations. To solve the model, we used Parsival, a commercial numerical code, whilst to test it, we considered various conditions studied experimentally by different researchers, for which results are available in the literature. The model poorly predicted the experimental data. We believe that this is because the model does not account for the acid-base properties of both chloroauric acid and sodium citrate.

Keywords: Gold nanoparticles, Citrate method, Turkevich organizer theory, population balance modelling.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1002
678 Comparison of the Effects of Continuous Flow Microwave Pre-treatment with Different Intensities on the Anaerobic Digestion of Sewage Sludge for Sustainable Energy Recovery from Sewage Treatment Plant

Authors: D. Hephzibah, P. Kumaran, N. M. Saifuddin

Abstract:

Anaerobic digestion is a well-known technique for sustainable energy recovery from sewage sludge. However, sewage sludge digestion is restricted due to certain factors. Pre-treatment methods have been established in various publications as a promising technique to improve the digestibility of the sewage sludge and to enhance the biogas generated which can be used for energy recovery. In this study, continuous flow microwave (MW) pre-treatment with different intensities were compared by using 5 L semi-continuous digesters at a hydraulic retention time of 27 days. We focused on the effects of MW at different intensities on the sludge solubilization, sludge digestibility, and biogas production of the untreated and MW pre-treated sludge. The MW pre-treatment demonstrated an increase in the ratio of soluble chemical oxygen demand to total chemical oxygen demand (sCOD/tCOD) and volatile fatty acid (VFA) concentration. Besides that, the total volatile solid (TVS) removal efficiency and tCOD removal efficiency also increased during the digestion of the MW pre-treated sewage sludge compared to the untreated sewage sludge. Furthermore, the biogas yield also subsequently increases due to the pre-treatment effect. A higher MW power level and irradiation time generally enhanced the biogas generation which has potential for sustainable energy recovery from sewage treatment plant. However, the net energy balance tabulation shows that the MW pre-treatment leads to negative net energy production.

Keywords: Anaerobic digestion, biogas, microwave pre-treatment, sewage sludge.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2147
677 Thermal and Electrical Properties of Carbon Nanotubes Purified by Acid Digestion

Authors: Neslihan Yuca, Nilgün Karatepe, Fahrettin Yakuphanoğlu

Abstract:

Carbon nanotubes (CNTs) possess unique structural, mechanical, thermal and electronic properties, and have been proposed to be used for applications in many fields. However, to reach the full potential of the CNTs, many problems still need to be solved, including the development of an easy and effective purification procedure, since synthesized CNTs contain impurities, such as amorphous carbon, carbon nanoparticles and metal particles. Different purification methods yield different CNT characteristics and may be suitable for the production of different types of CNTs. In this study, the effect of different purification chemicals on carbon nanotube quality was investigated. CNTs were firstly synthesized by chemical vapor deposition (CVD) of acetylene (C2H2) on a magnesium oxide (MgO) powder impregnated with an iron nitrate (Fe(NO3)3·9H2O) solution. The synthesis parameters were selected as: the synthesis temperature of 800°C, the iron content in the precursor of 5% and the synthesis time of 30 min. The liquid phase oxidation method was applied for the purification of the synthesized CNT materials. Three different acid chemicals (HNO3, H2SO4, and HCl) were used in the removal of the metal catalysts from the synthesized CNT material to investigate the possible effects of each acid solution to the purification step. Purification experiments were carried out at two different temperatures (75 and 120 °C), two different acid concentrations (3 and 6 M) and for three different time intervals (6, 8 and 15 h). A 30% H2O2 : 3M HCl (1:1 v%) solution was also used in the purification step to remove both the metal catalysts and the amorphous carbon. The purifications using this solution were performed at the temperature of 75°C for 8 hours. Purification efficiencies at different conditions were evaluated by thermogravimetric analysis. Thermal and electrical properties of CNTs were also determined. It was found that the obtained electrical conductivity values for the carbon nanotubes were typical for organic semiconductor materials and thermal stabilities were changed depending on the purification chemicals.

Keywords: Carbon nanotubes, purification, acid digestion, thermalstability, electrical conductivity

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2396
676 Preparation and Characterization of Chitosan / Polyacrylic Acid / Ag-Nanoparticles Composite Membranes

Authors: Abdel-Mohdy, A. Abou-Okeil, S. El-Sabagh, S. M. El-Sawy

Abstract:

Chitosan polyacrylic acid composite membranes were prepared by a bulk polymerization method in presence of N, N'- methylene bisacrylamide (crosslinker) and ammonium persulphate as initiator. Membranes prepared from this copolymer in presence and absence of Ag nanoparticles were characterized by measuring mechanical and physical properties, water up-take and antibacterial properties. The results obtained indicated that the prepared membranes have antibacterial properties which increase with adding Ag nanoparticles.

Keywords: Ag nanoparticles, antimicrobial, composites, Membrane, physical properties.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2751
675 Evaluation of Antioxidant Properties of Barberry Fruits Extracts Using Maceration and Subcritical Water Extraction (SWE)

Authors: M. Mohamadi, A. M. Maskooki., S. A. Mortazavi

Abstract:

The quality and shelf life of foods of containing lipids (fats and oils) significantly reduces due to rancidity.Applications of natural antioxidants are one of the most effective manners to prevent the oxidation of oils and lipids. The antioxidant properties of juice extracted from barberry fruit (Berberris vulgaris.L) using maceration and SWE (10 bars and 120 - 180°C) methods were investigated and compared with conventional method. The amount of phenolic compound and reduction power of all samples were determined and the data were statistically analyzed using multifactor design. The results showed that the total amount of phenolic compound increased with increasing of pressure and temprature from 1861.9 to 2439.1 (mg Gallic acid /100gr Dry matter). The ability of reduction power of SWE obtained antioxidant extract compared with BHA (synthetic antioxidant) and ascorbic acid (natural antioxidant). There were significant differences among reduction power of extracts and there were remarkable difference with BHA and Ascorbic acid (P<0.01).

Keywords: Subcritical water, Antioxidant, Barberry, Phenolic compound, Reduction power

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2676
674 Cold Plasma Surface Modified Electrospun Microtube Array Membrane for Chitosan Immobilization and Their Properties

Authors: Ko-Shao Chen, Yun Tsao, Chia-Hsuan Tsen, Chien-Chung Chen, Shu-Chuan Liao

Abstract:

Electrospun microtube array membranes (MTAMs) made of PLLA (poly-L-lactic acid) have wide potential applications in tissue engineering. However, their surface hydrophobicity and poor biocompatability have limited their further usage. In this study, the surface of PLLA MTAMs were made hydrophilic by introducing extra functional groups, such as peroxide, via an acetic acid plasma (AAP). UV-graft polymerization of acrylic acid (G-AAc) was then used to produce carboxyl group on MTAMs surface, which bonded covalently with chitosan through EDC / NHS crosslinking agents. To evaluate the effects of the surface modification on PLLA MTAMs, water contact angle (WCA) measurement and cell compatibility tests were carried out. We found that AAP treated electrospun PLLA MTAMs grafted with AAc and, finally, with chitosan immobilized via crosslinking agent, exhibited improved hydrophilic and cell compatibility.

Keywords: Plasma, EDC/NHS, UV grafting, chitosan, microtube array membrane.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1092
673 Adjustment and Scale-Up Strategy of Pilot Liquid Fermentation Process of Azotobacter sp.

Authors: G. Quiroga-Cubides, A. Díaz, M. Gómez

Abstract:

The genus Azotobacter has been widely used as bio-fertilizer due to its significant effects on the stimulation and promotion of plant growth in various agricultural species of commercial interest. In order to obtain significantly viable cellular concentration, a scale-up strategy for a liquid fermentation process (SmF) with two strains of A. chroococcum (named Ac1 and Ac10) was validated and adjusted at laboratory and pilot scale. A batch fermentation process under previously defined conditions was carried out on a biorreactor Infors®, model Minifors of 3.5 L, which served as a baseline for this research. For the purpose of increasing process efficiency, the effect of the reduction of stirring speed was evaluated in combination with a fed-batch-type fermentation laboratory scale. To reproduce the efficiency parameters obtained, a scale-up strategy with geometric and fluid dynamic behavior similarities was evaluated. According to the analysis of variance, this scale-up strategy did not have significant effect on cellular concentration and in laboratory and pilot fermentations (Tukey, p > 0.05). Regarding air consumption, fermentation process at pilot scale showed a reduction of 23% versus the baseline. The percentage of reduction related to energy consumption reduction under laboratory and pilot scale conditions was 96.9% compared with baseline.

Keywords: Azotobacter chroococcum, scale-up, liquid fermentation, fed-batch process.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1322
672 Production of Apricot Vinegar Using an Isolated Acetobacter Strain from Iranian Apricot

Authors: Keivan Beheshti Maal, Rasoul Shafiei, Noushin Kabiri

Abstract:

Vinegar or sour wine is a product of alcoholic and subsequent acetous fermentation of sugary precursors derived from several fruits or starchy substrates. This delicious food additive and supplement contains not less than 4 grams of acetic acid in 100 cubic centimeters at 20°C. Among the large number of bacteria that are able to produce acetic acid, only few genera are used in vinegar industry most significant of which are Acetobacter and Gluconobacter. In this research we isolated and identified an Acetobacter strain from Iranian apricot, a very delicious and sensitive summer fruit to decay, we gathered from fruit's stores in Isfahan, Iran. The main culture media we used were Carr, GYC, Frateur and an industrial medium for vinegar production. We isolated this strain using a novel miniature fermentor we made at Pars Yeema Biotechnologists Co., Isfahan Science and Technology Town (ISTT), Isfahan, Iran. The microscopic examinations of isolated strain from Iranian apricot showed gram negative rods to cocobacilli. Their catalase reaction was positive and oxidase reaction was negative and could ferment ethanol to acetic acid. Also it showed an acceptable growth in 5%, 7% and 9% ethanol concentrations at 30°C using modified Carr media after 24, 48 and 96 hours incubation respectively. According to its tolerance against high concentrations of ethanol after four days incubation and its high acetic acid production, 8.53%, after 144 hours, this strain could be considered as a suitable industrial strain for a production of a new type of vinegar, apricot vinegar, with a new and delicious taste. In conclusion this is the first report of isolation and identification of an Acetobacter strain from Iranian apricot with a very good tolerance against high ethanol concentrations as well as high acetic acid productivity in an acceptable incubation period of time industrially. This strain could be used in vinegar industry to convert apricot spoilage to a beneficiary product and mentioned characteristics have made it as an amenable strain in food and agricultural biotechnology.

Keywords: Acetic Acid Bacteria, Acetobacter, Fermentation, Food and Agricultural Biotechnology, Iranian Apricot, Vinegar.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 3964
671 Lipase Catalyzed Synthesis of Aromatic Esters of Sugar Alcohols

Authors: R. Croitoru, L. A. M. van den Broek, A. E. Frissen, C. M. Davidescu, F. Peter, C. G. Boeriu

Abstract:

Commercially available lipases (Candida antarctica lipase B, Novozyme 435, Thermomyces lanuginosus lipase, and Lipozyme TL IM), as well as sol-gel immobilized lipases, have been screened for their ability to acylate regioselectively xylitol, sorbitol, and mannitol with a phenolic ester in a binary mixture of t-butanol and dimethylsulfoxide. HPLC and MALDI-TOF MS analysis revealed the exclusive formation of monoesters for all studied sugar alcohols. The lipases immobilized by the sol-gel entrapment method proved to be efficient catalysts, leading to high conversions (up to 60%) in the investigated acylation reactions. From a sequence of silane precursors with different nonhydrolyzable groups in their structure, the presence of octyl and i-butyl group was most beneficial for the catalytic activity of sol-gel entrapped lipases in the studied process.

Keywords: Lipase, phenolic ester, specificity, sugar alcohol, transesterification.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2228
670 The Effects of Different Level Cluster Tip Reduction and Foliar Boric Acid Applications on Yield and Yield Components of Italia Grape Cultivar

Authors: A. Akin

Abstract:

This study was carried out on Italia grape variety (Vitis vinifera L.) in Konya province, Turkey in 2016. The cultivar is five years old and grown on 1103 Paulsen rootstock. It was determined the effects of applications of the Control (C), 1/3 Cluster Tip Reduction (1/3 CTR), 1/6 Cluster Tip Reduction (1/6 CTR), 1/9 Cluster Tip Reduction (1/9 CTR), 1/3 CTR+Boric Acid (BA), 1/6 CTR+BA, 1/9 CTR+BA, on yield and yield components of the Italia grape variety. The results were obtained as the highest fresh grape yield (4.74 g) with 1/9 CTR+BA application; the highest cluster weight (220.08 g) with 1/3 CTR application; the highest 100 berry weight (565.85 g) with 1/9 CTR+BA application; as the highest maturity index (49.28) with 1/9 CTR+BA application; as the highest must yield (685.33 ml/kg) with 1/3 CTR+BA and (685.33 ml/kg) with 1/9 CTR+BA applications. To increase the fresh grape yield, 100 berry weight and maturity index in the Italia grape variety, the 1/9 CTR+BA application can be recommended.

Keywords: Italia grape variety, boric acid, cluster tip reduction, yield, yield components.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 998
669 Intrinsic Electromagnetic Fields and Atom-Field Coupling in Living Cells

Authors: Masroor H. S. Bukhari, Z. H. Shah

Abstract:

The possibility of intrinsic electromagnetic fields within living cells and their resonant self-interaction and interaction with ambient electromagnetic fields is suggested on the basis of a theoretical and experimental study. It is reported that intrinsic electromagnetic fields are produced in the form of radio-frequency and infra-red photons within atoms (which may be coupled or uncoupled) in cellular structures, such as the cell cytoskeleton and plasma membrane. A model is presented for the interaction of these photons among themselves or with atoms under a dipole-dipole coupling, induced by single-photon or two-photon processes. This resonance is manifested by conspicuous field amplification and it is argued that it is possible for these resonant photons to undergo tunnelling in the form of evanescent waves to a short range (of a few nanometers to micrometres). This effect, suggested as a resonant photon tunnelling mechanism in this report, may enable these fields to act as intracellular signal communication devices and as bridges between macromolecules or cellular structures in the cell cytoskeleton, organelles or membrane. A brief overview of an experimental technique and a review of some preliminary results are presented, in the detection of these fields produced in living cell membranes under physiological conditions.

Keywords: bioelectromagnetism, cell membrane, evanescentwaves, photon tunnelling, resonance

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1893
668 Geospatial Assessment of State Lands in the Cape Coast Urban Area

Authors: E. B. Quarcoo, I. Yakubu, K. J. Appau

Abstract:

Current land use and land cover (LULC) dynamics in Ghana have revealed considerable changes in settlement spaces. As a result, this study is intended to merge the cellular automata and Markov chain models using remotely sensed data and Geographical Information System (GIS) approaches to monitor, map, and detect the spatio-temporal LULC change in state lands within Cape Coast Metropolis. Multi-temporal satellite images from 1986-2020 were pre-processed, geo-referenced, and then mapped using supervised maximum likelihood classification to investigate the state’s land cover history (1986-2020) with an overall mapping accuracy of approximately 85%. The study further observed the rate of change for the area to have favored the built-up area 9.8 (12.58 km2) to the detriment of vegetation 5.14 (12.68 km2), but on average, 0.37 km2 (91.43 acres, or 37.00 ha.) of the landscape was transformed yearly. Subsequently, the CA-Markov model was used to anticipate the potential LULC for the study area for 2030. According to the anticipated 2030 LULC map, the patterns of vegetation transitioning into built-up regions will continue over the following ten years as a result of urban growth.

Keywords: LULC, cellular automata, Markov Chain, state lands, urbanisation, public lands, cape coast metropolis.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 139