Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 32734
Lipase Catalyzed Synthesis of Aromatic Esters of Sugar Alcohols

Authors: R. Croitoru, L. A. M. van den Broek, A. E. Frissen, C. M. Davidescu, F. Peter, C. G. Boeriu


Commercially available lipases (Candida antarctica lipase B, Novozyme 435, Thermomyces lanuginosus lipase, and Lipozyme TL IM), as well as sol-gel immobilized lipases, have been screened for their ability to acylate regioselectively xylitol, sorbitol, and mannitol with a phenolic ester in a binary mixture of t-butanol and dimethylsulfoxide. HPLC and MALDI-TOF MS analysis revealed the exclusive formation of monoesters for all studied sugar alcohols. The lipases immobilized by the sol-gel entrapment method proved to be efficient catalysts, leading to high conversions (up to 60%) in the investigated acylation reactions. From a sequence of silane precursors with different nonhydrolyzable groups in their structure, the presence of octyl and i-butyl group was most beneficial for the catalytic activity of sol-gel entrapped lipases in the studied process.

Keywords: Lipase, phenolic ester, specificity, sugar alcohol, transesterification.

Digital Object Identifier (DOI):

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2171


[1] H. Stamatis, V. Sereti, and F. N. Kolisis, "Enzymatic synthesis of hydrophilic and hydrophobic derivatives of natural phenolic acids in organic media", Journal of Molecular Catalysis B: Enzymatic, vol. 11, pp. 323-328, 2001.
[2] C. Vafiadi, E. Topakas, K. K. Y. Wong, I. D. Suckling, and P. Christakopoulos, "Mapping the hydrolytic and synthetic selectivity of a type C feruloyl esterase (StFaeC) from Sporotrichum thermophile using alkyl ferulates", Tetrahedron: Asymmetry, vol. 16, pp. 373-379, 2005.
[3] I. S. Yoo, S. J. Park, and H. H. Yoon, " Enzymatic synthesis of sugar fatty acid esters", J. Ind. Eng. Chem., vol. 13, no. 1, pp. 1-6, 2007.
[4] J. Piao, S. Adachi, "Stability of O/W emulsions prepared using various monoacyl sugar alcohols as an emulsifier", Innovat. Food Sci. Emerg. Technol., vol. 7, pp. 211-216, 2006.
[5] B. Guyot, B. Bosquette, M. Pina, and J. Graille, "Esterification of phenolic acids from green coffee with an immobilized lipase from Candida antarctica in solvent-free medium ", Biotechnol. Let., vol. 19, no. 6, pp. 529-532, 1997.
[6] H. Stamatis, V. Sereti, and F. N. Kolisis, "Studies on the enzymatic synthesis of lipophilic derivatives of natural antioxidants", JAOCS, vol. 76, no. 12, pp. 1505-1510, 1999.
[7] A. M. B. Rahman, N. B. Chaibakhsh, M. A. B. Salleh, and R. N. Z. R. A. Rahman, " Application of artificial neural network for yield prediction of lipase-catalyzed synthesis of dioctyl adipate ", Appl. Biochem. Biotechnol., vol. 158, no. 3, pp. 722-735, 2009.
[8] F. Ganske, U. T. Bornscheuer, "Optimization of lipase-catalyzed glucose fatty acid ester synthesis in a two-phase system containing ionic liquids and t-BuOH ", J. Mol. Catal. B: Enzym., vol. 36, pp. 40-42, 2005.
[9] J. Piao, S. Adachi, "Enzymatic preparation of fatty acid esters of sugar alcohols by condensation in acetone using a packed-bed reactor with immobilized Candida antarctica lipase", Biocat. Biotrans., vol. 22, pp. 269-274, 2004.
[10] A. F. Artamanov, L. F. Burkovskaya, F. S. Nigmatullina, and B. Z. Dzhiembaev, "Synthesis of monoesters of d-sorbitol and aromatic acids", Chem. Nat. Comp., vol. 33, no. 5, pp. 571-573, 1998.
[11] F. Peter L. Poppe, C. Kiss, E. Szocs-Bíro, G. Preda, C. Zarcula, and A. Olteanu, "Influence of precursors and additives on microbial lipases stabilized by sol-gel entrapment", Biocat. Biotrans., vol. 23, pp. 251- 260, 2005.
[12] M. M. Bradford, "A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding", Anal Biochem., vol. 72, pp. 248-254, 1976.
[13] R. ter Haar, H. A. Schols, L. A. M. van den Broek, D. Sa─ƒlam, A. E. Frissen, C. G. Boeriu, and H. Gruppen, "Molecular sieves provoke multiple substitutions in the enzymatic synthesis of fructose oligosaccharide-lauryl esters", J. Mol. Catal. B: Enzymatic, vol. 62, pp. 183-189, 2010.
[14] C. Zarcula, C. Kiss, L. Corîci, R. Croitoru, C. Csunderlik, and F. Peter, "Combined sol-gel entrapment and adsorption method to obtain solidphase lipase biocatalyts", Rev. Chim.(Bucharest), vol. 60, no. 9, pp. 922- 927, 2009.
[15] C. Zarcula, R. Croitoru, L. Corîci, C. Csunderlik, and F. Peter, "Improvement of lipase catalytic properties by immobilization in hybrid matrices", Int. J. Chem. Biomol. Eng., vol. 2, no. 3, pp. 138-143, 2009.
[16] S. Naik, A. Basu, R. Saikia, Bhawna Madan, Pritish Paul, Robin Chaterjee, Jesper Brask, and Allan Svendsen, "Lipases for use in industrial biocatalysis: Specificity of selected structural groups of lipases", J. Mol. Catal. B: Enzymatic, vol. 65, pp. 18-23, 2010.
[17] F. Peter, C. Zarcula, S. Kakasi-Zsurka, R. Croitoru, C. Davidescu, and C. Csunderlik, "Solid-phase lipase biocatalysts for kinetic resolutions", J. Biotechnol., 136S, S356-S401, 2008.
[18] R. T. Otto, H. Scheib, U. T. Bornscheuer, J. Pleiss, C. Syldatk, and R. D. Schmid, "Substrate specificity of lipase B from Candida antarctica in the synthesis of arylaliphatic glycolipids", J. Mol. Catalysis B: Enzymatic, vol. 8, pp. 201-211, 2000.